All posts by Marc-Henri Derron

Ryan Kromer – visiting scientist in the RISK group

Ryan Kromer is PhD graduate of Queen’s University and a post doctoral researcher at the Colorado School of Mines. He was a visiting PhD student at the University of Lausanne during 2015 and 2016 and is now visiting the Risk group from April to June 2019. During his visit, he will be conducting research on automated monitoring of landslides using terrestrial LiDAR and photogrammetry. The research visit is supported by the Herbette Foundation. Ryan is looking forward to another fruitfull visit with the group.

José Pullarello: First characterization of the “Rumi-Pana” rock avalanche deposits (Famatina Range, La Rioja, Argentina)

Active mountain fronts are subject to large scale slope collapses which have the capacity to run long distances on piedmont areas. Over time, fluvial activity and other gravitatory processes can intensively erode and mask primary features related to the collapses. Therefore, to reconstruct the history of their occurrence, further analyses are needed, like sedimentologic analyses. This work focuses on the occurrence of large rock avalanches in the Vinchina region, La Rioja (28°43’27.81” S / 68°00’25.42” W) on the western side of the Famatina range (Argentina). Here, photointerpretation of high-resolution satellite images (Google Earth) allowed us to identify two rock avalanches, with their main scarps at 2575 and 2750 masl. There are no determined absolute ages for these deposits, however by comparing their preservation degree with those dated further north (in similar climatic and landscape dynamics contexts), we can suggest these rock avalanches took place during the Pleistocene.We carried out a fieldwork survey in this remote area, including classical landslide mapping, structural analysis, deposits characterization and sampling. The deposits reach the valley bottom at around 1700 masl. with runouts about 5 km and 5.3 km long. In one of the cases, the morphology of the deposit is well preserved, allowing to accurately reconstruct its extension. However, in the second case, the deposits are strongly eroded by sources draining from the mountain front, therefore further analyses should be done to reconstruct its extension. In addition to morphologic interpretations, a multiscale grainsize analysis was done to di↵erentiate rock avalanches from other hillslope deposits: first 3D surface models of surface plots (5x5m) were built with SfM (structure from motion) photogrammetry; then classical sieving and finally laser grain-size analysis of deposits were performed. Samples were collected on different parts of the slope, but also along cross sections throughout the avalanche deposit. This deposits characterization was combined with results from mapping and image analysis to provide a first description of the sequence and the extension of events related to the evolution of this mountain front. The collected data helped to create a series of propagation models with the software DAN3D, developed by Hungr (2009). We chose a Voellmy rheology for the model with f = 0.10 ± 0.05 and ξ = 100 (m/s2) ± 50 (m/s2) for the rock avalanches and f = 0.10 ± 0.05 and ξ = 500 (m/s2) ± 200 (m/s2) for the debris flow. The results show a good propagation with more dispersion that we can see on the field. Part of the cover on the numerical model is not visible on the field, probably due to erosion and transport having moved the material, resulting in the current landscape.

Author: José Pullarello
Director: Marc-Henri Derron, Michel Jaboyedoff.
External Supervisor: Ivanna Penna.

3rd Virtual Geosciences Conference

The 3rd Virtual Geosciences Conference took place in Kingston (Ontario) on 22-24 August 2018.  This conference is at the intersection of geomatics, visualization, computer vision, graphics and gaming, as well as virtual and augmented reality with applications to a range of geoscience subfields, such as geological mapping, geomorphology, geohazards, glaciology, volcanology, tunnelling, and mining. It was organized at Queen’s University, by Ryan Kromer, a former PhD student of Lausanne and Queen’s universities. 

MH Derron, S. Buckley, J. Chandler, M. Jaboyedoff and R. Kromer (Chairman of the 3rd VGC)

The first  VGC conference was in Lausanne in 2014 and then in Bergen in 2016. These events are fantastic opportunities to learn how new technologies can be used  in geosciences, gathering together people from different horizons.

Optimizing the use of 3D point clouds data for a better analysis and communication of 3D results. François Noël, Marc-Henri Derron, Michel Jaboyedoff, Catherine Cloutier  Jacques Locat
Infrared Thermal Imaging for Rock Slope Investigation – Potential and Issues. Marc-Henri Derron, Antoine Guérin, Michel Jaboyedoff

Inventory of shallow and spontaneous landslides and improvement of the methodology to establish hazard and risk maps for the Canton of Vaud

On contrary to hazards which have defined return time for establishing natural hazard maps (for example rock falls or floods), there is no similar methodology for shallow and spontaneous landslides. One way to improve the current methodology is proposed by Cedric Meier,  Marc-Henri Derron, Michel Jaboyedoff from RISK-UNIL and Christian Gerber, Veronica Artigue and Melanie Pigeon from the Vaud county administration. It includes the definition of 7 pilots zones based in Jura, Plateau and Alps, on riverbanks or mountain slopes. Based on the new airborne LiDAR acquisition, a former inventory from 1889 to 2013 and basics documents such as geological and topographical maps, air photos, about 110 landslides were registered.

Shallow landslide in the area of Ollon in 2018

The parameters of the source zone of the landslide, like length, width, estimated depth, area, slope angle and propagation angle (Farböschung) were recorded. For each landslide, 3 different volumes (with half-ellipsoid method, elliptical paraboloid method and Sloping Local Base Level or SLBL method, method developed and applied currently at the Institute of Earth Sciences, ISTE – UNIL) were calculated. A volume-frequency distribution, approximated by the Power Law site specific, but also depending on the slope type was developed. Figures showing the probability of the estimated depth or the volume depending on the area of the source zone were also prepared. For the propagation, only 4 % of the landslide have a propagation angle greater than 13°.

Probability of max depth in function of the surface area of the landslide


Jaboyedoff M., & Derron M.-H. 2005: A new method to estimate the infilling of alluvial sediment of glacial valleys using a Sloping Local Base Level, Geogr.Fis.Dinam. Quat., 28, 37-46. 
VD (2017) :

Aron Somazzi: Rockfall hazard and risk analysis in the Pichoux Gorges (Jura, Switzerland)

First, the potential sources of rockfalls are detected. These locations are determined using the slope histogram method. Then, one passes to the analysis and classification of the discontinuities present in the delimited zones. Density, direction, dip, spacing and persistence can give an idea of the state of the rock, the mode of rupture and the potentially mobilizable size. For this part, we link the measurements made in the field with those obtained digitally by remote sensing (terrestrial LIDAR, structure from motion from car or drone, handheld laser scanner). Then we go on to modeling of rockfall propagation. Four different simulation models were used: Eline, RocFall, Trajecto 3D and Rockyfor 3D. Results are then compared and analyzed.

Finally a hazard map is proposed and the risk assessed. In this study, we focus on the risk of direct block-car impact and the risk of collision with a block that is on the roadway. The sum of the risks gives us a value expressed in deaths per year or loss of francs per year.
After quantifying the value of the current risk, scenarios are proposed to reduce the risk. For this risk management part, cost-benefit analysis was used. This is an economic evaluation of the feasibility of the works of the protections proposed in relation to the costs.

Hydrogeochemical characterization of alpine spring waters

With Hans-Ruedi Pfeifer (Hon. Prof. at the University of Lausanne), I had the pleasure to publish a paper in the Bulletin de la Société Vaudoise des Sciences Naturelles on the chemical composition of alpine spring waters. This paper is a review of water analysis (major and trace elements) according to the type of bedrock forming the catchment.

Although it is published in French, an extended abstract in English is available and reproduced below, with references to the most significant figures.

Derron M.-H., Pfeifer H.-R (2017) : Caractérisation hydrogéochimique des eaux de source alpines. Bull. Soc :Vaud. Sc.Nat, 96, 5-29.

Extended abstract
In order to investigate the influence of bedrock on the chemical composition of alpine spring waters, more than 700 chemical analyses for major and trace elements have been collected from regional reports or thesis. All these waters are from shallow aquifers (no deep or geothermal circulation), where water is cold and oxic, with pH neutral to basic. Five types of bedrock have been distinguished: granite, mafite, ultramafite, limestone and gypseous rocks (mostly gypseous dolomite). Classical physicochemical parameters (pH, temperature and electrical conductivity), major elements and, depending on the authors, about 15 trace elements are usually provided. The concentration ranges of each element in solution, for each type of bedrock, are provided as percentiles in annexes (online). These values are indicators of common water compositions encountered in moderate to high altitude alpine environment.
Results for major elements show that the total dissolved load depends directly on the nature of the bedrock: silicated, carbonated or sulfate-bearing rocks (Figure 1).

Figure 1: Total dissolved solid vs electrical conductivity for alpine waters from silicated rocks, limestones and gypseous rocks (N=696).

Classical diagrams of Schoeller (Figure 2) and Piper (Figure 3), as well as the hydrogeochemical facies of JAECKLI (1970), are used to characterize each water type, corresponding to the five types of rocks considered.

Figure 2: Schoeller’s diagram for the five types of alpine waters considered in this work (median concentrations for each type). 

Figure 3: Piper’s diagram of alpine spring waters for granite (N=98), mafic (61) and ultramafic (36) types on the left, limestones (294) and gypseous rocks (207) on the right.

Two types of water are well differentiated from the others. Waters of gypseous rocks are strongly enriched in Ca, Mg and SO4, with SO4/HCO3 >1. Waters from ultramafic rocks are enriched in Mg, with usually Mg/Ca>1. In all the other types of water (from granites, mafites or limestones), Ca and HCO3 strongly dominate. This convergence of compositions towards an undifferentiated calco-hydrogenocarbonated facies is known in metamorphic rocks. It can be attributed to traces of calcite in the silicate rocks and that metamorphic silicate minerals are much less reactive than calcite. In order to improve the discrimination of these water types, a new ternary diagram is proposed, using relative Ca, Mg and Si concentrations (Figure 4).

Figure 4: Ca-5Mg-10Si  ternary diagram (mMole/L) for alpine spring waters (N=442), with indicative isolines of electrical conductivity. The positions of main rock forming minerals are in the upper figure.

It appears from these analyzes that dissolution properties of minerals (i.e. solubility and dissolution rate) strongly control the content in major elements of these spring waters (Figure 9). In particular, a low amount of a highly soluble and rapidly dissolved mineral may play the main role: gypsum or anhydrite in gypseous rocks, brucite in ultramafites, or calcite in the other rock types.
Dissolved contents of trace elements are highly variables, several orders of magnitude for most of them. Median values and overall distributions, by type of rocks, are displayed in Figure 5 and Figure 6 respectively.

Figure 5: Median concentrations of trace elements in alpine spring waters by type of rocks and by valence. Speciation according to Stumm & Morgan 1996 (cmplx = aqueous complexe).

Figure 6: Wheel of trace elements in solution (inside a slice , the points are spread randomly on the radius that corresponds to the concentration).

For most of trace elements, there is no obvious relationship between rock contents and concentrations in solution. Some exceptions are: 1) water from gypseous rocks are enriched in Li, Rb and Sr; 2) concentrations of U, Mo, As are higher in water from granite. In order to interpret these data and to identify the processes regulating the concentrations of trace elements in solution, the valence, the speciation and a mobility index are used (Figure 10). Dissolution properties of minerals seem to control the concentrations of alkaline elements (Li, Rb, Sr, Ba). Very low concentrations of dissolved Fe, Al, Mn and Ti may be due to precipitation as oxy-hydroxides. Adsorption of transition metals (Co, Ni, Cu, Zn, Cd, Pb) on mineral surfaces or suspensions can regulate their concentrations in these basic waters. Higher valence elements (Si, U, Mo, Cr, As) form anionic complexes in natural waters. If they are present in soluble minerals, these anionic complexes may explain the observed enrichment of these elements in some specific types of water (granitic and gypseous).

Figure 9: Solubility vs dissolution rate for main rock forming minerals (pure water at 25°C and equilibrium with atmospheric CO2 and O2). The dissolution rate is expressed as lifetime of a 1mm diameter spherical grain. Both Goldich’s sequences are shown for silicates. The upper figure illustrates a typeical dissolution experiment, with: m = mass of dissolved mineral, kcin = dissolution rate at the beginning of the reaction [g/m2/s],  S = solubility [g/L], Areac= reactive surface of the mineral [m2/L].

Figure 10: Ratio of the median concentration in water on the concentration in rock (molar concentrations for both). The higher is this ratio, more the element is mobile in the system.

Barcelonnette field trip 2018

The field trip on gravitational slope movements for master students took place for the fifth year at Barcelonnette (French Southern Alps) at the beginning of June. During two weeks, the students had the opportunity to study the landslide of Lavalette, rockfalls around Meolans and debris flows in the Riou Bourdoux catchment. The quite intensive program was composed of mapping and terrestrial LiDAR in the field during day times, data analysis and numerical modelling the evening.

Hugo Collomb from RTM giving explanations on the debris flows mitigation measures in the Riou Bourdoux catchment

Once again we benefited from all the facilities provided by the Seolane center (center dedicated to host scientific stays at Barcelonnette), and we had the opportunity of a visit guided by Hugo Collomb of the French Office of Forest (ONF-RTM).

Séolane, Pôle d’accueil universitaire

Tunisian Geological Days on mapping georisks

The Journées de la Géologie Tunisienne was organized by the office national des mines in Hammamet from 23 to 25 March. This year, this conference was dedicated to the mapping of georisks. Mariam Ben Hammouda and Marc-Henri Derron from the group Risk took part to this conference, presenting advances in point cloud processing. It was also the opportunity to visit the Cap Bon area where Mariam is doing her PhD thesis.

Collapsed road at Cap Bon

Although blue sky, that was a chilly week of March

Field trip and visit in Taiwan

Beginning of March was a great opportunity for Marc-Henri Derron to visit sites and colleagues in Taiwan for the first time. Invited by Prof. C.W. Lin (National Cheng Kun Univ. in Tainan) and Prof. R.F. Chen (Chinese Culture Univ. in Taipei), Marc-Henri had the opportunity to visit large landslides in central Taiwan, as well as giving 3 presentations on various aspect of landslide investigation techniques.

Slope conditions, steep and weathered, are drastically different from those encountered in the Alps. This visit was the first one for a group Risk’s member and we are confident it will lead to further cooperation.