by Jérémie Voumard, Olivier Caspar, Marc-Henri Derron and Michel Jaboyedoff: “Dynamic risk simulation to assess natural hazards risk along roads”.
Risk generated by natural hazards on roads is usually calculated with equations integrating various parameters related to hazard and traffic. These are static variables, like an average number of vehicles crossing this section every day and an average vehicle speed. This methodology cannot take into account dynamic variations of traffic and interactions between vehicles such as speed modifications due to windy roads, slowdowns resulting from saturated traffic or vehicle tailbacks forming in front of traffic lights. Here we show, by means of a dynamic traffic simulator, that traffic variations may greatly influence the risk estimation over time. The risk is analysed on several sections of an Alpine road in Switzerland using a dynamic vehicles approach, and compared with the results of the static methodology. It demonstrates that risk can significantly increase on sinuous sections because of decreasing vehicle speed. For example, along an 800 m-long section of road containing two hairpin bends, the dynamic risk is about 50 % higher than the static one. Badly placed signalization, slowing down, or stopping the vehicles in a hazardous area may increase the risk by about 150 % (i.e. 2.5 times higher) along a straight road section where vehicles speed is high. A more realistic risk can thus be obtained from a dynamic approach, especially on mountain roads. The dynamic traffic simulator developed for this work appears to be a helpful tool to support decision-making in reducing risk on mountain roads and it shows the importance of keeping the traffic moving as freely as possible.
More information and full paper on the NHESS website.