Des électrons pour visualiser comment une plante est influencée par la lumière

L’EMF est très fière d’avoir contribué à cette étude du groupe Fankhauser parue dans Science cette semaine. Damien De Bellis (TEM) et Antonio Mucciolo (cryo-SEM) ont mis toute leur expertise au service de ce projet. Ce projet a requis de faire des expériences risquées et demandant beaucoup de savoir-faire.

Un grand merci au Pr Fankhauser pour sa confiance et pour avoir reconnu la contribution de l’EMF par une présence dans les co-auteurs de nos deux collaborateurs!

Un excellent article en francais pour comprendre les enjeux de l’étude :

L’article original :

CANCELLED !!Cheryl Kerfeld

« Structure, Function and Dynamics of Phycobilisomes and Bacterial Microcompartments: Modular Macromolecular Assemblies Functioning in the Mesoscale« 



The light and dark reactions of photosynthesis in cyanobacteria involve massive macromolecular assemblies, the Phycobilisome and the carboxysome, respectively.  Phycobilisomes harvest light energy and funnel it to the photosystems for the generation of ATP and reducing power that is used in the dark reactions.  Carboxysomes are bacterial organelles that contain Rubisco, the CO2 fixing enzyme of the Calvin Cycle.  Encapsulation of Rubisco in the carboxysome shell protects it from oxygen, its competitive inhibitor generated in the light reactions.  Carboxysomes exemplify the basic structure and function of Bacterial Microcompartments (BMCs).  BMCs are widespread among Bacteria; they are multienzyme-containing organelles bounded by a selectively permeable protein shell. In general, BMCs sequester segments of metabolic pathways, protect oxygen-sensitive enzymes, and sequester toxic and/or volatile intermediates.  By combining structural studies with bioinformatics and molecular and synthetic biology approaches, we are learning the structural basis of function and regulation of phycobilisomes and of BMCs that extends across scales, from the role of individual proteins to mesoscale organization.  This understanding has applications in the engineering of natural and artificial photosynthesis and in the development of programmable metabolic modules and biomaterials for bioengineering and nanomedicine.  

Selected publications:

Heterologous Assembly of Pleomorphic Bacterial Microcompartment Shell Architectures Spanning the Nano- to Microscale.Ferlez BH, Kirst H, Greber BJ, Nogales E, Sutter M, Kerfeld CA. Adv Mater. 2023 Jun;35(23):e2212065. doi: 10.1002/adma.202212065.

Structures of a phycobilisome in light-harvesting and photoprotected states. Domínguez-Martín MA, Sauer PV, Kirst H, Sutter M, Bína D, Greber BJ, Nogales E, Polívka T, Kerfeld CA. Nature. 2022 Sep;609(7928):835-845. doi: 10.1038/s41586-022-05156-4.

Toward a glycyl radical enzyme containing synthetic bacterial microcompartment to produce pyruvate from formate and acetate. Kirst H, Ferlez BH, Lindner SN, Cotton CAR, Bar-Even A, Kerfeld CA. Proc Natl Acad Sci U S A. 2022 Feb 22;119(8):e2116871119. doi: 10.1073/pnas.2116871119.

Evolutionary relationships among shell proteins of carboxysomes and metabolosomes. Melnicki MR, Sutter M, Kerfeld CA. Curr Opin Microbiol. 2021 Oct;63:1-9. doi: 10.1016/j.mib.2021.05.011.

Visualizing in Vivo Dynamics of Designer Nanoscaffolds. Young EJ, Sakkos JK, Huang J, Wright JK, Kachel B, Fuentes-Cabrera M, Kerfeld CA, Ducat DC. Nano Lett. 2020 Jan 8;20(1):208-217. doi: 10.1021/acs.nanolett.9b03651.

Assembly principles and structure of a 6.5-MDa bacterial microcompartment shell. Sutter M, Greber B, Aussignargues C, Kerfeld CA. Science. 2017 Jun 23;356(6344):1293-1297. doi: 10.1126/science.aan3289. Julia Santiago
Associate Professor
The Plant Mechanisms Lab
Department of Plant Molecular Biology
University of Lausanne