Nature Plants (2024)

Abstract

Multicellular organisms control environmental interactions through specialized barriers in specific cell types. A conserved barrier in plant roots is the endodermal Casparian strip (CS), a ring-like structure made of polymerized lignin that seals the endodermal apoplastic space. Most angiosperms have another root cell type, the exodermis, that is reported to form a barrier. Our understanding of exodermal developmental and molecular regulation and function is limited as this cell type is absent from Arabidopsis thaliana. We demonstrate that in tomato (Solanum lycopersicum), the exodermis does not form a CS. Instead, it forms a polar lignin cap (PLC) with equivalent barrier function to the endodermal CS but distinct genetic control. Repression of the exodermal PLC in inner cortical layers is conferred by the SlSCZ and SlEXO1 transcription factors, and these two factors genetically interact to control its polar deposition. Several target genes that act downstream of SlSCZ and SlEXO1 in the exodermis are identified. Although the exodermis and endodermis produce barriers that restrict mineral ion uptake, the exodermal PLC is unable to fully compensate for the lack of a CS. The presence of distinct lignin structures acting as apoplastic barriers has exciting implications for a root’s response to abiotic and biotic stimuli.

Holydays season coming..

The EMF will be closed from 21 December to 4th January.

We wish you some relaxing time and we are looking forward to work with you again next year

Welcome to our new staff member Alexandra Schmitt

it is with an immense pleasure that we are welcoming our new staff member. She is sharing the office with Jean Daraspe. she has already EM experience acquired at the UNIGE and will soon be able to help all our users with their projects! She has experience with HPF and cryosubstitution in plant.

Do not hesitate to pass by and say welcome!