Thèse soutenue par Lionel Benoit le 5 février 2020, Institut des dynamiques de la surface terrestre (IDYST)
La pluie est un phénomène intermittent et variable aussi bien dans le temps que dans l’espace. De plus, à mesure que nos moyens d’observation permettent une caractérisation de la pluie à des échelles de plus en plus fines, nous nous apercevons que sa variabilité augmente avec la résolution des observations. Dès lors, à l’échelle locale (zone d’intérêt de l’ordre de 100 km2) la pluie devient un phénomène très hétérogène et donc difficile à modéliser.
Dans cette thèse je propose d’utiliser des méthodes probabilistes pour modéliser la pluie à l’échelle locale. En particulier, j’ai développé un modèle stochastique (c’est-à-dire probabiliste) qui intègre des mesures de pluviomètres de très haute précision afin de cartographier la pluie avec une résolution de 100 m dans l’espace et 1 min dans le temps. Les sorties du modèle sont des films dans lesquels on peut observer l’évolution de l’intensité des précipitations à une échelle inédite, ce qui permet de visualiser comment les champs de pluie de développent, se déplacent, se déforment et finalement se dissipent à la fin des intempéries.
Ce modèle ouvre la voie à de nombreuses applications dans le domaine de la gestion des eaux de pluie. Par exemple, les champs de pluie générés peuvent être utilisés en entrée de modèles hydrologiques afin de mieux comprendre et prédire le fonctionnement de petits bassins versants sensibles aux inondations, en particulier en milieu urbain. Ils peuvent aussi être utilisés pour estimer la probabilité que la pluie dépasse une intensité seuil dans des régions exposées aux glissements de terrain, et ainsi déclencher une alarme si des personnes ou des infrastructures se trouvent menacées.