• Janissen R., Barth R., Davidson I.F., Taschner M., Gruber S., Peters J.M., Dekker C.*, 2024. All eukaryotic SMC proteins induce a twist of -0.6 at each DNA-loop-extrusion step.
    preprint, 2024 [BioRxiv]
  • Barth R., Davidson I.F., van der Torre J., Taschner M., Gruber S., Peters J.M., Dekker C.*, 2023. SMC motor proteins extrude DNA asymmetrically and contain a direction switch.
    preprint, 2023 [BioRxiv]


  • Roisné-Hamelin F., Liu H. W., Taschner M., Li Y., Gruber S.*, 2024. Structural basis for plasmid restriction by SMC JET nuclease.
    Molecular Cell
    Vol 84, Issue 5 [Pubmed] [DOI]
    preprint 2023 [BioRxiv]
  • Tišma M., Bock F.P., Kerssemakkers J., Antar H., Japaridze A., Gruber S., Dekker C.*, 2024. Direct observation of a crescent-shape chromosome in expanded Bacillus subtilis cells.
    Nature Communications
    Vol 15, 2737 [Pubmed] [DOI]
    preprint 2023 [BioRxiv]
  • Liu X., Van Maele L., Matarazzo L., Soulard D., Duarte da Silva V.A., de Bakker V., Dénéréaz J., Bock F.P., Taschner M., Ou J., Gruber S., Nizet V., Sirard J.-C.*, Veening J.-W.*, 2023. A conserved antigen induces respiratory Th17-mediated serotype-independent protection against pneumococcal superinfection.
    Cell Host & Microbe
    Vol 32, 1-11 [Pubmed] [DOI]
  • preprint 2023 [BioRxiv]

  • Tišma M., Kaljevic J., Gruber S., Le T.B.K., Dekker C.*, 2024. Connecting the dots: key insights on ParB for chromosome segregation from single-molecule studies.
    FEMS Microbiol Rev
    Vol 48 (1) [Pubmed] [DOI]


  • Taschner M., Gruber S.*, 2023. DNA segment capture by Smc5/6 holo-complexes.
    Nature Structural & Molecular Biology
    10.1038/s41594-023-00956-2 [Pubmed] [DOI]
    preprint 2022 [BioRxiv]
  • Liu H. W., Roisné-Hamelin F., Gruber S.*, 2023. SMC-based immunity against extrachromosomal DNA elements.
    Biochemical Society Transactions
    BST20221395 [Pubmed] [DOI]
  • Antar H., Gruber S.*, 2023. VirB, a transcriptional activator of virulence in Shigella flexneri, uses CTP as a cofactor.
    Communications Biology
    6:1024 [Pubmed] [DOI]
    preprint 2023 [BioRxiv]
  • Tišma M., Janissen R., Antar H., Martin Gonzalez A., Barth R., Beekman T., van der Torre J., Michieletto D., Gruber S., Dekker C.*, 2023. Dynamic ParB-DNA interactions initiate and maintain a partition condensate for bacterial chromosome segregation.
    Nucleic Acids Research
    gkad868 [Pubmed][DOI]
    preprint 2023  [BioRxiv]


  • Liu H. W., Roisné-Hamelin F., Beckert B., Li Y., Myasnikov A., Gruber S.*, 2022. DNA-measuring Wadjet SMC ATPases restrict smaller circular plasmids by DNA cleavage.
    Molecular Cell
    Vol 82, Issue 24 [Pubmed] [DOI]
    preprint, 2022 [BioRxiv]
  • Roberts D. M., Anchimiuk A., Kloosterman T. G., Murray H., Wu L. J, Gruber S., Errington J.*, 2022. Chromosome remodelling by SMC/Condensin in B. subtilis is regulated by Soj/ParA during growth and sporulation.
    Vol 40, Issue 9 [Pubmed] [DOI]
    preprint, 2021 [BioRxiv]
  • Bock F. P., Liu H. W., Anchimiuk A., Diebold-Durand M.-L., Gruber S.*, 2022. A joint-ParB interface promotes Smc DNA recruitment.
    Cell Reports
    Vol 119, Issue 41 [Pubmed] [DOI]
    preprint, 2021 [BioRxiv]
  • Tisma M., Panoukidou M., Antar H., Soh Y.-M., Barth R., Pradhan B., van der Torre J., Michieletto D., Gruber S., Dekker C.*, 2022. ParB proteins can bypass DNA-bound roadblocks by dimer-dimer recruitment.
    Science Advances
    Vol 8, Issue 26 [Pubmed] [DOI]
    preprint, 2021 [BioRxiv]
  • Nomidis S.S., Carlon E., Gruber S., Marko J. F.*, 2022. DNA tension-modulated translocation and loop extrusion by SMC complexes revealed by molecular dynamics simulations.
    Nucleic acids research
    gkac268 [Pubmed] [DOI]
    preprint, 2021 [BioRxiv]


  • Antar H.°, Soh Y.-M.°, Zamuner S., Bock F. P., Anchimiuk A., De Los Rios P., Gruber S.*, 2021. Relief of ParB autoinhibition by parS DNA catalysis and ParB recycling by CTP hydrolysis promote bacterial centromere assembly.
    Science Advances
    Vol 7, Issue 41 [Pubmed] [DOI]
    preprint, 2021 [BioRxiv]
  • Taschner M., Basquin J., Steigenberger B., Schaefer I., Soh Y.-M., Basquin C., Lorentzen E., Räschle M., Scheltema R. A., Gruber S.*, 2021. Nse5/6 inhibits the Smc5/6 ATPase and modulates DNA substrate binding.
    EMBO Journal
    e107807 [Pubmed] [DOI]
    preprint, 2021 [BioRxiv]
  • Anchimiuk A., Lioy V. S., Minnen A., Boccard F., Gruber S.*, 2021. A low Smc flux avoids collisions and facilitates chromosome organization in B. subtilis.
    65467 [Pubmed] [DOI]
    preprint, 2020 [BioRxiv]
  • Gallay C.°, Sanselicio S.°, Anderson M. E.,  Soh Y.-M., Liu X., Stamsas G. A., Pelliciari S., van Raaphorst R., Dénéréaz J., Kjos M., Murray H., Gruber S., Grossman A. D., Veening J.-W.*, 2021. CcrZ is a pneumococcal spatiotemporal cell cycle regulator that interacts with FtsZ and controls DNA replication.
    Nature Microbiology
    021-00949-1 [Pubmed] [DOI]
    preprint, 2019 [BioRxiv]
  • Vazquez Nunez R. J.°, Polyhach Y.°, Soh Y.-M., Jeschke G., Gruber S.*, 2021. Gradual opening of Smc arms in prokaryotic condensin.
    Cell Reports
    35(4) 109051 [Pubmed] [DOI]
    preprint, 2021 [BioRxiv]


  • Soh Y.-M., Basquin J., Gruber S.*, 2020. A rod conformation of the Pyrococcus furiosus Rad50 coiled coil.
    prot.26005 [Pubmed] [DOI] [PDB: 6ZFF]
    preprint, 2020 [BioRxiv]
  • Metwaly G., Wu Y., Peplowska K., Röhrl J., Soh Y.-M., Bürmann F., Gruber S., Storchova Z.*, 2020. Phospho-regulation of the Shugoshin-Condensin interaction at the centromere in budding yeast.
    PLOS Genetics
    16(8) [Pubmed] [DOI]
    preprint, 2019 [BioRxiv]
  • Jeon J.-H., Lee H.-S., Shin H.-C., Kwak M.-J., Kim Y.-G., Gruber S. and Oh B.-H.*, 2020. Evidence for binary Smc complexes lacking kite subunits in archaea.
    7(2) [Pubmed] [DOI]
  • Prassler J., Simon F., Ecke M., Gruber S. and Gerisch G.* 2020. Decision making in phagocytosis.
    1246:71-81 [Pubmed] [DOI] [PDF]


  • Soh Y.-M., Davidson I. F., Zamuner S., Basquin J., Taschner M., Bock F. P., Veening J.-W., De Los Rios P., Peters J.-M., Gruber S.*, 2019. Self-organization of parS centromeres by the ParB CTP hydrolase.
    360(6469) p. 1129-1133 [Pubmed] [DOI] [Free] [PDB: 6SDK] [PDF] [F1000_recommendations] [Perspective by Barbara Funnell]
  • Vazquez Nunez R.°, Ruiz Avila L. B.°, Gruber S.*, 2019. Transient DNA occupancy of the SMC interarm space in prokaryotic condensin.
    Molecular Cell
    75(5) p. 1-15 [Pubmed] [DOI] [Free full-text] [Preview by Tomoko Nishiyama]
    preprint, 2018 [BioRxiv]
  • Marko J. F.*, De Los Rios P., Barducci A., Gruber S., 2019. DNA-segment-capture model for loop extrusion by structural maintenance of chromosome (SMC) protein complexes.
    Nucleic Acids Research

    gkz497 [Pubmed] [DOI]
    preprint, 2018 [BioRxiv]
  • Diebold-Durand M.-L., Bürmann F., Gruber S.*, 2019. High-throughput allelic replacement screening in Bacillus subtilis.
    Methods in Molecular Biology

    2004 p. 49-61 [Pubmed] [DOI] [PDF]


  • Pfeiffer F., Zamora-Lagos M.-A., Blettinger M., Yeroslavic A., Dahl A., Gruber S.*, Habermann B. H.*, 2018. The complete and fully assembled genome sequence of Aeromonas salmonicida subsp. pectinolytica and its comparative analysis with other Aeromonas species: investigation of the mobilome in environmental and pathogenic strains.
    BMC Genomics
    19(1):20 [Pubmed] [DOI]
  • Gruber S., 2018. SMC complexes sweeping through the chromosome: Going with the flow and against the tide.
    Current Opinion in Microbiology
    42:96-103 [Pubmed] [DOI] [PDF]
  • Stockmar I., Feddersen H., Cramer K., Gruber S., Jung K., Bramkamp M.*, Shin J. Y.* 2018. Optimization of sample preparation and green color imaging using the mNeonGreen fluorescent protein in bacterial cells for photoactivated localization microscopy.
    Scientific Reports
    8(1): 10137 [Pubmed] [DOI]


  • Diebold-Durand M.-L.°, Lee H.°, Ruiz Avila L.°, Noh H., Shin H.-C., Im H., Bock F. P., Bürmann F., Durand A., Basfeld A., Ham S., Basquin J., Oh B.-H.*, Gruber S.*, 2017. Structure of full-length SMC and rearrangements required for chromosome organization.
    Molecular Cell
    67(2) p. 334-347 [DOI] [Web of Science] [Pubmed] [PDB: 5NMO, 5NNV]
  • Bürmann F., Basfeld A., Vazquez Nunez R., Diebold-Durand M.-L., Wilhelm L., Gruber S.*, 2017. Tuned SMC arms drive chromosomal loading of prokaryotic condensin.
    Molecular Cell
    65(5) p. 861-872 [DOI] [Web of Science] [Pubmed] [F1000 recommendation]
  • Gruber S., 2017. Shaping Chromosomes by DNA Capture and Release: Gating the SMC Rings.
    Current Opinion in Cell Biology
    46:87-93 [DOI] [Web of Science] [Pubmed] [PDF]
  • Wilhelm L., Gruber S.*, 2017. A Chromosome Co-Entrapment Assay to Study Topological Protein–DNA Interactions.
    Methods in Molecular Biology
    1624 p. 117-126 [DOI] [Web of Science] [Pubmed] [PDF]. An updated version of the protocol (using agarose microbeads instead of agarose plugs) is available here: [DOI].


  • Minnen A.°, Bürmann F.°, Wilhelm L., Anchimiuk A., Diebold-Durand M.-L., Gruber S.*, 2016. Control of Smc Coiled Coil Architecture by the ATPase Heads Facilitates Targeting to Chromosomal ParB/parS and Release onto Flanking DNA.
    Cell Reports
    14(8) p. 2003-2016 [DOI[Web of Science[Pubmed]
  • Haering C. H., Gruber S., 2016. SnapShot: SMC Protein Complexes Part I.
    164(1-2) p. 326-6.e1 [DOI[Web of Science[Pubmed]
  • Haering C. H., Gruber S., 2016. SnapShot: SMC Protein Complexes Part II.
    164(4) p. 818.e1 [DOI[Web of Science[Pubmed]
  • Wilhelm L., Gruber S., 2016. Chromosom in Schleifen: SMC-Komplexe als molekulare Kabelbinder? 
    22(4) p. 356-358 [DOI] [PDF]


  • Soh Y.-M.°, Bürmann F.°, Shin H. C., Oda T., Jin K. S., Toseland C. P., Kim C., Lee H., Kim S. J., Kong M. S., Durand-Diebold M.-L., Kim Y. G., Kim H. M., Lee N. K., Sato M., Oh B. H.*, Gruber S.*, 2015. Molecular basis for SMC rod formation and its dissolution upon DNA binding. 
    Molecular Cell
    57(2) p. 290-303 [DOI[Web of Science[Pubmed]
  • Wilhelm L., Bürmann F., Minnen A., Shin H. C., Toseland C. P., Oh B.-H., Gruber S.*, 2015. SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis.
    4:e06659 [DOI[Web of Science[Pubmed]
  • Palecek J. J.*, Gruber S.*, 2015. Kite Proteins: a Superfamily of SMC/Kleisin Partners Conserved Across Bacteria, Archaea, and Eukaryotes.
    23(12) p. 2183-2190. [DOI[Web of Science[Pubmed]
  • Kang H.A., Shin H.C., Kalantzi A.S., Toseland C.P., Kim H. M., Gruber S., Peraro M. D., Oh B.-H.*, 2015. Crystal structure of Hop2-Mnd1 and mechanistic insights into its role in meiotic recombination.
    Nucleic Acids Research
    43(7) p. 3841-3856 [DOI[Web of Science[Pubmed]
  • Attaiech L., Minnen A., Kjos M., Gruber S., Veening J.-W.*, 2015. The ParB-parS Chromosome Segregation System Modulates Competence Development in Streptococcus pneumoniae.
    6(4) p. e00662 [DOI[Web of Science[Pubmed]
  • Bürmann F., Gruber S., 2015. SMC condensin: promoting cohesion of replicon arms.
    Nature Structural & Molecular Biology
    22(9) p. 653-655 [DOI[Web of Science[Pubmed] [PDF] [PDB: 3ZGX]


  • Gruber S.*, Veening J.-W., Bach J., Blettinger M., Bramkamp M., Errington J.*, 2014. Interlinked sister chromosomes arise in the absence of condensin during fast replication in B. subtilis.
    Current Biology
    24(3) p. 293-298 [DOI[Web of Science[Pubmed]
  • Gligoris T. G., Scheinost J. C., Bürmann F., Petela N., Chan K. L., Uluocak P., Beckouët F., Gruber S., Nasmyth K.*, Löwe J.*, 2014. Closing the cohesin ring: structure and function of its Smc3-kleisin interface.
    346(6212) p. 963-967 [DOI[Web of Science[Pubmed]
  • Gruber S., 2014. Multilayer chromosome organization through DNA bending, bridging and extrusion.
    Current Opinion In Microbiology
    22 p. 102-110 [DOI[Web of Science[Pubmed]


  • Bürmann F.°, Shin H. C.°, Basquin J., Soh Y.-M., Giménez-Oya V., Kim Y. G., Oh B.-H.*, Gruber S.*, 2013. An asymmetric SMC-kleisin bridge in prokaryotic condensin.
    Nature Structural & Molecular Biology
    20(3) p. 371-379 [DOI[Web of Science[Pubmed] [PDF]


  • Gruber S., 2011. MukBEF on the march: taking over chromosome organization in bacteria?
    Molecular Microbiology
    81(4) p. 855-859 [DOI[Web of Science[Pubmed]
  • Minnen A., Attaiech L., Thon M., Gruber S.*, Veening J.-W.*, 2011. SMC is recruited to oriC by ParB and promotes chromosome segregation in Streptococcus pneumoniae.
    Molecular Microbiology
    81(3) p. 676-688 [DOI[Web of Science[Pubmed]


  • Gruber S., Errington J.*, 2009. Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B. subtilis.
    137(4) p. 685-696 [DOI[Web of Science[Pubmed]


  • Gruber S., Arumugam P., Katou Y., Kuglitsch D., Helmhart W., Shirahige K., Nasmyth K.*, 2006. Evidence that loading of cohesin onto chromosomes involves opening of its SMC hinge.
    127(3) p. 523-537 [DOI[Web of Science[Pubmed]
  • Arumugam P., Nishino T., Haering C.H., Gruber S., Nasmyth K.*, 2006. Cohesin’s ATPase activity is stimulated by the C-terminal Winged-Helix domain of its kleisin subunit.
    Current Biology
    16(20) p. 1998-2008 [DOI[Web of Science[Pubmed]


  • Riedel C. G.*, Gregan J., Gruber S., Nasmyth K., 2004. Is chromatin remodeling required to build sister-chromatid cohesion?
    Trends In Biochemical Sciences
    29(8) p. 389-392 [DOI[Web of Science[Pubmed] [PDF]


  • Gruber S.°, Haering C. H.°, Nasmyth K.*, 2003. Chromosomal cohesin forms a ring.
    112(6) p. 765-777 [DOI] [Web of Science[Pubmed]
  • Arumugam P., Gruber S., Tanaka K., Haering C. H., Mechtler K., Nasmyth K.*, 2003. ATP hydrolysis is required for cohesin’s association with chromosomes.
    Current Biology
    13(22) p. 1941-1953 [DOI] [Web of Science[Pubmed]
  • Buonomo S. B., Rabitsch K. P., Fuchs J., Gruber S., Sullivan M., Uhlmann F., Petronczki M., Tóth A., Nasmyth K.*, 2003. Division of the nucleolus and its release of CDC14 during anaphase of meiosis I depends on separase, SPO12, and SLK19.
    Developmental Cell
    4(5) p. 727-739 [DOI] [Web of Science[Pubmed]