New Book Published : The Field Guide to Mixing Social and Biophysical Methods in Environmental Research

Despite ongoing debates about its origins, the Anthropocene—a new epoch characterized by significant human impact on the Earth’s geology and ecosystems—is widely acknowledged. Our environment is increasingly a product of interacting biophysical and social forces, shaped by climate change, colonial legacies, gender norms, hydrological processes, and more. Understanding these intricate interactions requires a mixed-methods approach that combines qualitative and quantitative, biophysical and social research.

However, mixed-methods environmental research remains rare, hindered by academic boundaries, limited training, and the challenges of interdisciplinary collaboration. Time, funding, and the integration of diverse data further complicate this research, whilst the dynamics and ethics of interdisciplinary teams add another layer of complexity.

Despite these challenges, mixed-methods research offers a more robust and ultimately transformative understanding of environmental questions. This Field Guide aims to inspire and equip researchers to undertake such studies. Organized like a recipe book, it assists researchers in the preparation of their field work, as well as offering entry points to key methods and providing examples of successful mixed-methods projects.

This book will be of interest to scholars wishing to tackle environmental research in a more holistic manner, spanning ‘sister’ disciplines such as anthropology, statistics, political science, public health, archaeology, geography, history, ecology, and Earth science.

The book is Open Access and so freely available here.

New Paper Published : The Sikkim flood of October 2023: Drivers, causes and impacts of a multihazard cascade

On 3 October 2023, a multihazard cascade in the Sikkim Himalaya, India, was triggered by 14.7 million m3 of frozen lateral moraine collapsing into South Lhonak Lake, generating an ~20 m tsunami-like impact wave, breaching the moraine, and draining ~50 million m3 of water. The ensuing Glacial Lake Outburst Flood (GLOF) eroded ~270 million m3 of sediment, which overwhelmed infrastructure, including hydropower installations along the Teesta River. The physical scale and human and economic impact of this event prompts urgent reflection on the role of climate change and human activities in exacerbating such disasters. Insights into multihazard evolution are pivotal for informing policy development, enhancing Early Warning Systems (EWS), and spurring paradigm shifts in GLOF risk management strategies in the Himalaya and other mountain environments.

A copy of the paper is freely available here.

New Paper Published : Separating snow and ice melt using water stable isotopes and glacio-hydrological modelling: towards improving the application of isotope analyses in highly glacierized catchments

Glacio-hydrological models are widely used for estimating current and future streamflow across spatial scales, utilizing various data sources, notably observed streamflow and snow and/or ice accumulation, as well as ablation observations. However, modelling highly glacierized catchments poses challenges due to data scarcity and complex spatio-temporal meteorological conditions, leading to input data uncertainty and potential misestimation of the contribution of snow and ice melt to streamflow. Some studies propose using water stable isotopes to estimate shares of rain, snow and ice in streamflow, yet the choice of the isotopic composition of these water sources significantly impacts results.

This study presents a combined isotopic and glacio-hydrological model which provides catchment-integrated snow and ice melt isotopic compositions during an entire melting season. These isotopic compositions are then used to estimate the seasonal shares of snow and ice melt in streamflow for the Otemma catchment in the Swiss Alps. The model leverages available meteorological station data (air temperature, precipitation and radiation), ice mass balance data and snow cover maps to model and automatically calibrate the catchment-scale snow and ice mass balances. The isotopic module, building on prior work by Ala-Aho et al. (2017a), estimates seasonal isotopic compositions of precipitation, snow and ice. The runoff generation and transfer module relies on a combined routing and reservoir approach and is calibrated based on measured streamflow and isotopic data.

Results reveal challenges in distinguishing snow and ice melt isotopic values in summer, rendering a reliable separation between the two sources difficult. The modelling of catchment-wide snowmelt isotopic composition proves challenging due to uncertainties in precipitation lapse rate, mass exchanges during rain-on-snow events and snow fractionation. The study delves into these processes and their impact on model results and suggests guidelines for future models. It concludes that water stable isotopes alone cannot reliably separate snow and ice melt shares for temperate alpine glaciers. However, combining isotopes with glacio-hydrological modelling enhances hydrologic parameter identifiability, in particular those related to runoff transfer to the stream, and improves mass balance estimations.

A copy of the paper is freely available here.

New Paper Published : The competing controls of glaciers, precipitation, and vegetation on high-mountain fluvial sediment yields

Investigating erosion and river sediment yield in high-mountain areas is crucial for understanding landscape and biogeochemical responses to environmental change. We compile data on contemporary fluvial suspended sediment yield (SSY) and 12 environmental proxies from 151 rivers in High Mountain Asia surrounding the Tibetan Plateau. We demonstrate that glaciers exert a first-order control on fluvial SSYs, with high precipitation nonlinearly amplifying their role, especially in high–glacier cover basins. We find a bidirectional response to vegetation’s influence on SSY in the Eastern Tibetan Plateau and Tien Shan and identify that the two interacting factors of precipitation and vegetation cover explain 54% of the variability in SSY, reflecting the divergent roles of vegetation in promoting biogenic-weathering versus slope stabilization across bioclimatic zones. The competing interactions between glaciers, ecosystems, and climate in delivering suspended sediment have important implications for predicting carbon and nutrient exports and water quality in response to future climate change. A copy is freely available here.

New Paper Published : Rates of Evacuation of Bedload Sediment From an Alpine Glacier Control Proglacial Stream Morphodynamics

Proglacial forefields commonly include highly dynamic fluvial systems associated with the fundamental instability between topography, flow hydraulics and sediment transport. However, there is limited knowledge of how these systems respond to changing subglacial hydrology and sediment supply. We investigated this relationship using the first continuous field-collected data sets for both suspended and bedload sediment export and proglacial river dynamics for an Alpine glacier forefield, the Glacier d’Otemma, Switzerland. The results show a strong sensitivity of fluvial morphodynamics to the balance between sediment transport capacity and supply. When subglacial bedload export rates exceeded fluvial transport capacity, we found bar construction leading to net forefield aggradation and surficial coarsening, especially on bar heads. This intensified braiding buffered the downstream transport of coarse sediment. When subglacial bedload export rates were lower than transport capacity, incision occurred, with reduced braiding intensity, net erosion and important amounts of bedload leaving the proglacial system. We found a net fining of surficial deposits except for very isolated coarsening patterns on bar heads. Thus, proglacial forefield morphodynamics are strongly conditioned by subglacial hydrology and sediment supply, but this conditioning is also influenced by the response of the forefield itself. Proglacial forefields have an important influence on the longitudinal connectivity of sediment flux in regions sensitive to climate change, such as recently deglaciated high mountain areas. The linkages we report between subglacial processes and river morphodynamics are critical for understanding the development of embryonic forefield ecosystems. A copy of the paper is freely available here.

New Paper Published : Heuristic estimation of river bathymetry in braided streams using digital image processing

Measurement of river bathymetry has been revolutionized by high-resolution remote sensing that combines UAV platforms with SfM-MVS photogrammetry. Mapping inundated and exposed areas simultaneously are possible using either two-media refraction correction or some form of the Beer–Lambert Law to estimate water depths. If, as in turbid glacially-fed braided streams, the bed is not visible then traditional survey techniques (e.g. differential GPS systems) are required. As an alternative, here we test whether the spatial distribution of water depths in a shallow braided stream can be modelled from basic planimetric data and used to estimate inundated zone bathymetry. We develop heuristic rules using; (1) distance from the nearest river bank; (2) total inundated width along a line tangential to the local flow direction; (3) local curvature magnitude and direction; and distance from the nearest flow (4) divergence and (5) convergence regions. We parameterize them using a sample of measured water depths in stepwise multiple linear regressions and validate them using independent data. Resulting water depth distribution maps explain between 50% and 60% of the measured water depth spatial variability when compared to independent data. After incorporating modelled water depths into digital elevation models (DEMs) of exposed areas, we show that the developed method is suitable for volumetric change calculations in both dry and inundated areas. A copy is freely available here.

New Paper Published : Ice cover loss and debris cover evolution in the Afghanistan Hindu Kush Himalaya between 2000 and 2020

Glaciers in Afghanistan are crucial elements for water resource and summer river flows. They are also threatened by rapid climate warming. This study presents an up-to-date assessment of ice cover loss for the entire country over two periods, 2000–2008 and 2008–2020, using newly developed remote sensing indices that include a more reliable determination of changing debris cover. The results suggest an estimated ice-covered area of 2,690.7 ± 108.2 km2 in 2020, that was 75 ± 0.7% clean ice and 25 ± 3.0 percent debris-covered ice. Total ice-covered area retreated by −0.16 ± 0.01 percent yr−1 between 2000 and 2008 and −0.46 ± 0.05 percent yr−1 between 2008 and 2020. Notably, 60 percent of ice cover loss (2000–2020) related to ice cover extents with a size ≤ 2.5 km2, comprising 60 percent of the total ice-covered area in 2000. Higher altitude accumulation zones also exhibited mass loss. However, there was also substantial spatial variation in these rates of loss based on geographical region, glacier size, and climate zones. In the north-eastern regions that are geographically close to or part of the north-west Karakoram ice cover was declining at a substantially lower rate, stable, or even increasing slightly, as compared with the northern and central regions of Afghanistan. A copy is freely available here.

New Paper Published : Strategic storm flood evacuation planning for large coastal cities enables more effective transfer of elderly populations

Emergency responders in coastal cities are anticipated to provide effective evacuation of at-risk populations during the preparedness and response phases of coastal floods due to land-falling storms or cyclones. However, existing contingency plans primarily focus on the evacuation of the general public rather than special arrangement for elderly populations who constitute a large proportion of flood fatalities. Here we present a system-level methodology to elaborate citywide coastal flood evacuation plans for optimal deployment of shelters and effective transfer of elderly people with special needs. We conduct a comparative analysis between Shanghai and New York City, which are both among the most exposed coastal cities to storm-induced flooding but represent two distinct institutional systems of emergency operation. The results show marked disparities in evacuation patterns for elderly residents in the two cities. Storm flood evacuation is more challenging in Shanghai due to insufficient provision of shelter capacity (~230,000). Implementing risk-informed and strategic planning could not only meet the potentially huge demand of vulnerable elderly (~520,000) but also improve the overall efficiency of evacuee transfer by a factor of 3. Our work provides new insights into operational emergency evacuation decisions and informs flood management policy development for major coastal cities globally. A copy is available here.

New Paper Published : Ecosystem engineering by periphyton in Alpine proglacial streams

Stream periphytons are candidate ecosystem engineers in proglacial margins. Here, we quantify the extent to which they are engineers for the case of hillslope-fed tributaries in the terrace zones of proglacial margin alluvial plains. Candidate ecosystem engineering effects relate to periphyton-driven changes in (1) vertical infiltration of water, which in turn could aid plant colonization and hence local surface stabilization, and (2) near-bed hydraulics, notably near-bed turbulence properties. We ran two flume experiments in parallel in the proglacial margin of the Otemma glacier (Switzerland), reproducing the environmental conditions found in terrace streams. In both experiments, we followed periphyton development on initially bare sediments for 28 days. Then, whilst the experiment continued undisturbed in one flume, in the second and over a further 26 days, we introduced disturbances in the form of desiccation events. Throughout the entire experiment length, we collected imagery for close-range SfM-MVS photogrammetry, data on vertical infiltration, and near-bed hydraulics. The experiments showed that periphyton development significantly changed the streambed properties. First, periphyton development over the timescale of a few days reduced bed roughness and clogged the benthic interstitial space, reducing water infiltration. These effects were insensitive to the disturbance regime. Second, the changes in streambed roughness modified the near-bed turbulent structures, and this resulted in a reduction of bursting events and in the modification of the turbulent kinetic energy at the near-bed layer. The latter, however, appeared to be less important in these environments as compared with the impacts on infiltration. Given the low water retaining capacity of glacial sediments, the observation that periphyton can reduce vertical infiltration explains wider observations of their importance in glacial floodplains where vegetation succession is critically constrained by water availability. The relatively reduced impacts on near-bed turbulence also contribute to explaining why disturbance in proglacial margin streams remains a key limit on ecological succession. A copy is freely available here.

New Paper Published : Current and future roles of meltwater–groundwater dynamics in a proglacial Alpine outwash plain

Glacierized alpine catchments are rapidly evolving due to glacier retreat and consequent geomorphological and ecological changes. As more terrain becomes ice-free, reworking of exposed terrain by the river as well as thawing of the top layer may lead to an increase in surface and subsurface water exchanges, leading to potential changes in water storage and release, which in turn may impact ecological, geomorphological and hydrological processes. In this study, we aim to understand the current and future hydrological functioning of a typical outwash plain in a Swiss Alpine catchment. As with many other fluvial aquifers in alpine environments, this outwash plain is located at the valley bottom, where catchment-wide water and sediment fluxes tend to gather from multiple sources, may store water and provide specific habitats for alpine ecosystems. Their dynamics are however rarely studied in post Little Ice Age proglacial zones. Based on geophysical investigations as well as year-round stream and groundwater observations, we developed a simplified physically based 3D MODFLOW model and performed an optimized automatic calibration using PEST HP. We highlight the strong interactions between the upstream river and the aquifer, with stream infiltration being the dominant process of recharge. Groundwater exfiltration occurs in the lower half of the outwash plain, balancing out the amount of river infiltration at a daily timescale. We show that hillslope contributions from rain and snowmelt have little impact on groundwater levels. We also show that the outwash plain acts as a bedrock-dammed aquifer and can maintain groundwater levels close to the surface during dry periods lasting months, even in the absence of glacier meltwater, but may in turn provide only limited baseflow to the stream. Finally, we explore how new outwash plains may form in the future in this catchment due to glacier recession and discuss from a hydrological perspective which cascading impacts the presence of multiple outwash plains may have. For this case study, we estimate the total dynamic storage of future outwash plains to be about 20 mm, and we demonstrate their limited capacity to provide more stream water than that which they infiltrate upstream, except for very low river flows (<150 to 200 L s−1). Below this limit, they can provide limited baseflow on timescales of weeks, thus maintaining moisture conditions that may be beneficial for proglacial ecosystems. Their role in attenuating floods also appears limited, as less than 0.5 m3 s−1 of river water can be infiltrated. The studied outwash plain appears therefore to play an important role for alpine ecosystems but has a marginal hydrological effect on downstream river discharge. A copy is freely available here.