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l. Introduction ll. Rassemblement et traitement des données d’entrée

Le canton du Tessin, situé au sud des Alpes en Suisse et couvrant 2812 km?, se caractérise par un relief Alpin et un climat

Les données d’entrée (raster et vecteur) ont été rassemblées, triées et organisées. Les paramétres de contrble relatifs

tempéré et humide, ou se produisent régulierement des mouvements gravitaires tels que des chutes de blocs, coulées de aux mouvements ont été calculés selon les catégorisés suivantes: géométrie, topographie, hydrographie, utilisation

débris, glissements de terrain ou des avalanches. Linventaire StorMe, recense tous les événements gravitaires importants des sols et géologie (voir figure 3 ). Ceci inclut des paramétres géométriques tels que laltitude, les points d'altitude

survenus depuis les annees "80 sur son territoire, ainsi que certains évenements dits historiques. maximale et minimale, la superficie, le périmétre et la ligne d'énergie qui décrivent les dimensions des mouvements.

A partir de la richesse des informations de cet inventaire, et afin d'améliorer la gestion des risques naturels dans le Canton e e e i o i o i e iorl romy
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(qui représente une facture annuelle de l'ordre de 30 millions de francs suisses), une analyse géologique, géométrique et 3 .- . E gl .. ;s
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statistigue des mouvements gravitaires survenus et répertoriés au Tessin au cours des 20 derniéres années a été réalisée.
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Figure 1: Exemple des differents types d'‘évenements présents dans l'inventaire ainsi que leur numéro d’identification: (a)

glissement/ chute de blocs, (b) chute de blocs, (c) bloc de grandes dimensions, (d) avalanche et (e) coulée de boue. Figure 3: Vue d’ensemble de certaines des données d'entreé utilisés : (a) productivité hydrque du sous-sol, (b) épaisser des dépbts non-con-
solidées, (c) utilisation du sol NOLU, (d) utilisation du sol NOAS, (e) type de roche, (f) lithologie, (g) unité tectonique et (h) période géologique.
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Figure 2: Emplacement de la zone d'étude

Figure 4: Schéma indicatif de la procédure suivie pour I'analyse statistique.
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A) A partir des analyses statistiques simples:
. Les principaux parametres qui semblent contréler les mouvements gravitaires au Tessin sont : la pente, l'aspect, l'indice
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de rugosité du terrain, l'indice d'humidité topographique, et la lithologie.
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- Les aspects géométriqgues d'intérét sont : la surface, la longueur, la différence de hauteur entre la zone source et le pied

Deposit Volume [m?]

du dépdt, le volume et la ligne d’énergie.
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- Des corrélations significatives de type loi de puissance ont été trouvées entre la longueur du dépoét et la différence de “ = Heigth fall [mi o = B * v R ) : " N
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hauteur (cf. Corominas, 1996) ; le volume de dépét et la surface du glissement (cf. Guzzeti et al., 2009) ; la distribution des A 5 Equation R A 5 Equation R
Avalanches 1758 0.859 H=1758 *L0.859 0.790 Avalanches 2.483 0.685 V =2483*A0685 0.331
volumes de chutes de pierres et leur fréquence (cf. Dussauge et al., 2003). Chutes de blocs 1999 0803  H=1999*.0803  0.684 Chutes de blocs 0.026 0.947 V=0.026*A%%7  0.326
Glissements 2.606 0.669 H=2.606*L0.669 0.613 Glissements 1884 0.846 V = 1884 *A0846 0.409
- La fonction de probabilité des volumes des glissements de tous les types (cf. Brunetti et al., 2009) a été éstimé a partir Coulees 1109 0.857 H=1109 *L0.857 0.719 Coulées 1336 0.948 V = 1336 *A0948 0.325

d’une fonction de densité par noyau (méthode de Parzen-Rosenblatt). , ) . , o ) |
b yau ( ) Figure 6 : détermination des relations de type loi puissance des longeurs de dépot par rapport aux hauteurs de chutes (gauche) |
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1 ;ﬂﬂckfa” P 10 10 ’ o certains parameéetres et le type de mouvement. Tandis que I'analyse approfondie a permis de confirmer que les variables
Figure 5: Etablissement d'une fonction du type loi puissance d’aprés la distribution des volumes pour les chutes de blocs géométriques (aire, périmétre, hauteur de la chute, et valeur de la ligne d'énergie) suivent généralement les mémes ten-

(gauche) et établissement de la probabilité de répartition des volumes a partir d’'un fonction de noyau pour le logarithme

dances que celles issues de la littérature.
du volume pour tous les types de mouvements.
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