

Cours MATLAB UNIL-FGSE – 2015

VII. Traitements mathématiques

1 / 10

VII. Traitements mathématiques

1. Introduction

Matlab a des outils très puissants pour travailler avec des polynômes et effectuer des
optimisations. Nous verrons comment trouver les zéros d’un polynôme et résoudre des
systèmes d’équations. Finalement, la gestion du temps et des dates sera présentée.

2. Polynômes

Dans Matlab, les polynômes sont traités comme des vecteurs de coefficients. L’équation
suivante

5 4 3 22 4 6 5 0x x x x x     

…prend cette forme :

poly = [2 4 1 -6 -1 5];

Matlab permet de travailler aisément avec ces polynômes et offre de multiples fonctions [2] :

Fonctions Description

poly Construction de polynômes à partir des racines

roots Calcul des racines

polyval Évalue à un point

polyvalm Évaluation en une matrice de points

deconv Division de polynômes

conv Multiplication de polynômes

residue Décomposition en résidus

polyfit Approximation du polynôme

polyint Intégration du polynôme

polyder Dérivée du polynôme

2.1. Fonction roots

Comme nous l’avons vu précédemment, les polynômes peuvent être facilement résolus. Par
exemple, reprenons une équation polynomiale d’ordre 5 :

5 4 3 22 4 6 5 0x x x x x     

Trouver les zéros de cette équation est alors très simple à l’aide de la fonction roots :

>> myres = roots(poly)

Cours MATLAB UNIL-FGSE – 2015

VII. Traitements mathématiques

2 / 10

myres =

 -1.2530 + 1.0941i

 -1.2530 - 1.0941i

 -1.1156

 0.8108 + 0.3906i

 0.8108 - 0.3906i

Il est ensuite possible de tester si les résultats sont des racines réelles à l’aide de la fonction

isreal:

>> isreal(myres(1))

ans =

 0

>> isreal(myres(3))

ans =

 1

2.2. Fonction polyval

La fonction polyval permet d’évaluer un polynôme aux x désirés.

y = polyval(p,x)

Par exemple, pour le polynôme
2() 6 3 1p x x x   , les valeurs de y aux point x = 1, 10 et 50

peuvent être obtenus par la commande suivante :

>> p = [6 3 1];

>> polyval(p,[1 10 50])

ans =

 10 631 15151

2.3. Fonction polyfit

Pour rappel, Matlab permet d’effectuer une régression sur des données (Voir cours Les

Fonctions). La solution peut être obtenue directement grâce à la fonction polyfit :

>> x = [0,3,4,7,8,10]

>> y = [1,4,5,6,7,10]

>> resmodel = polyfit(t,x,1)

resmodel =

 0.8020 1.2228

Ce qui signifie : 0.8020 1.2228esty x  

Cours MATLAB UNIL-FGSE – 2015

VII. Traitements mathématiques

3 / 10

2.4. Fonction polyder

La fonction polyder calcule la dérivée du polynôme.

k = polyder(p)

La dérivée du polynôme 3 2() 9 6 3 1p x x x x    s’obtient ainsi :

>> p = [9 -6 3 1];

>> k = polyder(p)

k =

 27 -12 3

3. Fonctions d'optimisation

Les fonctions d’optimisation disponibles sont les suivantes [2]:

Fonctions Description

fsolve Résolution d'un système d'équations non-linéaires

fzero Trouve les zéros d'une fonction à une variable

fminbnd Minimisation d'une fonction à une variable

fminsearch Minimisation d'une fonction à plusieurs variables

3.1. Fonction fsolve

La fonction fsolve résout (trouve le zéro) un système d’équations non linéaires [1] (avec

des variables multiples). Les deux paramètres obligatoires sont la fonction elle-même (fun)

et le point de départ de la résolution (x0) :

x = fsolve(fun,x0)

x = fsolve(fun,x0,options)

Les options sont facultatives et sont définies par la commade optimset (optimget permet

de connaître les options actuelles). D’autres sorties peuvent également être récupérées [1] :

[x,fval,exitflag,output] = fsolve(...)

Où fval est la valeur de la fonction à la solution x, exitflag est une indication de la raison

de la fin de l’optimisation (convergence vers la solution x, nombre d’optimisations limite

dépassé, …), output contient des informations sur l’optimisation.

Exemple avec le système d’équation :

1

2

1 2

1 2

2 0

2 0

x

x

x x e

x x e





   

   

Cours MATLAB UNIL-FGSE – 2015

VII. Traitements mathématiques

4 / 10

function F = myfun(x)

F = [5*x(1) - 2*x(2) - exp(-x(1));

 -2*x(1) + 10*x(2) + exp(-x(2))];

Fig 1. Eq. 1 Fig 2. Eq. 2

Fig 3. Système d’équations

Cette fonction a plusieurs solutions (Fig 3). Celle que nous allons approcher dépend donc de
la valeur initiale que nous fixons !

Cours MATLAB UNIL-FGSE – 2015

VII. Traitements mathématiques

5 / 10

Avec x0 = [-10 -10], la solution est x = [-0.906 -3.503] :

>> x0 = [-10; -10];

>> [x,fval,exitflag,output] = fsolve(@myfun,x0)

Optimization terminated: first-order optimality is less than

options.TolFun.

x =

 -0.9062

 -3.5031

fval =

 1.0e-14 *

 -0.7994

 0

exitflag =

 1

output =

 iterations: 15

 funcCount: 48

 algorithm: 'trust-region dogleg'

 firstorderopt: 5.9752e-14

 message: 'Optimization terminated: first-order

optimality is less than options.TolFun.'

Avec x0 = [10 10], la solution est x = [0.142 -0.080] :

>> x0 = [10; 10];

>> [x,fval,exitflag,output] = fsolve(@myfun,x0)

Optimization terminated: first-order optimality is less than

options.TolFun.

x =

 0.1416

 -0.0800

fval =

 1.0e-13 *

 -0.7427

 0.0333

exitflag =

 1

output =

 iterations: 7

 funcCount: 24

 algorithm: 'trust-region dogleg'

 firstorderopt: 4.4250e-13

Cours MATLAB UNIL-FGSE – 2015

VII. Traitements mathématiques

6 / 10

A l’aide de l’option Display, il est possible d’afficher toute les étapes de l’itération :

>> x0 = [10; 10];

>> options=optimset('Display','iter');

>> [x,fval] = fsolve(@myfun,x0,options)

 Norm of First-order Trust-region

 Iteration Func-count f(x) step optimality radius

 0 3 7300 740 1

 1 6 5924.68 1 636 1

 2 9 3382.64 2.5 378 2.5

 3 12 799.791 6.25 136 6.25

 4 15 1.24938 6.43098 7.04 15.6

 5 18 0.000159635 0.162424 0.0745 16.1

 6 21 5.52223e-12 0.00237679 1.4e-05 16.1

 7 24 5.52771e-27 4.34761e-07 4.42e-13 16.1

Optimization terminated: first-order optimality is less than options.TolFun.

3.2. Fonction fzero

La fonction fzero cherche une racine d’une fonction continue à une variable :

x = fzero(fun,x0)

x = fzero(fun,x0,options)

Les paramètres d’entrée sont les mêmes que pour fsolve. La valeur de départ x0 peut

également être un intervalle de recherche.

Les autres sorties possibles sont :

[x,fval,exitflag,output] = fzero(...)

Exemple:

>> fun = inline('x.^3 + 10.*x','x');

>> [x,fval,exitflag,output] = fzero(fun,10)

x =

 -2.6833e-24

fval =

 -2.6833e-23

exitflag =

 1

output =

 intervaliterations: 12

 iterations: 13

 funcCount: 37

 algorithm: 'bisection, interpolation'

 message: 'Zero found in the interval [-2.8, 19.05]'

Cours MATLAB UNIL-FGSE – 2015

VII. Traitements mathématiques

7 / 10

3.3. Fonction fminbnd

La fonction fminbnd cherche le minimum d’une fonction à une variable sur un intervalle

donné. L’intervalle est précisé par x1 et x2, tel que x1 < x < x2. Les options en entrées ainsi

que les sorties informatives sont les mêmes que pour fsolve et fzero.

x = fminbnd(fun,x1,x2)

x = fminbnd(fun,x1,x2,options)

[x,fval,exitflag,output] = fminbnd(...)

Exemple:

>> fun = inline('x.^2 + 10.*x','x');

>> x1 = -10;

>> x2 = 10;

>> x = fminbnd(fun,x1,x2)

x =

 -5.0000

Fig 4. Illustration de la fonction (effectué à l’aide de fplot)

3.4. Fonction fminsearch

La fonction fminsearch cherche le minimum d’une fonction à plusieurs variables. Les

options en entrées ainsi que les sorties informatives sont les mêmes que pour fsolve et

fzero.

x = fminsearch(fun,x0)

x = fminsearch(fun,x0,options)

[x,fval,exitflag,output] = fminsearch(...)

Cours MATLAB UNIL-FGSE – 2015

VII. Traitements mathématiques

8 / 10

4. Intégration d’une fonction

La fonction trapz permet d’évaluer l’intégrale de données par la méthode des trapèzes (Fig

5), mais ne peut pas évaluer directement l’intégrale d’une fonction. La fonction quad permet

d’évaluer l’intégrale d’une fonction par la méthode de quadrature de Simpson (Fig 6) :

q = quad(fun,a,b)

Fig 5. Intégration selon la méthode des trapèzes (source : [3])

Fig 6. Intégration selon la méthode de Simpson (source : [3], auteur : Wolfgang Dvorak)

Il existe d’autres methods d’intégration implémentées dans Matlab : dblquad, quadgk,

quadl, quadv.

Cours MATLAB UNIL-FGSE – 2015

VII. Traitements mathématiques

9 / 10

5. Temps et dates

Matlab permet de faciliter le travail de données temporelles par une intégration d’outils
spécifiques pour les dates et le temps.

5.1. Formats

Il existe trois formats de dates dans Matlab [1] :

o En chaîne de caractères : '24-Oct-2003 12:45:07'

o En vecteur : [2003 10 24 12 45 07]

o En numéro de série : 7.3188e+005

Le numéro de série de la date (serial date number) est une valeur unique correspondant au
numéro du jour depuis le 1.1.0000 00:00 (=1). C’est un format courant et pratique pour
travailler avec des séries temporelles. Ce numéro de série peut être obtenu à l’aide de la

fonction datenum, qui prend en entrée de multiples formats (textes ou vecteurs) :

N = datenum(...)

Exemples :

>> n = datenum('02-Jul-1999', 'dd-mmm-yyyy')

>> n = datenum(1999, 07, 02)

n =

 730303

La fonction datestr converti une date au format texte. Il existe de multiples formats de

sortie (voir Help) :

S = datestr(...)

Exemples [1] :

>> datestr(t1)

ans =

09-Nov-2009 15:31:00

>> datestr(t1, 'mmmm dd, yyyy HH:MM:SS.FFF AM')

ans =

November 09, 2009 3:31:11.788 PM

Finalement, il est également possible d’obtenir la date dans le format vectoriel par la fonction

datevec :

V = datevec(...)

Cours MATLAB UNIL-FGSE – 2015

VII. Traitements mathématiques

10 / 10

Le vecteur est définit ainsi : [année mois jour heure minute seconde]

La fonction datetick permet de formater l’axe du temps sur un graphique (voir Help).

5.2. Date actuelle

La date actuelle (dd-mmm-yyyy) peut être obtenue par la commande date :

>> str = date

str =

09-Nov-2009

L’heure peut également être connue par la commande now. Le retour est alors un nombre

correspondant au « numéro de série » de la date.

>> t = now

t =

 7.3409e+05

Une autre manière d’obtenir cette donnée formatée sous la forme vectorielle est la

commande clock :

>> c = clock

c =

 1.0e+03 *

 2.0090 0.0110 0.0090 0.0150 0.0120 0.0156

5.3. Différence entre deux dates

La fonction etime permet de calculer la différence entre deux vecteurs temps :

e = etime(t2, t1)

6. Références

[1] MATLAB Help

[2] Youmaran Richard, Bouchard Martin, 2003. Introduction à Matlab

[3] Wikipedia

7. Auteur(s)

Pascal Horton (2009, 2015)

