Wil

UNIL | Université de Lausanne

Cours MATLAB UNIL-FGSE — 2015

MATLAB

VIIl. Traitements mathématiques

1. Introduction
Matlab a des outils trés puissants pour travailler avec des polynémes et effectuer des

optimisations. Nous verrons comment trouver les zéros d’'un polynéme et résoudre des
systémes d’équations. Finalement, la gestion du temps et des dates sera présentée.

2. PolynGbmes

Dans Matlab, les polynédmes sont traités comme des vecteurs de coefficients. L’équation
suivante

2X° +4x* + X2 —6x* —x+5=0

...prend cette forme :

poly = [2 4 1 -6 -1 5];

Matlab permet de travailler aisément avec ces polynémes et offre de multiples fonctions [2] :

Fonctions | Description

poly Construction de polyndmes a partir des racines
roots Calcul des racines

polyval | Evalue & un point

polyvalm | Evaluation en une matrice de points
deconv Division de polynédmes

conv Multiplication de polynémes
residue Décomposition en résidus
polyfit Approximation du polynéme
polyint Intégration du polyndme

polyder Dérivée du polynéme

2.1. Fonction roots

Comme nous l'avons vu précédemment, les polyndbmes peuvent étre facilement résolus. Par
exemple, reprenons une équation polynomiale d’ordre 5 :

2X° +4x* + x* —6x* —x+5=0

Trouver les zéros de cette équation est alors trés simple a I'aide de la fonction roots :

>> myres = roots (poly)

1/10



M Cours MATLAB UNIL-FGSE — 2015

UNIL | Université de Lausanne

myres =
-1.2530 + 1.09411
-1.2530 - 1.09411
-1.1156

0.8108 + 0.39061
0.8108 - 0.39061

Il est ensuite possible de tester si les résultats sont des racines réelles a l'aide de la fonction
isreal:

>> isreal (myres(1l))

ans =
0

>> isreal (myres(3))

ans =
1

2.2. Fonction polyval

La fonction polyval permet d’évaluer un polyndme aux x désirés.

y = polyval (p, x)

Par exemple, pour le polyndme p(X) = 6x*+3x+1, les valeurs de y aux point x = 1, 10 et 50
peuvent étre obtenus par la commande suivante :

>>p = [6 3 1];
>> polyval (p, [1 10 501])

ans =
10 631 15151

2.3. Fonction polyfit

Pour rappel, Matlab permet d’effectuer une régression sur des données (Voir cours Les
Fonctions). La solution peut étre obtenue directement grace a la fonction polyfit :

> x = [0,3,4,7,8,10]
> vy = [1,4,5,6,7,10]
>> resmodel = polyfit(t,x,1)

resmodel =
0.8020 1.2228

Ce qui signifie : y*' =0.8020- x+1.2228

2/10



M Cours MATLAB UNIL-FGSE — 2015

UNIL | Université de Lausanne

2.4. Fonction polyder

La fonction polyder calcule la dérivée du polyndme.

k = polyder (p)

La dérivée du polyndme p(X) =9x> —6x° +3x+1 s’obtient ainsi :

> p = [9 -6 3 1];
>> k = polyder (p)

k =
27 -12 3

3. Fonctions d'optimisation

Les fonctions d’optimisation disponibles sont les suivantes [2]:

Fonctions Description

fsolve Résolution d'un systeme d'équations non-linéaires
fzero Trouve les zéros d'une fonction a une variable
fminbnd Minimisation d'une fonction a une variable
fminsearch | Minimisation d'une fonction a plusieurs variables

3.1. Fonction fsolve

La fonction fsolve résout (trouve le zéro) un systeme d’équations non linéaires [1] (avec
des variables multiples). Les deux parameétres obligatoires sont la fonction elle-méme (fun)
et le point de départ de la résolution (x0) :

x = fsolve (fun, x0)
x = fsolve (fun,x0,options)

Les options sont facultatives et sont définies par la commade optimset (optimget permet
de connaitre les options actuelles). D’autres sorties peuvent également étre récupérées [1] :

[x,fval,exitflag,output] = fsolve(...)

Ou fval est la valeur de la fonction a la solution X, exitflag est une indication de la raison
de la fin de l'optimisation (convergence vers la solution x, nombre d’optimisations limite
dépassé, ...), output contient des informations sur I'optimisation.
Exemple avec le systéme d’équation :

2%, —X,—e " =0

—X +2X,—e % =0

3/10



M— Cours MATLAB UNIL-FGSE - 2015
MATLAB

. . The Language of Technical Computing
UNIL | Université de Lausanne o -

function F = myfun (x)
F = [5*x(1l) - 2*x(2) - exp(-x(1));
=2*x (1) + 10*x(2) + exp(-x(2))1;

200

100 +

Fig 3. Systéme d’équations

Cette fonction a plusieurs solutions (Fig 3). Celle que nous allons approcher dépend donc de
la valeur initiale que nous fixons !

41710



M Cours MATLAB UNIL-FGSE — 2015

UNIL | Université de Lausanne

Avec Xp = [-10 -10], la solution est x = [-0.906 -3.503] :

>> x0 = [-10; -10];
>> [x,fval,exitflag,output] = fsolve (d@myfun, x0)

Optimization terminated: first-order optimality is less than
options.TolFun.

X:
-0.9062
-3.5031

fval =
1.0e-14 *
-0.7994
0

exitflag =
1

output =
iterations: 15
funcCount: 48
algorithm: 'trust-region dogleg'
firstorderopt: 5.9752e-14
message: 'Optimization terminated: first-order
optimality is less than options.TolFun.'

Avec xo = [10 10], la solution est x = [0.142 -0.080] :

>> x0 = [10; 10];
>> [x,fval,exitflag,output] = fsolve (@myfun, x0)

Optimization terminated: first-order optimality is less than
options.TolFun.

0.1416
-0.0800

fval =
1.0e-13 *
-0.7427
0.0333

exitflag =
1

output =
iterations: 7
funcCount: 24
algorithm: 'trust-region dogleg'
firstorderopt: 4.4250e-13

5/10



M Cours MATLAB UNIL-FGSE — 2015

UNIL | Université de Lausanne

A l'aide de l'option Display, il est possible d’afficher toute les étapes de l'itération :

>> x0 = [10; 10];
>> options=optimset ('Display', 'iter');

>> [x,fval] = fsolve (@myfun,x0,options)
Norm of First-order Trust-region
Iteration Func-count f(x) step optimality radius

0 3 7300 740 1
1 6 5924.68 1 636 1
2 9 3382.64 2.5 378 2.5
3 12 799.791 6.25 136 6.25
4 15 1.24938 6.43098 7.04 15.6
5 18 0.000159635 0.162424 0.0745 16.1
6 21 5.52223e-12 0.00237679 1.4e-05 16.1
7 24 5.52771e-27 4.34761e-07 4.42e-13 16.1

Optimization terminated: first-order optimality is less than options.TolFun.

3.2. Fonction fzero

La fonction f£zero cherche une racine d’'une fonction continue a une variable :

x = fzero (fun, x0)
fzero (fun,x0, options)

X
Il

Les paramétres d’entrée sont les mémes que pour fsolve. La valeur de départ x0 peut
également étre un intervalle de recherche.

Les autres sorties possibles sont :

[x,fval,exitflag,output] = fzero(...)

Exemple:

>> fun = inline('x.”3 + 10.*x','x"'");
>> [x,fval,exitflag,output] = fzero(fun,10)

X =

-2.6833e-24

fval =
-2.6833e-23

exitflag =
1

output =
intervaliterations: 12
iterations: 13
funcCount: 37
algorithm: 'bisection, interpolation'
message: 'Zero found in the interval [-2.8, 19.05]'

6/10



M Cours MATLAB UNIL-FGSE — 2015

UNIL | Université de Lausanne

3.3. Fonction fminbnd

La fonction fminbnd cherche le minimum d’une fonction a une variable sur un intervalle
donné. L'intervalle est précisé par x; et x, tel que x1 < X < Xo. Les options en entrées ainsi
gue les sorties informatives sont les mémes que pour £fsolve et fzero.

X fminbnd (fun, x1, x2)
x = fminbnd (fun,x1,x2,options)
[x,fval,exitflag,output] = fminbnd(...)

Exemple:

>> fun = inline('x.”2 + 10.*x','x");
>> x1 = -10;

>> x2 = 10;

>> x = fminbnd (fun, x1, x2)

-5.0000

200

150 4

100 7

-50 L L L L L L L L

Fig 4. lllustration de la fonction (effectué a l'aide de fplot)

3.4. Fonction fminsearch

La fonction fminsearch cherche le minimum d'une fonction a plusieurs variables. Les
options en entrées ainsi que les sorties informatives sont les mémes que pour fsolve et
fzero.

x = fminsearch (fun, x0)
x = fminsearch (fun, x0, options)
[x,fval,exitflag,output] = fminsearch(...)

7/10



M Cours MATLAB UNIL-FGSE — 2015

UNIL | Université de Lausanne

4. Intégration d’une fonction

La fonction trapz permet d’évaluer I'intégrale de données par la méthode des trapézes (Fig
5), mais ne peut pas évaluer directement I'intégrale d’'une fonction. La fonction quad permet
d’évaluer l'intégrale d’'une fonction par la méthode de quadrature de Simpson (Fig 6) :

g = quad(fun,a,b)

0.8 WY
0.4 :
I VA {
O™ 0Z 04 06 08 1 12 14 18 11/
02 = :

Fig 5. Intégration selon la méthode des trapéezes (source : [3])

Fig 6. Intégration selon la méthode de Simpson (source : [3], auteur : Wolfgang Dvorak)

Il existe d’autres methods d’intégration implémentées dans Matlab : dblquad, quadgk,
quadl, quadv.

8/10



M/ Cours MATLAB UNIL-FGSE — 2015

UNIL | Université de Lausanne

5. Temps et dates

Matlab permet de faciliter le travail de données temporelles par une intégration d’outils
spécifiques pour les dates et le temps.

5.1. Formats
Il existe trois formats de dates dans Matlab [1] :
o Enchaine de caractéres: '24-0ct-2003 12:45:07"
o Envecteur: [2003 10 24 12 45 07]
o Ennuméro de série: 7.3188e+005
Le numéro de série de la date (serial date number) est une valeur unique correspondant au
numéro du jour depuis le 1.1.0000 00:00 (=1). C’est un format courant et pratique pour

travailler avec des séries temporelles. Ce numéro de série peut étre obtenu a l'aide de la
fonction datenum, qui prend en entrée de multiples formats (textes ou vecteurs) :

N = datenum(...)

Exemples :
>> n = datenum('02-Jul-1999', 'dd-mmm-yyyy')
>> n = datenum(1999, 07, 02)

n:
730303

La fonction datestr converti une date au format texte. Il existe de multiples formats de
sortie (voir Help) :

S = datestr(...)

Exemples [1] :

>> datestr (tl)
ans =
09-Nov-2009 15:31:00

>> datestr(tl, 'mmmm dd, yyyy HH:MM:SS.FFF AM')
ans =
November 09, 2009 3:31:11.788 PM

Finalement, il est également possible d’obtenir la date dans le format vectoriel par la fonction
datevec:

V = datevec(...)

9/10



M/ Cours MATLAB UNIL-FGSE — 2015

UNIL | Université de Lausanne

Le vecteur est définit ainsi : [année mois jour heure minute seconde]

La fonction datetick permet de formater I'axe du temps sur un graphique (voir Help).

5.2. Date actuelle

La date actuelle (dd-mmm-yyyy) peut étre obtenue par la commande date :

>> str = date

str =
09-Nov-2009

L’heure peut également étre connue par la commande now. Le retour est alors un nombre
correspondant au « numéro de série » de la date.

>> t = now

t =
7.3409e+05

Une autre maniére d’obtenir cette donnée formatée sous la forme vectorielle est la
commande clock :

>> ¢ = clock

C:
1.0e+03 *
2.0090 0.0110 0.0090 0.0150 0.0120 0.0156

5.3. Différence entre deux dates

La fonction et ime permet de calculer la différence entre deux vecteurs temps :

e = etime (t2, tl)

6. Références
[1] MATLAB Help
[2] Youmaran Richard, Bouchard Martin, 2003. Introduction & Matlab

[3] Wikipedia

7. Auteur(s)

Pascal Horton (2009, 2015)

10/10



