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VII. Traitements mathématiques 

1. Introduction 

Matlab a des outils très puissants pour travailler avec des polynômes et effectuer des 
optimisations. Nous verrons comment trouver les zéros d’un polynôme et résoudre des 
systèmes d’équations. Finalement, la gestion du temps et des dates sera présentée. 

2. Polynômes 

Dans Matlab, les polynômes sont traités comme des vecteurs de coefficients. L’équation 
suivante 

 
5 4 3 22 4 6 5 0x x x x x       

…prend cette forme : 

poly = [2 4 1 -6 -1 5]; 

Matlab permet de travailler aisément avec ces polynômes et offre de multiples fonctions [2] : 

Fonctions  Description 

poly Construction de polynômes à partir des racines 

roots Calcul des racines 

polyval Évalue à un point 

polyvalm Évaluation en une matrice de points 

deconv Division de polynômes 

conv Multiplication de polynômes 

residue Décomposition en résidus 

polyfit Approximation du polynôme 

polyint Intégration du polynôme 

polyder Dérivée du polynôme 

2.1. Fonction roots 

Comme nous l’avons vu précédemment, les polynômes peuvent être facilement résolus. Par 
exemple, reprenons une équation polynomiale d’ordre 5 : 

5 4 3 22 4 6 5 0x x x x x       

Trouver les zéros de cette équation est alors très simple à l’aide de la fonction roots : 

>> myres = roots(poly) 
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myres = 

  -1.2530 + 1.0941i 

  -1.2530 - 1.0941i 

  -1.1156           

   0.8108 + 0.3906i 

   0.8108 - 0.3906i 

Il est ensuite possible de tester si les résultats sont des racines réelles à l’aide de la fonction 

isreal: 

>> isreal(myres(1)) 

 

ans = 

     0 

 

>> isreal(myres(3)) 

 

ans = 

     1 

2.2. Fonction polyval 

La fonction polyval permet d’évaluer un polynôme aux x désirés. 

y = polyval(p,x) 

Par exemple, pour le polynôme 
2( ) 6 3 1p x x x   , les valeurs de y aux point x = 1, 10 et 50 

peuvent être obtenus par la commande suivante : 

>> p = [6 3 1]; 

>> polyval(p,[1 10 50]) 

 

ans = 

          10         631       15151 

2.3. Fonction polyfit 

Pour rappel, Matlab permet d’effectuer une régression sur des données (Voir cours Les 

Fonctions). La solution peut être obtenue directement grâce à la fonction polyfit : 

>> x = [0,3,4,7,8,10] 

>> y = [1,4,5,6,7,10] 

>> resmodel = polyfit(t,x,1) 

 

resmodel = 

    0.8020    1.2228 

Ce qui signifie : 0.8020 1.2228esty x    
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2.4. Fonction polyder 

La fonction polyder calcule la dérivée du polynôme. 

k = polyder(p) 

La dérivée du polynôme 3 2( ) 9 6 3 1p x x x x     s’obtient ainsi : 

>> p = [9 -6 3 1]; 

>> k = polyder(p) 

 

k = 

    27   -12     3 

3. Fonctions d'optimisation 

Les fonctions d’optimisation disponibles sont les suivantes [2]: 

Fonctions Description 

fsolve Résolution d'un système d'équations non-linéaires 

fzero Trouve les zéros d'une fonction à une variable 

fminbnd Minimisation d'une fonction à une variable 

fminsearch Minimisation d'une fonction à plusieurs variables 

3.1. Fonction fsolve 

La fonction fsolve résout (trouve le zéro) un système d’équations non linéaires [1] (avec 

des variables multiples). Les deux paramètres obligatoires sont la fonction elle-même (fun) 

et le point de départ de la résolution (x0) : 

x = fsolve(fun,x0) 

x = fsolve(fun,x0,options) 

Les options sont facultatives et sont définies par la commade optimset (optimget permet 

de connaître les options actuelles). D’autres sorties peuvent également être récupérées [1] : 

[x,fval,exitflag,output] = fsolve(...) 

Où fval est la valeur de la fonction à la solution x, exitflag est une indication de la raison 

de la fin de l’optimisation (convergence vers la solution x, nombre d’optimisations limite 

dépassé, …), output contient des informations sur l’optimisation.  

Exemple avec le système d’équation : 
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function F = myfun(x) 

F = [5*x(1) - 2*x(2) - exp(-x(1)); 

      -2*x(1) + 10*x(2) + exp(-x(2))]; 

Fig 1. Eq. 1 Fig 2. Eq. 2 

 

Fig 3. Système d’équations 

Cette fonction a plusieurs solutions (Fig 3). Celle que nous allons approcher dépend donc de 
la valeur initiale que nous fixons ! 
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Avec x0 = [-10 -10], la solution est x = [-0.906 -3.503] : 

>> x0 = [-10; -10]; 

>> [x,fval,exitflag,output] = fsolve(@myfun,x0) 

 

Optimization terminated: first-order optimality is less than 

options.TolFun. 

 

x = 

   -0.9062 

   -3.5031 

 

fval = 

   1.0e-14 * 

   -0.7994 

         0 

 

exitflag = 

     1 

 

output =  

       iterations: 15 

        funcCount: 48 

        algorithm: 'trust-region dogleg' 

    firstorderopt: 5.9752e-14 

          message: 'Optimization terminated: first-order 

optimality is less than options.TolFun.' 

Avec x0 = [10 10], la solution est x = [0.142 -0.080] : 

>> x0 = [10; 10]; 

>> [x,fval,exitflag,output] = fsolve(@myfun,x0) 

 

Optimization terminated: first-order optimality is less than 

options.TolFun. 

 

x = 

    0.1416 

   -0.0800 

 

fval = 

   1.0e-13 * 

   -0.7427 

    0.0333 

 

exitflag = 

     1 

 

output =  

       iterations: 7 

        funcCount: 24 

        algorithm: 'trust-region dogleg' 

    firstorderopt: 4.4250e-13 
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A l’aide de l’option Display, il est possible d’afficher toute les étapes de l’itération : 

>> x0 = [10; 10]; 

>> options=optimset('Display','iter');   

>> [x,fval] = fsolve(@myfun,x0,options) 

 
                                         Norm of      First-order   Trust-region 

 Iteration  Func-count     f(x)          step         optimality    radius 

     0          3            7300                           740               1 

     1          6         5924.68              1            636               1 

     2          9         3382.64            2.5            378             2.5 

     3         12         799.791           6.25            136            6.25 

     4         15         1.24938        6.43098           7.04            15.6 

     5         18     0.000159635       0.162424         0.0745            16.1 

     6         21     5.52223e-12     0.00237679        1.4e-05            16.1 

     7         24     5.52771e-27    4.34761e-07       4.42e-13            16.1 

Optimization terminated: first-order optimality is less than options.TolFun. 

3.2. Fonction fzero 

La fonction fzero cherche une racine d’une fonction continue à une variable : 

x = fzero(fun,x0) 

x = fzero(fun,x0,options) 

Les paramètres d’entrée sont les mêmes que pour fsolve. La valeur de départ x0 peut 

également être un intervalle de recherche. 

Les autres sorties possibles sont : 

[x,fval,exitflag,output] = fzero(...) 

Exemple: 

>> fun = inline('x.^3 + 10.*x','x'); 

>> [x,fval,exitflag,output] = fzero(fun,10) 

 

x = 

  -2.6833e-24 

 

fval = 

  -2.6833e-23 

 

exitflag = 

     1 

 

output =  

    intervaliterations: 12 

            iterations: 13 

             funcCount: 37 

             algorithm: 'bisection, interpolation' 

               message: 'Zero found in the interval [-2.8, 19.05]' 
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3.3. Fonction fminbnd 

La fonction fminbnd cherche le minimum d’une fonction à une variable sur un intervalle 

donné. L’intervalle est précisé par x1 et x2, tel que x1 < x < x2. Les options en entrées ainsi 

que les sorties informatives sont les mêmes que pour fsolve et fzero. 

x = fminbnd(fun,x1,x2) 

x = fminbnd(fun,x1,x2,options) 

[x,fval,exitflag,output] = fminbnd(...) 

Exemple: 

>> fun = inline('x.^2 + 10.*x','x'); 

>> x1 = -10; 

>> x2 = 10; 

>> x = fminbnd(fun,x1,x2) 

 

x = 

   -5.0000 

 

Fig 4. Illustration de la fonction (effectué à l’aide de fplot) 

3.4. Fonction fminsearch 

La fonction fminsearch cherche le minimum d’une fonction à plusieurs variables. Les 

options en entrées ainsi que les sorties informatives sont les mêmes que pour fsolve et 

fzero. 

x = fminsearch(fun,x0) 

x = fminsearch(fun,x0,options) 

[x,fval,exitflag,output] = fminsearch(...) 
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4. Intégration d’une fonction 

La fonction trapz permet d’évaluer l’intégrale de données par la méthode des trapèzes (Fig 

5), mais ne peut pas évaluer directement l’intégrale d’une fonction. La fonction quad permet 

d’évaluer l’intégrale d’une fonction par la méthode de quadrature de Simpson (Fig 6) : 

q = quad(fun,a,b) 

 

Fig 5. Intégration selon la méthode des trapèzes (source : [3]) 

 

Fig 6. Intégration selon la méthode de Simpson (source : [3], auteur : Wolfgang Dvorak) 

Il existe d’autres methods d’intégration implémentées dans Matlab : dblquad, quadgk, 

quadl, quadv. 
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5. Temps et dates 

Matlab permet de faciliter le travail de données temporelles par une intégration d’outils 
spécifiques pour les dates et le temps. 

5.1. Formats 

Il existe trois formats de dates dans Matlab [1] : 

o En chaîne de caractères : '24-Oct-2003 12:45:07' 

o En vecteur : [2003  10  24  12  45  07] 

o En numéro de série : 7.3188e+005 

Le numéro de série de la date (serial date number) est une valeur unique correspondant au 
numéro du jour depuis le 1.1.0000 00:00 (=1). C’est un format courant et pratique pour 
travailler avec des séries temporelles. Ce numéro de série peut être obtenu à l’aide de la 

fonction datenum, qui prend en entrée de multiples formats (textes ou vecteurs) : 

N = datenum(...) 

Exemples : 

>> n = datenum('02-Jul-1999', 'dd-mmm-yyyy') 

>> n = datenum(1999, 07, 02) 

n = 

      730303 

La fonction datestr converti une date au format texte. Il existe de multiples formats de 

sortie (voir Help) : 

S = datestr(...) 

Exemples [1] : 

>> datestr(t1) 

ans = 

09-Nov-2009 15:31:00 

 

>> datestr(t1, 'mmmm dd, yyyy HH:MM:SS.FFF AM') 

ans = 

November 09, 2009  3:31:11.788 PM 

Finalement, il est également possible d’obtenir la date dans le format vectoriel par la fonction 

datevec : 

V = datevec(...) 
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Le vecteur est définit ainsi : [année mois jour heure minute seconde] 

La fonction datetick permet de formater l’axe du temps sur un graphique (voir Help). 

5.2. Date actuelle 

La date actuelle (dd-mmm-yyyy) peut être obtenue par la commande date : 

>> str = date 

 

str = 

09-Nov-2009 

L’heure peut également être connue par la commande now. Le retour est alors un nombre 

correspondant au « numéro de série » de la date. 

>> t = now 

 

t = 

   7.3409e+05 

Une autre manière d’obtenir cette donnée formatée sous la forme vectorielle est la 

commande clock : 

>> c = clock 

 

c = 

   1.0e+03 * 

    2.0090    0.0110    0.0090    0.0150    0.0120    0.0156 

5.3. Différence entre deux dates 

La fonction etime permet de calculer la différence entre deux vecteurs temps : 

e = etime(t2, t1) 
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