

Cours MATLAB UNIL-FGSE – 2015

III. Principes de programmation

1 / 8

III. Principes de programmation

1. Introduction

Un programme est une séquence de commandes [1]. Dans les cas simples, les commandes
sont exécutées une après l’autre, dans l’ordre dans lequel elles sont écrites. Pour traiter des
problèmes plus complexes, il est important de pouvoir contrôler l’ordre dans lequel les
commandes (ou groupes de commandes) sont exécutées, de manière plus élaborée. Il
existe ainsi des moyens de contrôler le flux d’exécution dans un programme [1].

2. Opérations logiques

Changer le flux d’exécution dans un programme est effectué à l’aide d’instructions de
contrôle. Ceci implique souvent des comparaisons entre variables.

Les opérateurs de comparaison dans Matlab sont [2]:

> plus grand que <= plus petit ou égal à
< plus petit que == égal à
>= plus grand ou égal à ~= différent de

Il s’agit d’opérateurs « binaires », lesquels retournent la valeur 0 (= false) quand la relation
est fausse et 1 (= true) quand la relation est vraie.

Exemples :

>> x = 5;

>> 3 > x

ans =

 0

>> x = 5;

>> x == 5

ans =

 1

La comparaison peut être effectuée à toute une matrice, coefficient par coefficient.

Exemple :

>> x = [1 2 3 ; 4 5 6 ; 7 8 9];

>> x >= 5

ans =

 0 0 0

 0 1 1

 1 1 1

Cours MATLAB UNIL-FGSE – 2015

III. Principes de programmation

2 / 8

Les opérateurs logiques sont [2] :

opérateur signification fonction équivalente

~ pas not(A)

& et and(A,B)

| ou or(A,B)

&& (short-circuit)* et

|| (short-circuit)* ou

*court-circuit signifie que la seconde condition est évaluée seulement si le résultat n’est pas
déjà déterminé par la 1ère condition.

Ces opérateurs permettent de combiner différentes conditions. La comparaison logique
s’effectue élément par élément et permet de comparer des matrices.

Exemple :

x = (b ~= 0) && (b <= pi)

Il est possible combiner des matrices logiques (de même taille). Les opérateurs logiques
sont alors exécutés coefficient par coefficient, et la matrice résultante est de même taille que
les matrices utilisées, avec le résultat de la comparaison affecté à chaque coefficient (cf. 1er
exemple ci-dessous). On peut aussi combiner plusieurs comparaisons / opérateurs logiques
(cf. 2ème exemple).

Exemples 1 et 2:

>> A = [0 1 1 0 1];

>> B = [1 1 0 0 1];

>> A&B

ans =

 0 1 0 0 1

>> x = 5;

>> y = 10;

>> (x > 0) & (y > 5) & (x < y)

ans =

 1

3. Instructions de contrôle : les conditions

Les instructions de contrôle permettent de gérer le flux d’exécution d’un programme, en
fonction de certaines conditions. Pour les instructions de conditions, une expression
conditionnelle est déclarée : si l’expression est vraie, le groupe de commandes qui suit la
condition est exécutée, sinon cette séquence de commande est ignorée. La forme de base

est l’instruction if.

Cours MATLAB UNIL-FGSE – 2015

III. Principes de programmation

3 / 8

3.1. Les structures en if (condition logique):

if <condition>

 <instructions>

else

 <instructions>

end

L’instruction if, comme la plupart, se termine toujours par un end.

Exemple :

 if a < b si a est plus petit que b

 if c >= 5 si c est plus grand ou égal à 5

 if a == b si a est égal à b

 if a ~= 0 si a est différent de 0

 if (d<h) & (x>7) si … & signifie AND

 if (x~=0)| (y<3) si … | signifie OR

La structure if – end La structure if – else - end

Cours MATLAB UNIL-FGSE – 2015

III. Principes de programmation

4 / 8

La structure if – else – elseif - end Exemple:

if x > 0

 disp('x est positif')

elseif x == 0

 disp('x est égal à zero')

else

 disp('x est négatif')

end

Le nombre de conditions elseif n’est pas limité.

Cours MATLAB UNIL-FGSE – 2015

III. Principes de programmation

5 / 8

3.2. La structure en switch – case (jonction conditionnelle) :

La structure switch – case permet de choisir un groupe de commandes d’exécution

parmi d’autres. Le choix se fait par correspondance de la variable aux différents cas. S’il
existe plusieurs correspondances, seulement la 1ère est exécutée. Si aucune correspondance

n’existe et que l’expression otherwise existe, le groupe de commande entre otherwise

et end est exécuté. Sinon aucun groupe de commandes n’est exécuté.

La structure if – else – elseif - end Exemples:

switch x

 case 1

 disp('x = 1')

 case {2,3,4}

 disp('x = 2, 3 ou 4')

 otherwise

 disp('x ~= 1, 2, 3 ou 4')

end

Q1 = input('avez-vous soif ?

 oui/non ','s');

switch Q1;

 case 'oui'

 disp('alors buvez!')

 case 'non'

 disp('c''est pas grave')

 otherwise

 disp('répondez par oui/non')

end

Cours MATLAB UNIL-FGSE – 2015

III. Principes de programmation

6 / 8

4. Instructions de contrôle : les boucles

Une boucle permet de répéter l’exécution d’une commande/groupe de commandes plusieurs
fois consécutivement. Matlab possède deux types de boucle :

La structure for - end la structure while - end

boucle avec un nombre prédéfini de passage :

for <i> = <start> : <incr> : <stop>

 <instructions>

end

exemple:

for k = 1 : 1 : 10

 x = k^2

end

boucle dépendante d’une condition logique.
Le nombre de passage est défini par la condition. La
boucle est effectuée jusqu’à ce que la condition soit
fausse:

while <condition>

 <instructions>

end

exemple :

n = 1;

while n<=10

 y(n) = 1+n-2*n^2+0.1*n^3

 n = n+1

end

4.1. Remarque concernant la boucle for – end vs. opérations matricielles:

Dans certaines situations, le même résultat peut être obtenu en utilisant soit la structure en
boucle for – end, soit l’opération matricielle élément par élément (cf. Chapitre 2). Les
opérations matricielles sont une des caractéristiques de Matlab, permettant d’effectuer des
opérations réalisable avec des boucles. Toutefois, l’opération matricielle est beaucoup plus
rapide à exécuter que les structures en boucle [2].

Exemple:

x = [2 4 6 8 10];

y = [3 6 9 12 15];

% Matrix calculation (coefficient by coefficient)

z1 = (y./x).^2 + (x + y).^((y - x)./x)

% Using the for - end structure

for n = 1:length(x)

 z2(n) = (y(n)/ x(n))^2 + (x(n) + y(n))^((y(n) - x(n))/ x(n))

end

Cours MATLAB UNIL-FGSE – 2015

III. Principes de programmation

7 / 8

5. Boucles et conditions encapsulées

Les conditions et boucles peuvent être encapsulées. C’est-à-dire qu’une boucle et/ou une
condition peut se situer à l’intérieur d’une autre boucle et/ou une condition (aucune limite de
nombre). Chaque fois qu’une encapsulation a lieu, on indente la nouvelle boucle
relativement à la précédente (indentation automatique : Ctrl + i).

La structure encapsulée exemple:

for i = 1:n

 for j = 1:m

 …

 …

 end

end

chaque fois que i augmente de 1
(boucle), la boucle encapsulée (j)
est exécutée m fois.

Les commandes à l’intérieur des 2
boucles auront été exécutées n x
m fois

Création d’une matrice de dimension m x n:

m = input('nbre de lignes?');

n = input('nbre de colonnes?');

A = zeros(m,n);

for l=1:m

 for c=1:n

 A(l,c) = l+c;

 end

end

disp(A)

Création d’une matrice nulle de dimension
m x n avec diagonale = 1

for l=1:m

 for c=1:n

 A(l,c) = 0;

 if l==c

 A(l,c) = 1

 end

 end

end

Cours MATLAB UNIL-FGSE – 2015

III. Principes de programmation

8 / 8

6. La commande break et continue

A l’intérieur d’une boucle (for et while), la commande break termine l’exécution de la

boucle et continue avec la suite des instructions après la boucle en question. A l’intérieur
d’une boucle encapsulée, seule cette dernière sera terminée. Cette commande est surtout
utilisée quand il s’agit de terminer une boucle (ou le programme) quand une condition est
atteinte ou quand une variable devient inconsistante.

La commande continue permet dans une boucle (for et while) de sauter un passage

seulement.

7. Références

 [1] Amos, Gilat, 2007. Matlab, an introduction with application, Johne Willey and Sohn, Inc.

 [2] MATLAB Help

8. Auteurs

Alexandre Loye (2009)

Pascal Horton (2015)

