M Cours MATLAB UNIL-FGSE — 2015

UNIL | Université de Lausanne

lll. Principes de programmation

1. Introduction

Un programme est une séquence de commandes [1]. Dans les cas simples, les commandes
sont exécutées une aprés l'autre, dans I'ordre dans lequel elles sont écrites. Pour traiter des
problémes plus complexes, il est important de pouvoir contrbler I'ordre dans lequel les
commandes (ou groupes de commandes) sont exécutées, de maniere plus élaborée. I
existe ainsi des moyens de contréler le flux d’exécution dans un programme [1].

2. Opérations logiques

Changer le flux d’exécution dans un programme est effectué a l'aide d’instructions de
contrble. Ceci implique souvent des comparaisons entre variables.

Les opérateurs de comparaison dans Matlab sont [2]:

> plus grand que <= plus petit ou égal a
< plus petit que == égal a
>= plus grand ou égal a ~= différent de

Il s’agit d’opérateurs « binaires », lesquels retournent la valeur 0 (= false) quand la relation
est fausse et 1 (= true) quand la relation est vraie.

Exemples :
>> x = 5; >> x = 5;
>> 3 > x >> x == 5
ans = ans =
0 1

La comparaison peut étre effectuée a toute une matrice, coefficient par coefficient.

Exemple :

> x=[123; 456 ; 78 9];

>> x >= 5

ans =
0 0 0
0 1 1
1 1 1

1/8

Wil

UNIL | Université de Lausanne

Cours MATLAB UNIL-FGSE — 2015

Les opérateurs logiques sont [2] :

MATLAB

opérateur signification fonction équivalente
~ pas not (A)
& et and (A, B)
\ ou or (A, B)
& & (short-circuit)* et
[(short-circuit)* ou

*court-circuit signifie que la seconde condition est évaluée seulement si le résultat n'est pas
déja déterminé par la 1° condition.

Ces opérateurs permettent de combiner différentes conditions. La comparaison logique
s’effectue élément par élément et permet de comparer des matrices.

Exemple :

x = (b ~= 0) && (b <= pi)

Il est possible combiner des matrices logiques (de méme taille). Les opérateurs logiques
sont alors exécutés coefficient par coefficient, et la matrice résultante est de méme taille que
les matrices utilisées, avec le résultat de la comparaison affecté a chaque coefficient (cf. 1¢
exemple ci-dessous). On peut aussi combiner plusieurs comparaisons / opérateurs logiques
(cf. 2°m exemple).

Exemples 1 et 2:

> A = [01101]; >> x = 5;
> B = [1100 1]; >> y = 10;
>> A&B >> (x > 0) & (y > 5) & (x < vy)
ans = ans =
0 1 0 0 1 1

3. Instructions de contrdle : les conditions

Les instructions de contrble permettent de gérer le flux d’exécution d’un programme, en
fonction de certaines conditions. Pour les instructions de conditions, une expression
conditionnelle est déclarée : si I'expression est vraie, le groupe de commandes qui suit la
condition est exécutée, sinon cette séquence de commande est ignorée. La forme de base
est l'instruction if.

2/8

M Cours MATLAB UNIL-FGSE — 2015

UNIL | Université de Lausanne

3.1. Les structures en if (condition logique):

if <condition>

<instructions>

else

<instructions>

end

L’instruction i £, comme la plupart, se termine toujours par un end.

Exemple :
if a < b si a est plus petit que b
if ¢ >= 5 sicestplus grand ou égal a 5
if a == b siaestégalab
if a ~= 0 siaestdifférentde 0
if (d<h) & (x>7) si... & signifie AND
if (x~=0)]| (y<3) si...|signifie OR
La structure if — end La structure if — else - end

if

False
statement
else
tatemen
True
True
Commande Commande
Commande groupe 2 groupe 1

End

End

3/8

m Cours MATLAB UNIL-FGSE — 2015

UNIL | Université de Lausanne

La structure if — else — elseif - end Exemple:
if x > 0
disp('x est positif')
elseif x ==
disp('x est égal a zero')
else
disp('x est négatif')

end

False if

statement

elsei
tatemen

True
Commande Commande Commande
groupe 3 groupe 2 groupe 1
End

Le nombre de conditions elseif n'est pas limité.

4/8

M Cours MATLAB UNIL-FGSE — 2015

UNIL | Université de Lausanne

3.2. La structure en switch — case (jonction conditionnelle) :

La structure switch - case permet de choisir un groupe de commandes d’exécution
parmi d’autres. Le choix se fait par correspondance de la variable aux différents cas. S’il
existe plusieurs correspondances, seulement la 1°® est exécutée. Si aucune correspondance
n’existe et que I'expression otherwise existe, le groupe de commande entre otherwise
et end est exécuté. Sinon aucun groupe de commandes n’est exécuté.

La structure if — else — elseif - end Exemples:
switch x
case 1

) disp('x = 1'")

switch switch expression : une variable assignée case {2,3,4)}
(scalair, string) disp('x = 2, 3 ou 4')
case si variable = value case 1 othervlvise
disp('x ~= 1, 2, 3 ou 4")
! end

exécution du groupe de commande

case si variable = value case 2 Q1 = input('avez-vous soif ?
2 oui/non ','s');

exécution du groupe de commande
. switch Q1;

case 'oui'

disp('alors buvez!')
case 'non'

disp('c''est pas grave')
otherwise

disp ('répondez par oui/non')

case si variable = value case x

| execution du groupe de commande

otherwise| (optional) end

exécution du groupe de commande

End

5/8

M/“Aﬁ/ Cours MATLAB UNIL-FGSE — 2015

UNIL | Université de Lausanne

4. Instructions de contrdle : les boucles

Une boucle permet de répéter 'exécution d'une commande/groupe de commandes plusieurs
fois consécutivement. Matlab possede deux types de boucle :

La structure for - end la structure while - end
boucle avec un nombre prédéfini de passage : boucle dépendante d’'une condition logique.
Le nombre de passage est défini par la condition. La
for <i> = <start> : <incr> : <stop> boucle est effectuée jusqu’a ce que la condition soit
fausse:
<instructions>
while <condition>
end
<instructions>
exemple:
end
for k =1 1 10
exemple
x = k"2
n=1;
end

while n<=10

y(n) = 1+n-2*n"2+0.1*n"3
n = n+l

4.1. Remarque concernant la boucle for — end vs. opérations matricielles:

Dans certaines situations, le méme résultat peut étre obtenu en utilisant soit la structure en
boucle for — end, soit I'opération matricielle élément par élément (cf. Chapitre 2). Les
opérations matricielles sont une des caractéristiques de Matlab, permettant d’effectuer des
opérations réalisable avec des boucles. Toutefois, 'opération matricielle est beaucoup plus
rapide a exécuter que les structures en boucle [2].

Exemple:

8 10];
12 1

2 15]1;

=
|

o\

Matrix calculation (coefficient by coefficient)
zl = (y./x).72 + (x + y). " ((y - x)./x)
% Using the for - end structure
for n = 1l:length (x)

z2(n) = (y(n)/ x(n))"2 + (x(n) + y(n))"((y(n) - x(n))/ x(n))
end

6/8

Wil

UNIL | Université de

Lausanne

5. Boucles et conditions encapsulées

Cours MATLAB UNIL-FGSE — 2015

MATLAB

Les conditions et boucles peuvent étre encapsulées. C’est-a-dire qu’'une boucle et/ou une
condition peut se situer a I'intérieur d’'une autre boucle et/ou une condition (aucune limite de
nombre). Chaque fois qu’une encapsulation a lieu, on indente la nouvelle boucle
relativement a la précédente (indentation automatique : Ctrl + i).

La structure encapsulée

1

Condition / boucle

Condition / boucle

2

Condition / boucle
X
R g
L5 L35 @
v wn v on v
Groupe de 3 e 3 e 3
Commande | |2 £ @ e e
[} [}
End (x)
End (2)
End (1)
fori=1:n chaque fois que i augmente de 1
(boucle), la boucle encapsulée (j)
forj=1m est exécutée m fois.
Les commandes a l'intérieur des 2
boucles auront été exécutées n X
m fois
end
end

718

exemple:

Création d’'une matrice de dimension m x n:

m = input ('nbre de lignes?');
n = input ('nbre de colonnes?');
A = zeros (m,n);
for 1=1:m

for c=1:n

A(l,c) = l+c;

end
end
disp (A)

Création d’'une matrice nulle de dimension
m x n avec diagonale = 1

for 1=1:m
for c=1:n
A(l,c) = 0;
if 1==
A(l,c) =1
end
end
end

M Cours MATLAB UNIL-FGSE — 2015

UNIL | Université de Lausanne

6. La commande break et continue

A l'intérieur d’'une boucle (for et while), la commande break termine I'exécution de la
boucle et continue avec la suite des instructions apres la boucle en question. A lintérieur
d’'une boucle encapsulée, seule cette derniére sera terminée. Cette commande est surtout
utilisée quand il s’agit de terminer une boucle (ou le programme) quand une condition est
atteinte ou quand une variable devient inconsistante.

La commande continue permet dans une boucle (for et while) de sauter un passage
seulement.

7. Références
[1] Amos, Gilat, 2007. Matlab, an introduction with application, Johne Willey and Sohn, Inc.

[2] MATLAB Help

8. Auteurs
Alexandre Loye (2009)

Pascal Horton (2015)

8/8

