M/ Cours MATLAB UNIL-FGSE — Hiver 2009-2010

UNIL | Université de Lausanne

X. Algorithmes d’optimisation

1. Introduction

Matlab a une série d’algorithmes déja implémentés pour trouver les racines (root, fzero),
les moindres carrés (lsgcurvefit, 1lsglin...), la solution de systémes d’équations
(fsolve, fzero) et la minimisation, en une et plusieurs dimensions. Pour minimiser une
fonction a une variable dans un domaine on utilise fminbnd et si la fonction a plusieurs
variables, on utilise fminsearch. Pour le cas de problémes contraints on utilise 1inprog et
quadrprog pour les cas linéaires et quadratiques respectivement. La fonction fmincon
permet trouver le minimum d’un probléme avec contraintes non linéaire et multi-variable

Matlab posséde un toolkit d’optimisation (Optimization Toolbox) pour les problemes plus
compliqués, qui automatise via GUI (interface graphique) le procesus de choix de
l'algorithme. Matlab utilise plusieurs algorithmes selon le type de probléme a résoudre
‘interior reflective Newton method’, ‘trust-region-dogleg’, ‘trust-region-reflective’, ‘levenberg-
marquardt’, ‘simplex’, ‘BFGS’, ‘MinMax’... Mais, qu’est-ce qu’un algorithme d’optimisation ?
Comment ca marche? Quels sont les paramétres a contréler ? Quelles sont les limitations ?

2. Definitions

Un algorithme d’optimisation est une procédure mathématique qui permet d’obtenir les
minimums (ou maximums)' d’une fonction réele f (que I'on appelle fonction objective)

min ye R" f(x)

En général la solution est un sous-espace Ac N" qui est soumis & un ensemble de
contraintes (conditions sur les variables), qui sont exprimées comme un systéme d’équations
et inéquations. Les éléments de A sont appelés solutions admissibles et souvent ont des

bornes supérieures et inferieures x, <x<x, € A
Les probléemes d’optimisation peuvent étre classés selon le type de restriction :

a) Minimisation sans restrictions

b) Minimisation avec restrictions d’égalité g.(x) =0i=1, ..., m,

'Maximiser une fonction f(x) = Minimiser — f(x)

1/14

Mf Cours MATLAB UNIL-FGSE — Hiver 2009-2010

UNIL | Université de Lausanne

¢) Minimisation avec restrictions d’égalité et d’inégalités g,(x) < 0i=m.+1... m

Les algorithmes d’optimisation sont des processus itératifs que générent une séquence de
valeurs x,,1 a partir d’'un point de départ x,. Un algorithme est convergent quand pour
n’importe quel point de départ, la séquence arrive a la solution (maximum ou minimum).

Les algorithmes d’optimisation ont besoin en général des dérivées de premier et deuxieme
dégré de la fonction Pour le calcul du gradient d’'une fonction, on peut utiliser la dérivation
directe, approximation par différences finies...Par exemple, la méthode de descente de
gradient a besoin juste des 1°*° dérivées; la méthode de Newton nécessite les 2°™*° dérivées
de la fonction objective ; sans dérivée, on peut trouver les méthodes d’algorithme du
simplexe, ‘simulated annealing’, ‘neural networks’, algorithmes génétiques...

2.1. Typologie de problémes

Les algorithmes d’optimisation s’utilisent en de nombreux problémes, pour trouver les zéros
de fonctions, pour minimiser la distance entre des points de mesure et une courbe (moindres
carrés), intersections de fonctions et pour résoudre des systémes d’équations a une ou
plusieurs variables. En général, il n’'y a pas de méthode idéale et ca dépend de la forme de
la fonction a étudier et du type de probléme a analyser.

La plupart des problémes en physique et en ingénierie peuvent étre représentés sous la
forme de systémes linéaires d’équations :

A(X)u=b(x)

Ou u est le vecteur de variables d’état (déplacements en problémes mécaniques,
température en problémes thermiques, concentration en problémes de contaminants,
hauteur d’eau en problémes de fluides...) ; A est la matrice de rigidité (‘stiffness matrix’) qui
représente les propriétés propres du matériel et peut aussi étre une matrice de conductivité,
perméabilité,... b est un vecteur représentant les actions ou forces externes sur un systéme.

En général A et b (et pourtant aussi u) sont dépendants d’une série de variables de design
ou parametres du systeme que l'on veut définir. On peut trouver différents types de
problémes :

a) Control optimal : Déterminer les actions b nécessaires sur un systeme pour que u
s’approche dans un état défini comme optimal. Par exemple, quelle pression ou
quelle température dois-je appliquer pour qu’un systéme soit en équilibre.

b) Design optimal : Le but est de trouver les variables de design x (par exemple design
d’une structure, d’'un produit) que suivent une série de criteres d’optimalité (couts,
volume ou poids minimal) et qui satisfait une série de conditions (par exemple valeurs
maximales préétablies)

c) Estimation de parameétres ou probléme inverse (problémes du type moindres
carrés) : Trouver les paramétres du modéle afin de correspondre une fonction aux
observations disponibles (valeurs calculées qui s’approchent des valeurs mesurées
dans un cas réel).

2/14

Mf Cours MATLAB UNIL-FGSE — Hiver 2009-2010

UNIL | Université de Lausanne

Tous ces types de problémes impliquent la minimisation d’une fonction dépendante de x par
u et ont des restrictions (conditions) sur x et u. La résolution du systéme d’équations peut se
compliquer dans le cas de problémes non linéaires ou temporels.

2.1. Parametres d’un algorithme d’optimisation

2.1.1. Approximation Initiale
Pour initialiser I'algorithme, il est nécessaire d’avoir une approximation initiale a la solution X
(Point de départ). Le choix d’'une bonne approximation initiale conditionne la convergence ou
pas a la solution.

2.1.2. Nombre d’ltérations
Un algorithme d’optimisation utilise un processus reécursif, calcule une nouvelle
approximation (itération) a la solution réelle jusqu'a ce que les criteres de convergence
soient atteints. En programmation, c’est une boucle de répétition ou la nouvelle
approximation est construite a partir les approximations antérieures.

2.1.3. Vitesse de convergence

Quand on parle de convergence proche d’une solution, on parle de la vitesse a laquelle les
termes de l'itération approchent sa limite.

X1 _é‘ _
q
x, =&

lim M ,ou u>0 etqestlordre de convergence

En général, les ordres de convergences son linéaires (p=1), quadratiques (p=2), cubiques
(p=3), quartiques (p=4)... Une méthode d’optimisation avec un ordre de convergence
supérieur arrive a la solution avec peu d’itérations. Le choix d’'une méthode avec une haute
convergence est important pour les problémes d’'une certaine taille ou avec de multiples
parametres. Par exemple, pour une convergence quadratique, on peut dire que le nombre de
chiffres corrects est double (au minimum) a chaque pas de calcul. Ou dit sous une autre
forme, I'erreur diminue quadratiquement a chaque itération.

Si un algorithme ne converge pas, ¢a ne veut pas dire qu’il n’existe pas de solution. I
n’existe aucun algorithme universel dont la convergence soit garantie, en général il dépend
du choix de linitialisation x, et de les propriétés de la fonction (continuité, dérivabilité)

2.1.4. Critere d’arrét

Criteres pour arréter le processus de calcul. Il existe plusieurs critéres d’arrét. Les plus
utilisées :

a) Nombre maximal d'itérations Npax

b) Hf(xn)H <& Valeur de la fonction

3/14

M/ Cours MATLAB UNIL-FGSE — Hiver 2009-2010

UNIL | Université de Lausanne

c) Hxn+1 - an <&, Différence entre deux approximations successives

Ou &,y €, € R sont les tolérances et sont choisies en fonction du type de probléme. En
général, ce sont des valeurs négligeables (&, =10*-10F).

3. Rappel

3.1. Points critiques : maximums, minimums
Dans un ensemble ordonné, le plus grand élément (ou le plus petit) d’'une partie de cet
ensemble est un extremum maximum (ou minimum) s'il est supérieur (ou inferieur) a tous les
autres éléments de la partie. Ce groupe d’éléments sont connus sous le nom de points
critiques ou points extremum définis sur un domaine d’étude D (espace topologique).

f(a) est un maximum global siVxe D f(x) < f(a)
f(a) est un minimum global siVxe D f(x) 2= f(a)

f(a) est un maximum local (ou relatif) s’il existe un voisinage V de a tel que
VxeV,f(x)< f(a)

f(a) est un minimum local (ou relatif) s’il existe un voisinage V de a tel que

VxeV,f(x)= f(a)

6 - ! -
\\
4l global maximum _
local maximum
2 — p—
0
_2 L .. —
local minimum
-4 \\\
global minimum
-6 C | ! | | | —
0 0.2 0.4 0.6 0.8 1 12

Figure 1- Points extrémes (maximums et minimums locaux et globaux) sur une fonction

Pour trouver les maximums et les minimums d’une fonction, on utilise le calcul différentiel, et
la ou la dérivée de la fonction s’annule, on trouve soit un maximum ou un minimum. Un
minimum local est facile a trouver, mais il est difficile de trouver un minimum absolu.

4/14

M/ Cours MATLAB UNIL-FGSE — Hiver 2009-2010

UNIL | Université de Lausanne

En général, une fonction a plusieurs minimums. Pour arriver a la solution désirée (minimum
global), il est trés important d’analyser la fonction en détail avant de choisir un point de
départ x, pour I'algorithme.

Pour trouver le type de point critique, on utilise les deuxiémes dérivées évaluées dans le
point d’étude. Pour le cas d’'une fonction a une variable f(x), si f’(a)>0, on trouve un minimum
local en ce point, si f’(a)<0 on trouve un maximum local et si f’(a)>0, quand f’(a)=0 on n’a
pas d’information, mais ¢a peut étre un point de selle.

Par exemple, pour les fonctions continues et dérivables deux fois, les points stationnaires
identifiés (la ou la dérivée est 0) sont classés selon la matrice Hessiene (minimum local si
positif, maximum local si négatif et indéfini si s’agit d’'un point de selle). Pour le cas d’'une
fonction a deux variables, on trouve fu(x,y), fyy(x,y) et f,(x,y) evalué au point (a,b). Le

= Fa () * £, (6 0) = £y (2,)

déterminant de la matrice Hessiene? ‘H

f(a,b)*f, (a,b)-F,,(a,b) fx(a,b) Classification
>0 >0 Minimum Local
>0 <0 Maximum Local
<0 - Point de Selle

Pour trouver les points extrémes (ou points critiques) d’'une fonction de deux variables, par
exemple : f (x, y) = x*+y*+3x%-3y*-8, on doit trouver les points qui annulent les dérivés
partielles de la fonction 9, f(x,y)=0 et 9 f(x,y)=0.

syms X y ;
f=x"3+y"3+3*x"2-3*y"2-8;
fx=diff (£, x)

fy=diff (f,y)
S=solve (fx, fy)

% La matrice Hessienne H(f) d'une fonction f est une matrice carrée de ses dérivées partielles

secondes.
*f *f)
ox? 0x,0x, ox,0x,,
52 327 2°f :
H;(f)= L 0x,0x, ox3

it .

VA VA)
0x,,0x, 0x,,0x, ox2

5/14

Mf Cours MATLAB UNIL-FGSE — Hiver 2009-2010

UNIL | Université de Lausanne

La commande solve trouve les solutions qui sont égales a zéro simultanément pour les deux
fonctions dérivées. S est une structure variable. Pour voir les valeurs de S :

[S.x,5.y]

Le résultat montre les points critiques pour la fonction analysée {(0,0),(0,2),(-2,0).(-2,2)}.

Pour visualiser les résultats on peut utiliser la fonction :

[x,y]= meshgrid (-3:0.1:3);
z= X."3+y."3+3*x.%2-3*y."2-8;
mesh(x,y,z

xlabel ('x'
ylabel ('y'

)
)
)
zlabel ('z=f(x,y)")

Ou aussi la fonction

surfc(x,vy,z)

Parfois c’est aussi utile de visualiser les lignes de niveaux dans un graphique séparé

contour (x,vy, z)

Ou dans le méme graphique, on utilise pour dessiner les contours en dessous de la maille
ou pour dessiner les courbes de niveau en dessus de la surface.

meshc (x,vy, z)
surfc(x,y,z)

On peut changer le parameétre par défaut des courbes de niveau :

contour (x,vy,z,20)

On observe mieux les deux points critiques (-2,0 et 2,0)

Matlab permet de dessiner les courbes a différentes hauteurs avec :

[c,h] = contour(x,y,z,-14 :-4) ;
clabel (c,h)

A partir de ces contours, on observe :

e Peu importe la direction d'approche du point (-2,0) les courbes de niveau
augmentent. Par conséquent, on trouve un maximum local a (-2,0).

e Peu importe la direction d’approche du point (0,2) les courbes de niveau diminuent.
Par conséquent, on trouve un minimum local au (0,2).

6/14

Mf Cours MATLAB UNIL-FGSE — Hiver 2009-2010

UNIL | Université de Lausanne

e Pour les points (0,0) et (-2,2), on observe une croissance et décroissance des
courbes de niveau selon des directions opposées. On peut dire qu’y a un point de
selle a (0,0) et a (-2,2).

3.2. Optimisation avec Matlab
3.2.1. Minimisation unidimensionnel : fminbnd

Les méthodes d’optimisation pour les fonctions a une variable s’appellent recherche par
ligne (‘line search’). Les algorithmes implémentés dans Matlab pour la fonction fminbnd
sont le ‘Golden section search’ et I'interpolation parabolique.

On crée une fonction externe dans un fichier .m. Travailler avec des fichiers externes permet
de simplifier et réduire les erreurs.

function y = f (x)
y = 1./((x-0.3).72 + 0.01)+ 1./((x — 0.9).72 + 0.04) -6;

Dans linvite de commande Matlab on peut observer la fonction

clear all
fplot ("', [-5 5])
grid on

On fait un zoom pour observer ou se trouve notre minimum

fplot('f', [-5 5 -10 25])
grid on

Notre minimum se trouve entre0.3<x , <1

min = fminbnd('f',0.3,1,o0optimset ('Display', 'iter'));
fplot('f', [0 2])

hold on ;

plot (min, £f (min), "'r*') ;

La fonction fminbnd permet de trouver le minimum de la fonction dans un intervalle donné.
Dans les options, on peut voir les approximation successives et I'algorithme que Matlab
utilise avec optimset ('Display’', 'iter"')

fminbnd trouve minimums locaux. C’est important de choisir une bonne approximation
initiale. fminbbnd a une convergence lente quand la solution est proche de lintervalle.
Essayez une restriction de la solution entre [0,0.6370]. Combien d’itérations sont
nécessaires?

7/14

M/ Cours MATLAB UNIL-FGSE — Hiver 2009-2010)
MATLAB

UNIL | Université de Lausanne

La Golden Section Search est juste utilisable quand la fonction est continue et unimodale
(f(x) a juste un minimum dans un intervalle [a,b]).

On veut réduire l'intervalle qui contient la valeur minimum de la fonction. Le facteur optimal

de réduction pour l'intervalle c de recherche est le nombre d’or ¢

e b a+b a 1+ 5
2

\) — =
b b¢

=0.6180

Figure 2 — Nombre d’Or
Pour x4 et x, dans [a ; b], on peut distinguer deux cas :

a) Si f(x;)<f(x,), alors [a,b] :=[a,x] Xx; = X et on calcule le nouvel x; selon
x,=ca+(1-c)b

b) Si f(x,)>f(x,), alors [a,b] :=[x1,b] x2 = x; et on calcule le nouvel x; selon
x,=(-c)a+cb

pour minimiser |b— a|<€&, (ou &, est dans Matlab la TolX = e-4). La vitesse de convergence

est en ce cas linéaire.

L’interpolation Parabolique : Pour obtenir une convergence superieure, on peut utiliser
I'Interpolation parabolique dans l'intervalle [a,b]. On peut approximer une parabole qui passe
par les trois points (a,b et c) et calculer 'approximation suivante comme le minimum de cette

parabole (calculable analytiquement).

------- parabola through (D Q) B)
SePIRIR PRI IRLS parabcla through @ @ @

Minimun parabola

’,
/
s
I
I
!
B
Sk

e

Figure 3 — Représentation d’algorithmes d’Interpolation parabolique pour I'optimisation en
fonctions d’une variable.

8/14

M/ Cours MATLAB UNIL-FGSE — Hiver 2009-2010 .
MATLAB

UNIL | Université de Lausanne

Cet algorithme ne marche pas si on a une fonction linéaire. Pour certaines fonctions, I'erreur
commise avec cette méthode est fixe parce que proche de la solution, la fonction devient
localement linéaire, il suffit de considérer que la solution est le dernier point.

3.2.2. Minimisation multidimensionnelle : fminsearch, fminunc

Dans Matlab, pour minimiser une fonction a plusieurs variables, on utilise I'algorithme du
Simplex qui est implémenté dans fminsearch.

Matlab utilise la méthode Simplex parce qu’on n’a besoin ni de gradient ni de calculer la
matrice Hessienne a chaque itération. La méthode consiste a entourer le minimum dans un
simplex. Un simplex est un ensemble de N+1 points qui entoure le minimum (en 1D est une
ligne, en 2D c’est un triangle, et en 3D c’est une pyramide). Chaque simplexe est caractérisé
pour n+1 vecteurs aux vertex du simplex. A chaque pas de calcul, un nouveau point est pris
a l'intérieur ou a cote du simplex. La valeur de la fonction en ce point est comparée avec les
valeurs des fonctions évaluées aux vertex et normalement un des vertex est remplacé par le
nouveau point générant un nouveau simplex (par réflection, expansion ou contraction). Cette
procédure est répété jusqu’a le diamétre du simplex soit inférieur a une tolérance spécifiée

—(*—) fix.y)
f(x,y)=—Ae

Setup Simplex
Reflect
Reflect
Reflect

OO0~ O\ b R
.g

10 Contract
Terminete Simplex

Figure 4- Représentation de I’ Algorithme du Simplexe pour I’optimisation en fonctions de deux
variables.

Exemple : On définit dans le fichier f.m la fonction « banana » que doit étre sur le « Current
Directory » f(x)=100(x, —x;)> +(1—x,)":

function y = f
y=100* (x(2) —x(

9/14

Mf Cours MATLAB UNIL-FGSE — Hiver 2009-2010

UNIL | Université de Lausanne

Dans l'invite de commandes de Matlab, on peut minimiser la fonction

>> x0 = [5 57];
>> [x, fval, exitflag, output] = fminsearch (f,x0)

Une autre fonction avec une syntaxe similaire est le fminunc qui solutionne des problemes
d’optimisation non linéaires et multi-variables et sans restrictions. Cette fonction permet de
changer entre algorithmes différents par exemple de méthode de Interior Reflective Newton
(si on connait les dérivées) ou le Méthode BFGS en cas contraire. L'algorithme BFGS
approxime la matrice Hessienne (methode quasi-Newton).

Exemple dans le fichier .m on defines la function suivante f(x)=xx, +x, x; +x; + x;

)

function y = f(x
)+x (1) *x(2)"2+x (1) "2+x(2)"2;

y= X (1)"2*x(2

a) Dans l'invite de commandes de Matlab, pour le cas BFGS, qui approxime la matrice
Hessiane a chaque pas de calcul :

>> x0 = [1 -11;
>> [x,fval,exitflag,output,gradient, hessian] =
fminsearch (@myfun, x0)

b) Sion connait le gradient on peut le définir explicitement

function [y,dy] = f(x)

y = x(1)7"2*x(2)+x(1)*x(2)"2+x (1) "2+x(2)"2;
dy (1) = 2*x(1)*x(2)+x(2)"2+2*x(1);

dy(2) = x(1)"2+42*x (1) *x(2)+2*x(2);

Dans le command de Matlab:

>> options = optimset ('GradObj', 'on');
>> x0 = [1 17;
>> [x,fval,exitflag,output] = fminunc(@f, x0,options)

Pour de grands problemes, Matlab recommande d’utiliser la méthode ‘interior reflective
Newton’ avec des gradients conjugués preconditionnés parce que c’est un algorithme qui
converge plus rapidement que I'antérieur. Pour des problémes moyens, on utilise souvent le
BFGS quasi-Newton. Matlab permet aussi d’utiliser la méthode de la descente maximale
utilisant comme calcul de la matrice Hessienne : HessUpdate ‘steepdesc’.

Les méthodes implémentées en Matlab sont complexes afin de pouvoir solutionner une
grande variété de problemes avec la performance maximale (moins itérations). Les
algorithmes optimisent aussi I'espace de mémoire sur l'ordinateur (les problemes réels
impliqguent en général matrices vides que l'on doit stocker en forme vectorielle). Les
chapitres suivants expliquent de maniére simple les méthodes de Newton et de Descente
Maxime pour les problémes d’optimisation.

10/ 14

Wil

UNIL | Université de Lausanne

Cours MATLAB UNIL-FGSE — Hiver 2009-2010

4. Methode de Newton

MATLAB

Le méthode de Newton (ou méthode de Newton-Raphson) est la méthode la plus conue
pour trouver les racines (solutions) d’'une fonction de variable réelle. On choisit une valeur
inital x0 proche de le solution. La fonction calcule la tangente au point (derivée de la
function). La prochaine valeur a utiliser est I'intersection de la tangente et I'axe x. C’est un
processus iteratif (iiterations succesives) qui va s’arréter quand les criteres de convergence

soint atteints.

Le méthode de Newton peut étre utilisée dans le cas d’une fonction continue et différentiable
dans l'interval de recherche [a,b].

f:[ab]l— R

La condition de différentiabilité assure la présence d'une droite tangente a notre fonction. La
condition de continuité assure qu'’il N’y a pas de sauts dans la fonction.

A
y
0 o8 T
L0 T
f(xn+2). x >
/;(n+1 Ax).(n (Xo)

* /.
/ Xn+2

Figure 5 — Methode de Newton pour trouver zeros de fonctions

La tangente de la cou

F'(Xn) Ax

rbe (derivée de la fonction) s’obtient :

Ay S)

xn - 'xn+1

et si on réorganize les termes, on peut écrire la méthode de Newton comme:

f(x,)
f(x,)

Xn+1 = Xn - ou

n=0

11/14

Mf Cours MATLAB UNIL-FGSE — Hiver 2009-2010

UNIL | Université de Lausanne

L'intervalle de recherché [a,b], peut étre choisi en utilisant le théoréme des valeurs
intermédiaires qui énonce que pour une fonction f continue dans un intervalle [a,b] si f(a)>0
et f(b)<0 (ou l'inverse), il existe au moins une valeur €€ [a,b] qui confirme f(&)=0

1.- Choisir une approximation initiale xo.
2.- Calculer la valeur de la fonction en ce point f (Xo)

3.- Calculer la dérivée de la fonction f’ et évaluer la valeur au point f'(xo)

f(xp)
J'(x)

4.- L'approximation x; s’obtient avec x; = X -

5.- Répéter la procédure avec Xy, Xo, X3... jusqu’a trouver la racine (solution) x*

En général, cette procédure a une convergence trés rapide (convergence d'ordre
quadratique), surtout quand la valeur initiale est proche de la solution. Malgreés ca, elle
présente quelques difficultés :

a) Pour les approximations initiales loin de la solution, la méthode peut présenter une
non convergence.

b) La dérivée de la fonction doit étre calculée directement. Parfois, cette dérivée n’est
pas exacte et on utilise alternativement des méthodes approximatives du type secant
(on prend la secant® au lieu de la tangent pour chaque itération) avec un ordre de
convergence linéaire.

c) Si la dérivée de la fonction n’est pas continue ou nulle, la méthode n’est pas
utilisable. Pour les dérivées proches de zéro (tangent horizontal), la méthode peut
bypasser la solution.

Pour la méthode de Newton, dans le cas de systémes d’équations a plusieurs variables, on
utilise la matrice jacobienne F’(x,). Dans ce cas, au lieu de diviser par la pente évaluée au
point, on multiplie par I'inverse de la matrice jacobienne : F’(X,) (Xh+1-Xn) = -F(Xn)

Le méthode de Newton peut étre aussi utilisée en optimisation de fagon directe pour trouver
les minimums et maximums locaux. Quand on atteint un minimum ou un maximum, la
solution x* est un point stationnaire de la fonction f(x) (x* est une solution de la dérivée f'(x))

L’expansion de Taylor est une approximation d’'une fonction construite avec des termes
infinis, avec les valeurs de la fonction et les dérivées en un point a, avec un voisinage ou la
fonction est définie. C’est une approximation d’'une fonction, en un point, trés utilisée en
analyse numérique parce qu’elle simplifie la description de fonctions complexes.

® La dérivée est approximée en prenant la pente entre deux points de la fonction. Le méthode de la
sécant a un ordre de convergence inférieur a 2.

12/14

M/ Cours MATLAB UNIL-FGSE — Hiver 2009-2010

UNIL | Université de Lausanne

Si on écrit 'expansion de Taylor pour la fonction f(x) :
f(x+Ax) = f(x)+ f(x)* Ax+ ; f'(x) -AX

On trouve le valeur extréme pour :

o (x+Ax)

e 0 — P(X)-Ax+f"(x) Ax=0

Si on a une fonction dérivable deux fois et I'approximation initiale est suffisamment proche
de la solution, on peut définir I'algorithme (analogue au cas antérieur mais en substituant la
valeur de la fonction par sa dérivée, et sa dérivée par sa 2°™° dérivée):

f@)
£,

,oun=0

ne1 = Xp

Dans le cas de solution de systémes d’équations linéaires, (généralisation a plusieurs
dimensions), on remplace la dérivée par le gradient f(x), et la 2°™° dérivée avec l'inverse de
la matrice Hessienne*

5. Méthode de la Descente de Gradient ou Descente Maxime

Cette méthode consiste a progresser en direction opposé du gradient (ou de son
approximation) de la fonction au point évalué. La méthode de la descente de gradient est
également connue sous les noms de descente de plus forte pente ou descente maximale.
On peut progresser a pas constants ou en évaluant le meilleur pas et la direction d’avance. A
chaque itération, le point d’arrét devient le point de départ ou la fonction est réévaluée et une
nouvelle direction est suivie. Le processus est répété jusqu'a ce que le minimum soit atteint.
Schématiquement on peut résumer le processus ainsi :

1. Définir une approximation initiale (point de départ) Xo.

2. Déterminer la direction de descente maximale en X, en calculant le gradient de la fct f

3. Calculer la nouvelle valeur x4 de sorte que g (x1) < g (Xo)

Xni1 = Xn- & f'(x,) ,0UNn20 et aestle pas d’avance, qui peut étre fixé ou optimisé.

4. Répéter les étapes 2-4 avec x, remplacé par x;

* En général les dérivées secondes sont complexes ou impossibles a calculer pour certaines fonctions
et on utilise des approximations aux dérivées ou autres algorithmes.

13/14

M/ Cours MATLAB UNIL-FGSE — Hiver 2009-2010)
MATLAB

UNIL | Université de Lausanne

La méthode de la descente maximale est un algorithme moins rapide que I'antérieur, qui
convergera généralement linéairement a la solution. L'avantage est que cette méthode
convergera méme avec une conjecture initiale éloigné de la solution, mais il peut présenter
des problémes pour approcher des fonctions qui ont des formes avec pentes peu marquées.

Figure 6 Comparaison entre la méthode de Newton et la méthode de la descente maxime.
Extrait de [2]

6. Conclusions
Pour conclure,
- Clest trés important de visualiser la fonction que I'on veut optimiser avant de choisir
'un ou l'autre des algorithmes et pour déterminer la valeur initiale a introduire pour

notre analyse.

- Le méme algorithme peut s'utiliser pour résoudre différents types de problémes,
optimisation, calcul de racines, solutions d’un systeme d’équations...

- La non convergence d’'un algorithme n’implique pas la non existence de solution, il
faut essayer avec un autre point de départ x, ou utilisant un autre type d’algorithme.

7. Références

[1] MATLAB Help

[2] Wikipedia

[38] Amos, Gilat, 2007. Matlab, an introduction with application, John Willey and Sohn, Inc.

[4] Faires and Burden, Numerical Analysis, 2004 8" edition.

14 /14

