
 

 
Cours MATLAB UNIL-FGSE – Hiver 2009-2010 

X. Algorithmes d’optimisation 
Auteur : Maria Güell i Pons 

 

1 / 14 

X. Algorithmes d’optimisation 

1. Introduction 

Matlab a une série d’algorithmes déjà implémentés pour trouver les racines (root, fzero),  

les moindres carrés (lsqcurvefit, lsqlin…), la solution de systèmes d’équations 

(fsolve,fzero) et la minimisation, en une et plusieurs dimensions. Pour minimiser une 

fonction à une variable dans un domaine on utilise fminbnd et si la fonction a plusieurs 

variables, on utilise fminsearch. Pour le cas de problèmes contraints on utilise linprog et 

quadrprog pour les cas linéaires et quadratiques respectivement. La fonction fmincon 
permet trouver le minimum d’un problème avec contraintes non linéaire et multi-variable 

Matlab possède un toolkit d’optimisation (Optimization Toolbox) pour les problèmes plus 
compliqués, qui automatise via GUI (interface graphique) le procesus de choix de 
l’algorithme. Matlab utilise plusieurs algorithmes selon le type de problème a résoudre 
‘interior reflective Newton method’, ‘trust-region-dogleg’, ‘trust-region-reflective’, ‘levenberg-
marquardt’, ‘simplex’, ‘BFGS’, ‘MinMax’… Mais, qu’est-ce qu’un algorithme d’optimisation ? 
Comment ça marche? Quels sont les paramètres à contrôler ? Quelles sont les limitations ? 

2. Definitions 

Un algorithme d’optimisation est une procédure mathématique qui permet d’obtenir les 
minimums (ou maximums)1 d’une fonction réele f (que l’on appelle fonction objective)  

min x
nℜ∈ )(xf   

En général la solution est un sous-espace A∈ nℜ  qui est soumis à un ensemble de 
contraintes (conditions sur les variables), qui sont exprimées comme un système d’équations 
et inéquations. Les éléments de A sont appelés solutions admissibles et souvent ont des 

bornes supérieures et inferieures ul xxx ≤≤  ∈A 

Les problèmes d’optimisation peuvent être classés selon le type de restriction : 

a) Minimisation sans restrictions  

b) Minimisation avec restrictions d’égalité )(xg i  = 0 i = 1, …, me   

                                                

1
Maximiser une fonction f(x) = Minimiser – f(x) 



 

 
Cours MATLAB UNIL-FGSE – Hiver 2009-2010 

X. Algorithmes d’optimisation 
Auteur : Maria Güell i Pons 

 

2 / 14 

c) Minimisation avec restrictions d’égalité et d’inégalités  )(xg i  ≤  0 i = me +1… m  

Les algorithmes d’optimisation sont des processus itératifs que génèrent une séquence de 
valeurs xn+1 à partir d’un point de départ x0. Un algorithme est convergent quand pour 
n’importe quel point de départ, la séquence arrive à la solution (maximum ou minimum). 

Les algorithmes d’optimisation ont besoin en général des dérivées de premier et deuxième 
dégré de la fonction  Pour le calcul du gradient d’une fonction, on peut utiliser la dérivation 
directe, approximation par différences finies…Par exemple, la méthode de descente de 
gradient a besoin juste des 1eres dérivées; la méthode de Newton nécessite les 2èmes dérivées 
de la fonction objective ; sans dérivée, on peut trouver les méthodes d’algorithme du 
simplexe, ‘simulated annealing’, ‘neural networks’, algorithmes génétiques… 

2.1. Typologie de problèmes 

Les algorithmes d’optimisation s’utilisent en de nombreux problèmes, pour trouver les zéros 
de fonctions, pour minimiser la distance entre des points de mesure et une courbe (moindres 
carrés), intersections de fonctions et pour résoudre des systèmes d’équations à une ou 
plusieurs variables. En général, il n’y a pas de méthode idéale et ça dépend de la forme de 
la fonction à étudier et du type de problème à analyser.  

La plupart des problèmes en physique et en ingénierie peuvent être représentés sous la 
forme de systèmes linéaires d’équations : 

)()( xbuxA =  

Ou u  est le vecteur de variables d’état (déplacements en problèmes mécaniques, 

température en problèmes thermiques, concentration en problèmes de contaminants, 
hauteur d’eau en problèmes de fluides…) ; A est la matrice de rigidité (‘stiffness matrix’) qui 
représente les propriétés propres du matériel et peut aussi être une matrice de conductivité, 
perméabilité,… b est un vecteur représentant les actions ou forces externes sur un système. 

En général A et b (et pourtant aussi u) sont dépendants d’une série de variables de design 
ou paramètres du système que l’on veut définir. On peut trouver différents types de 
problèmes : 

a) Control optimal : Déterminer les actions b nécessaires sur un système pour que u 
s’approche dans un état défini comme optimal. Par exemple, quelle pression ou 
quelle température dois-je appliquer pour qu’un système soit en équilibre. 

b) Design optimal : Le but est de trouver les variables de design x (par exemple design 
d’une structure, d’un produit) que suivent une série de critères d’optimalité (couts, 
volume ou poids minimal) et qui satisfait une série de conditions (par exemple valeurs 
maximales préétablies) 

c) Estimation de paramètres ou problème inverse (problèmes du type moindres 
carrés) : Trouver les paramètres du modèle afin de correspondre une fonction aux 
observations disponibles (valeurs calculées qui s’approchent des valeurs mesurées 
dans un cas réel). 



 

 
Cours MATLAB UNIL-FGSE – Hiver 2009-2010 

X. Algorithmes d’optimisation 
Auteur : Maria Güell i Pons 

 

3 / 14 

Tous ces types de problèmes impliquent la minimisation d’une fonction dépendante de x par 
u et ont des restrictions (conditions) sur x et u. La résolution du système d’équations peut se 
compliquer dans le cas de problèmes non linéaires ou temporels. 

2.1. Paramètres d’un algorithme d’optimisation 

2.1.1. Approximation Initiale 

Pour initialiser l’algorithme, il est nécessaire d’avoir une approximation initiale a la solution x0. 

(Point de départ). Le choix d’une bonne approximation initiale conditionne la convergence ou 
pas à la solution. 

2.1.2. Nombre d’Itérations 

Un algorithme d’optimisation utilise un processus récursif, calcule une nouvelle 
approximation (itération) à la solution réelle jusqu’à ce que les critères de convergence 
soient atteints. En programmation, c’est une boucle de répétition où la nouvelle 
approximation est construite à partir les approximations antérieures. 

2.1.3. Vitesse de convergence 

Quand on parle de convergence proche d’une solution, on parle de la vitesse à laquelle les 
termes de l’itération approchent sa limite.  

µ
ξ

ξ
=

−

−
+

∞→ q

n

n

n

x

x
1

lim  , ou µ >0 et q est l’ordre de convergence 

En général, les ordres de convergences son linéaires (p=1), quadratiques (p=2), cubiques 
(p=3), quartiques (p=4)… Une méthode d’optimisation avec un ordre de convergence 
supérieur arrive à la solution avec peu d’itérations. Le choix d’une méthode avec une haute 
convergence est important pour les problèmes d’une certaine taille ou avec de multiples 
paramètres. Par exemple, pour une convergence quadratique, on peut dire que le nombre de 
chiffres corrects est double (au minimum) à chaque pas de calcul. Ou dit sous une autre 
forme, l’erreur diminue quadratiquement à chaque itération. 

Si un algorithme ne converge pas, ça ne veut pas dire qu’il n’existe pas de solution. Il 
n’existe aucun algorithme universel dont la convergence soit garantie, en général il dépend 
du choix de l’initialisation x0 et de les propriétés de la fonction (continuité, dérivabilité) 

2.1.4. Critère d’arrêt 

Critères pour arrêter le processus de calcul. Il existe plusieurs critères d’arrêt. Les plus 
utilisées :  

a) Nombre maximal d’itérations Nmax 

b) )( nxf < 1ε  Valeur de la fonction  



 

 
Cours MATLAB UNIL-FGSE – Hiver 2009-2010 

X. Algorithmes d’optimisation 
Auteur : Maria Güell i Pons 

 

4 / 14 

c) nn xx −+1 < 2ε  Différence entre deux approximations successives 

Où 1ε , 2ε ℜ∈2ε   sont les tolérances et sont choisies en fonction du type de problème. En 

général, ce sont des valeurs négligeables ( ≈iε 10-4-10-6).  

3. Rappel 

3.1. Points critiques : maximums, minimums 

Dans un ensemble ordonné, le plus grand élément (ou le plus petit) d’une partie de cet 
ensemble est un extremum maximum (ou minimum) s’il est supérieur (ou inferieur) à tous les 
autres éléments de la partie. Ce groupe d’éléments sont connus sous le nom de points 
critiques ou points extremum définis sur un domaine d’étude D (espace topologique). 

f(a) est un maximum global si Dx ∈∀  )()( afxf ≤  

f(a) est un minimum global si Dx ∈∀  )()( afxf ≥  

f(a) est un maximum local (ou relatif) s’il existe un voisinage V de a tel que 

Vx ∈∀ , )()( afxf ≤  

f(a) est un minimum local (ou relatif) s’il existe un voisinage V de a tel que 

Vx ∈∀ , )()( afxf ≥  

 

Figure 1- Points extrêmes (maximums et minimums locaux et globaux) sur une fonction 

Pour trouver les maximums et les minimums d’une fonction, on utilise le calcul différentiel, et 
là ou la dérivée de la fonction s’annule, on trouve soit un maximum ou un minimum. Un 
minimum local est facile à trouver, mais il est difficile de trouver un minimum absolu. 



 

 
Cours MATLAB UNIL-FGSE – Hiver 2009-2010 

X. Algorithmes d’optimisation 
Auteur : Maria Güell i Pons 

 

5 / 14 

En général, une fonction a plusieurs minimums. Pour arriver à la solution désirée (minimum 
global), il est très important d’analyser la fonction en détail avant de choisir un point de 
départ x0 pour l’algorithme.  

Pour trouver le type de point critique, on utilise les deuxièmes dérivées évaluées dans le 
point d’étude. Pour le cas d’une fonction à une variable f(x), si f’’(a)>0, on trouve un minimum 
local en ce point, si f’’(a)<0 on trouve un maximum local et si f’’(a)>0, quand f’’(a)=0 on n’a 
pas d’information, mais ça peut être un point de selle. 

Par exemple, pour les fonctions continues et dérivables deux fois, les points stationnaires 
identifiés (là ou la dérivée est 0) sont classés selon la matrice Hessiene (minimum local si 
positif, maximum local si négatif et indéfini si s’agit d’un point de selle). Pour le cas d’une 
fonction à deux variables, on trouve fxx(x,y), fyy(x,y) et fxy(x,y) evalué au point (a,b). Le 

déterminant de la matrice Hessiene2 ),(),(*),(
2 yxfyxfyxfH xyyyxx −=  

fxx(a,b)*fyy(a,b)-f
2
xy(a,b) fxx(a,b) Classification 

>0 >0 Minimum Local 

>0 <0 Maximum Local 

<0 - Point de Selle 

Pour trouver les points extrêmes (ou points critiques) d’une fonction de deux variables, par 
exemple : f (x, y) = x3+y3+3x2-3y2-8, on doit trouver les points qui annulent les dérivés 

partielles de la fonction 0),( =∂ yxfx  et 0),( =∂ yxfy . 

syms x y ; 

f=x^3+y^3+3*x^2-3*y^2-8; 

fx=diff(f,x)  

fy=diff(f,y) 

S=solve(fx,fy) 

                                                

2
 La matrice Hessienne H(f) d’une fonction f est une matrice carrée de ses dérivées partielles 

secondes. 

 

2

2

2

2

1

2

2
2

2

12

2

1

2

21

2

2
1

2

2

)(

nnn

n

ji
ij

x

f
xx

f
xx

f

x

f
xx

f

xx
f

xx
f

x

f

xx

f
fH

∂
∂

∂∂
∂

∂∂
∂

∂
∂

∂∂
∂

∂∂
∂

∂∂
∂

∂
∂

=
∂∂

∂
=

�

����

��

�

 



 

 
Cours MATLAB UNIL-FGSE – Hiver 2009-2010 

X. Algorithmes d’optimisation 
Auteur : Maria Güell i Pons 

 

6 / 14 

La commande solve trouve les solutions qui sont égales à zéro simultanément pour les deux 
fonctions dérivées. S est une structure variable. Pour voir les valeurs de S : 

[S.x,S.y] 

Le résultat montre les points critiques pour la fonction analysée {(0,0),(0,2),(-2,0).(-2,2)}.  

Pour visualiser les résultats on peut utiliser la fonction :  

[x,y]= meshgrid (-3:0.1:3); 

z= x.^3+y.^3+3*x.^2-3*y.^2-8; 

mesh(x,y,z) 

xlabel('x') 

ylabel('y') 

zlabel ('z=f(x,y)') 

Ou aussi la fonction 

surfc(x,y,z) 

Parfois c’est aussi utile de visualiser les lignes de niveaux dans un graphique séparé 

contour(x,y,z) 

Ou dans le même graphique, on utilise pour dessiner les contours en dessous de la maille 
ou pour dessiner les courbes de niveau en dessus de la surface. 

meshc(x,y,z) 

surfc(x,y,z) 

On peut changer le paramètre par défaut des courbes de niveau : 

contour(x,y,z,20) 

On observe mieux les deux points critiques (-2,0 et 2,0) 

Matlab permet de dessiner les courbes a différentes hauteurs avec : 

[c,h] = contour(x,y,z,-14 :-4) ; 

clabel (c,h) 

A partir de ces contours, on observe : 

• Peu importe la direction d’approche du point (-2,0) les courbes de niveau 
augmentent. Par conséquent, on trouve un maximum local à (-2,0). 

• Peu importe la direction d’approche du point (0,2) les courbes de niveau diminuent. 
Par conséquent, on trouve un minimum local au (0,2). 



 

 
Cours MATLAB UNIL-FGSE – Hiver 2009-2010 

X. Algorithmes d’optimisation 
Auteur : Maria Güell i Pons 

 

7 / 14 

• Pour les points (0,0) et (-2,2), on observe une croissance et décroissance des 
courbes de niveau selon des directions opposées. On peut dire qu’y a un point de 
selle à (0,0) et à (-2,2). 

3.2. Optimisation avec Matlab 

3.2.1. Minimisation unidimensionnel : fminbnd 

Les méthodes d’optimisation pour les fonctions à une variable s’appellent recherche par 
ligne (‘line search’). Les algorithmes implémentés dans Matlab pour la fonction fminbnd 

sont le ‘Golden section search’ et l’interpolation parabolique.  

On crée une fonction externe dans un fichier .m. Travailler avec des fichiers externes permet 
de simplifier et réduire les erreurs. 

function y = f(x) 

y = 1./((x-0.3).^2 + 0.01)+ 1./((x - 0.9).^2 + 0.04) -6;    

Dans linvite de commande Matlab on peut observer la fonction 

clear all 

fplot('f', [-5 5]) 

grid on    

On fait un zoom pour observer où se trouve notre minimum  

fplot('f', [-5 5 -10 25]) 

grid on    

Notre minimum se trouve entre 13.0 min ≤≤ x   

min = fminbnd('f',0.3,1,optimset('Display','iter')); 

fplot('f',[0 2]) 

hold on ; 

plot(min,f(min),'r*') ; 

La fonction fminbnd permet de trouver le minimum de la fonction dans un intervalle donné. 

Dans les options, on peut voir les approximation successives et l’algorithme que Matlab 
utilise avec optimset('Display','iter') 

fminbnd trouve minimums locaux. C’est important de choisir une bonne approximation 

initiale. fminbbnd a une convergence lente quand la solution est proche de l’intervalle. 

Essayez une restriction de la solution entre [0,0.6370]. Combien d’itérations sont 
nécessaires?  

 

 



 

 
Cours MATLAB UNIL-FGSE – Hiver 2009-2010 

X. Algorithmes d’optimisation 
Auteur : Maria Güell i Pons 

 

8 / 14 

La Golden Section Search est juste utilisable quand la fonction est continue et unimodale 
(f(x) a juste un minimum dans un intervalle [a,b]).  

On veut réduire l'intervalle qui contient la valeur minimum de la fonction. Le facteur optimal 
de réduction pour l'intervalle c de recherche est le nombre d’or ϕ  

                                               6180.0
2

51
=

+
===

+
ϕ

b

a

b

ba
 

Figure 2 – Nombre d’Or 

Pour x1 et x2 dans [a ; b], on peut distinguer deux cas : 

a) Si )()( 21 xfxf < , alors [a,b] :=[a,x2] x1 = x2 et on calcule le nouvel x1 selon 

bccax )1(1 −+=  

b) Si )()( 21 xfxf > , alors [a,b] :=[x1,b] x2 = x1 et on calcule le nouvel x1 selon 

cbacx +−= )1(2  

pour minimiser ab − < 2ε  (ou 2ε est dans Matlab la TolX = e-4). La vitesse de convergence 

est en ce cas linéaire. 

L’interpolation Parabolique : Pour obtenir une convergence superieure, on peut utiliser 
l’Interpolation parabolique dans l’intervalle [a,b]. On peut approximer une parabole qui passe 
par les trois points (a,b et c) et calculer l’approximation suivante comme le minimum de cette 
parabole (calculable analytiquement). 

 

Figure 3 – Représentation d’algorithmes d’Interpolation parabolique pour l’optimisation en 
fonctions d’une variable. 



 

 
Cours MATLAB UNIL-FGSE – Hiver 2009-2010 

X. Algorithmes d’optimisation 
Auteur : Maria Güell i Pons 

 

9 / 14 

Cet algorithme ne marche pas si on a une fonction linéaire. Pour certaines fonctions, l’erreur 
commise avec cette méthode est fixe parce que proche de la solution, la fonction devient 
localement linéaire, il suffit de considérer que la solution est le dernier point. 

3.2.2. Minimisation multidimensionnelle : fminsearch, fminunc 

Dans Matlab, pour minimiser une fonction à plusieurs variables, on utilise l’algorithme du 
Simplex qui est implémenté dans fminsearch.  

Matlab utilise la méthode Simplex parce qu’on n’a besoin ni de gradient ni de calculer la 
matrice Hessienne à chaque itération. La méthode consiste à entourer le minimum dans un 
simplex. Un simplex est un ensemble de N+1 points qui entoure le minimum (en 1D est une 
ligne, en 2D c’est un triangle, et en 3D c’est une pyramide). Chaque simplexe est caractérisé 
pour n+1 vecteurs aux vertex du simplex. A chaque pas de calcul, un nouveau point est pris 
à l’intérieur ou à cote du simplex. La valeur de la fonction en ce point est comparée avec les 
valeurs des fonctions évaluées aux vertex et normalement un des vertex est remplacé par le 
nouveau point générant un nouveau simplex (par réflection, expansion ou contraction). Cette 
procédure est répété jusqu’a le diamètre du simplex soit inférieur a une tolérance spécifiée 

 

Figure 4- Représentation de l’Algorithme du Simplexe pour l’optimisation en fonctions de deux 
variables. 

Exemple : On définit dans le fichier f.m la fonction « banana » que doit être sur le « Current 

Directory » 2

1

22

12 )1()(100)( xxxxf −+−= : 

function y = f(x) 

y=100*(x(2)-x(1)^2)^2+(1-x(1))^2; 



 

 
Cours MATLAB UNIL-FGSE – Hiver 2009-2010 

X. Algorithmes d’optimisation 
Auteur : Maria Güell i Pons 

 

10 / 14 

Dans l’invite de commandes de Matlab, on peut minimiser la fonction 

>> x0 = [5 5]; 

>> [x, fval, exitflag, output] = fminsearch(f,x0) 

Une autre fonction avec une syntaxe similaire est le fminunc qui solutionne des problèmes 
d’optimisation non linéaires et multi-variables et sans restrictions. Cette fonction permet de 
changer entre algorithmes différents par exemple de méthode de Interior Reflective Newton 
(si on connait les dérivées) ou le Méthode BFGS en cas contraire. L’algorithme BFGS 
approxime la matrice Hessienne (methode quasi-Newton). 

Exemple dans le fichier f.m on defines la function suivante 2

2

2

1

2

212

2

1)( xxxxxxxf +++= : 

function y = f(x) 

y= x(1)^2*x(2)+x(1)*x(2)^2+x(1)^2+x(2)^2; 

a) Dans l’invite de commandes de Matlab, pour le cas BFGS, qui approxime la matrice 
Hessiane à chaque pas de calcul : 

>> x0 = [1 -1]; 

>> [x,fval,exitflag,output,gradient,hessian] = 

fminsearch(@myfun,x0) 

b)  Si on connait le gradient on peut le définir explicitement 

function [y,dy] = f(x) 

y = x(1)^2*x(2)+x(1)*x(2)^2+x(1)^2+x(2)^2; 

dy(1) = 2*x(1)*x(2)+x(2)^2+2*x(1); 

dy(2) = x(1)^2+2*x(1)*x(2)+2*x(2); 

Dans le command de Matlab: 

>> options = optimset('GradObj','on'); 

>> x0 = [1 1]; 

>> [x,fval,exitflag,output] = fminunc(@f,x0,options) 

Pour de grands problèmes, Matlab recommande d’utiliser la méthode ‘interior reflective 
Newton’ avec des gradients conjugués preconditionnés parce que c’est un algorithme qui 
converge plus rapidement que l’antérieur. Pour des problèmes moyens, on utilise souvent le 
BFGS quasi-Newton. Matlab permet aussi d’utiliser la méthode de la descente maximale 
utilisant comme calcul de la matrice Hessienne : HessUpdate ‘steepdesc’. 

Les méthodes implémentées en Matlab sont complexes afin de pouvoir solutionner une 
grande variété de problèmes avec la performance maximale (moins itérations). Les 
algorithmes optimisent aussi l’espace de mémoire sur l’ordinateur (les problèmes réels 
impliquent en général matrices vides que l’on doit stocker en forme vectorielle). Les 
chapitres suivants expliquent de manière simple les méthodes de Newton et de Descente 
Maxime pour les problèmes d’optimisation. 



 

 
Cours MATLAB UNIL-FGSE – Hiver 2009-2010 

X. Algorithmes d’optimisation 
Auteur : Maria Güell i Pons 

 

11 / 14 

4. Methode de Newton 

Le méthode de Newton (ou méthode de Newton-Raphson) est la méthode la plus conue 
pour trouver les racines (solutions) d’une fonction de variable réelle. On choisit une valeur 
inital x0 proche de le solution. La fonction calcule la tangente au point (derivée de la 
function). La prochaine valeur à utiliser est l’intersection de la tangente et l’axe x. C’est un 
processus iteratif (iiterations succesives) qui va s’arrêter quand les critères de convergence 
soint atteints. 

Le méthode de Newton peut être utilisée dans le cas d’une fonction continue et différentiable 
dans l’interval de recherche [a,b].  

f : [a,b]→ ℜ  

La condition de différentiabilité assure la présence d’une droite tangente a notre fonction. La 
condition de continuité assure qu’il n’y a pas de sauts dans la fonction. 

 

Figure 5 – Methode de Newton pour trouver zeros de fonctions 

La tangente de la courbe (derivée de la fonction) s’obtient : 

f’(xn) = 
x

y

∆

∆
 = 

1

)(

+− nn

n

xx

xf
 

et si on réorganize les termes, on peut écrire la méthode de Newton comme:  

xn+1 = xn - 
)('

)(

n

n

xf

xf
  ou n≥ 0 



 

 
Cours MATLAB UNIL-FGSE – Hiver 2009-2010 

X. Algorithmes d’optimisation 
Auteur : Maria Güell i Pons 

 

12 / 14 

L’intervalle de recherché [a,b], peut être choisi en utilisant le théorème des valeurs 
intermédiaires qui énonce que pour une fonction f continue dans un intervalle [a,b] si f(a)>0 

et f(b)<0 (ou l’inverse), il existe au moins une valeur ],[ ba∈ε  qui confirme f(ε )=0 

1.- Choisir une approximation initiale x0. 

2.- Calculer la valeur de la fonction en ce point f (x0) 

3.- Calculer la dérivée de la fonction f’ et évaluer la valeur au point f’(x0) 

4.- L’approximation x1 s’obtient avec x1 = x0 - 
)('

)(

0

0

xf

xf
 

5.- Répéter la procédure avec x1, x2, x3… jusqu’à trouver la racine (solution) x*  

En général, cette procédure a une convergence très rapide (convergence d’ordre 
quadratique), surtout quand la valeur initiale est proche de la solution. Malgrès ça, elle 
présente quelques difficultés : 

a) Pour les approximations initiales loin de la solution, la méthode peut présenter une 
non convergence. 

b) La dérivée de la fonction doit être calculée directement. Parfois, cette dérivée n’est 
pas exacte et on utilise alternativement des méthodes approximatives du type secant 
(on prend la secant3 au lieu de la tangent pour chaque itération) avec un ordre de 
convergence linéaire. 

c) Si la dérivée de la fonction n’est pas continue ou nulle, la méthode n’est pas 
utilisable. Pour les dérivées proches de zéro (tangent horizontal), la méthode peut 
bypasser la solution. 

Pour la méthode de Newton, dans le cas de systèmes d’équations à plusieurs variables, on 
utilise la matrice jacobienne F’(xn). Dans ce cas, au lieu de diviser par la pente évaluée au 
point, on multiplie par l’inverse de la matrice jacobienne : F’(xn) (xn+1-xn) = -F(xn) 

Le méthode de Newton peut être aussi utilisée en optimisation de façon directe pour trouver 
les minimums et maximums locaux. Quand on atteint un minimum ou un maximum, la 
solution x* est un point stationnaire de la fonction f(x) (x* est une solution de la dérivée f’(x)) 

L’expansion de Taylor est une approximation d’une fonction construite avec des termes 
infinis, avec les valeurs de la fonction et les dérivées en un point a, avec un voisinage où la 
fonction est définie. C’est une approximation d’une fonction, en un point, très utilisée en 
analyse numérique parce qu’elle simplifie la description de fonctions complexes. 

                                                

3
 La dérivée est approximée en prenant la pente entre deux points de la fonction. Le méthode de la 

sécant a un ordre de convergence inférieur a 2. 



 

 
Cours MATLAB UNIL-FGSE – Hiver 2009-2010 

X. Algorithmes d’optimisation 
Auteur : Maria Güell i Pons 

 

13 / 14 

Si on écrit l’expansion de Taylor pour la fonction f(x) : 

f(x+ ∆ x) = f(x)+ f(x)· ∆ x+ 
2

1
)('' xf  · ∆ x2  

On trouve le valeur extrême pour : 

x

xxf

∆∂

∆+∂ )(
 = 0  →  f’(x)· ∆ x + )('' xf · ∆ x = 0 

Si on a une fonction dérivable deux fois et l’approximation initiale est suffisamment proche 
de la solution, on peut définir l’algorithme (analogue au cas antérieur mais en substituant la 
valeur de la fonction par sa dérivée, et sa dérivée par sa 2eme dérivée): 

xn+1 = xn - 
)(''

)('

n

n

xf

xf
  , ou n≥ 0 

Dans le cas de solution de systèmes d’équations linéaires, (généralisation à plusieurs 
dimensions), on remplace la dérivée par le gradient f(x), et la 2eme dérivée avec l’inverse de 
la matrice Hessienne4  

5. Méthode de la Descente de Gradient ou Descente Maxime 

Cette méthode consiste à progresser en direction opposé du gradient (ou de son 
approximation) de la fonction au point évalué. La méthode de la descente de gradient est 
également connue sous les noms de descente de plus forte pente ou descente maximale.  
On peut progresser à pas constants ou en évaluant le meilleur pas et la direction d’avance. A 
chaque itération, le point d’arrêt devient le point de départ où la fonction est réévaluée et une 
nouvelle direction est suivie. Le processus est répété jusqu'à ce que le minimum soit atteint. 

Schématiquement on peut résumer le processus ainsi : 

1. Définir une approximation initiale (point de départ) x0. 

2. Déterminer la direction de descente maximale en x0 en calculant le gradient de la fct f 

3. Calculer la nouvelle valeur x1 de sorte que g (x1) < g (x0) 

xn+1 = xn - )('· nxfα   , où n≥ 0 et α est le pas d’avance, qui peut être fixé ou optimisé. 

4. Répéter les étapes 2-4 avec x0 remplacé par x1 

                                                

4
 En général les dérivées secondes sont complexes ou impossibles à calculer pour certaines fonctions 

et on utilise des approximations aux dérivées ou autres algorithmes. 



 

 
Cours MATLAB UNIL-FGSE – Hiver 2009-2010 

X. Algorithmes d’optimisation 
Auteur : Maria Güell i Pons 

 

14 / 14 

La méthode de la descente maximale est un algorithme moins rapide que l’antérieur, qui 
convergera généralement linéairement à la solution. L’avantage est que cette méthode 
convergera même avec une conjecture initiale éloigné de la solution, mais il peut présenter 
des problèmes pour approcher des fonctions qui ont des formes avec pentes peu marquées. 

 

Figure 6 Comparaison entre la méthode de Newton et la méthode de la descente maxime. 
Extrait de [2] 

6. Conclusions 

Pour conclure,  

- C’est très important de visualiser la fonction que l’on veut optimiser avant de choisir 
l’un ou l’autre des algorithmes et pour déterminer la valeur initiale à introduire pour 
notre analyse. 

- Le même algorithme peut s’utiliser pour résoudre différents types de problèmes, 
optimisation, calcul de racines, solutions d’un système d’équations…  

- La non convergence d’un algorithme n’implique pas la non existence de solution, il 
faut essayer avec un autre point de départ x0 ou utilisant un autre type d’algorithme. 

7. Références 

[1] MATLAB Help  

[2] Wikipedia 

[3] Amos, Gilat, 2007. Matlab, an introduction with application, John Willey and Sohn, Inc. 

[4] Faires and Burden, Numerical Analysis, 2004 8th edition. 


