UNIL | Université de Lausanne Protein Analysis Facility

Proteome quantitation by Mass Spectrometry (MS)

A short guide to data processing and interpretation

Version 5 – October 2024

GOALS

EXPLAIN	DESCRIBE	PROVIDE	ANSWER
The final part of the data analysis pipeline	The format of data	Options for downstream data processing and interpretation	Frequently asked questions

NOTE: a separate guide will be available for PTM specific datasets (e.g. phosphoproteomics)

INDEX

THINGS TO REMEMBER Before going further

Proteins are identified, **NOT** *de novo* sequenced

A protein present in the sample but not in the database will not be identified

The choice of **database** is critically important

Not using a model organism (;;; , , , , ,) or looking for modified sequences such as tagged proteins?

Please provide the relevant database or the related sequences

DIFFERENT MS PIPELINES, SAME TYPE OF OUTPUT

Shuken (2023) Journal of Proteome Research 22, 2151-2171

DATA ANALYSIS Overview

	PAF (using PERSEUS or TARAM, home-made analysis software)								
1. Filtering	2. Log ₂ transformation	3. Plotting	4. Normalization	5. Imputation	6. Statistical tests	7. Remove imputated values	8. 1D enrichment	9. Table clean-up	

FINAL TABLES

FIGURES

USER

1.	2. Log ₂	3.	4.	5.	6. Statistical	7. Remove	8. 1D	9. Table
Filtering	transformation	Plotting	Normalization	Imputation	tests	imputated values	enrichment	clean-up

To remove irrelevant data such as

Reverse hits

In large datasets, an additional search is performed against a «decoy» database composed of reverse sequences to determine the frequency of false positives. Scoring parameters are then adjusted to have 1% FDR (a.k.a 1% decoy hits) in the final results.

Contaminants

Keratins, trypsin, bovine serum albumin ... They are present in samples because of the experiment or as common environmental contaminations

Only identified by site Protein groups identified <u>only</u> by a modified peptide

Filter on valid values

Protein groups that have many missing values cannot be quantified with confidence

?

To normalize the distribution and facilitate plotting

1.	2. Log ₂	3.	4.	5.	6. Statistical	7. Remove	8. 1D	9. Table
Filtering	transformation	Plotting	Normalization	Imputation	tests	imputated values	enrichment	clean-up

?

To look at data globally

	2. Log ₂	3.	4.	5.	6. Statistical	7. Remove	8. 1D	9. Table
Filtering	transformation	Plotting	Normalization	Imputation	tests	imputated values	enrichment	clean-up

25

0 BAQ 50

15

10

To compensate for global differences in sample amount

Median subtraction is the most conservative normalization.

For IPs, data could be normalized based on intensity of a protein of interest BUT this may skew some datasets and result in false positives.

Some data such as MaxQuant LFQ or Spectronaut Quantity are already normalized.

1.	2. Log ₂	3.	4.	5.	6. Statistical	7. Remove	8. 1D	9. Table
Filtering	transformation	Plotting	Normalization	Imputation	tests	imputated values	enrichment	clean-up

?

To deal with missing values

1	Quantitative proteomics data always contain missing values	2	 Missing values could come from : stochasticity of data acquisition peptides/proteins near/below the limit of detection truly absent proteins 	3	It is impossible to discriminate between the events in point 2.
4	MISSING VALUES	5	Some types of data contain more missing values	6	Missing values are a data analysis problem.
	"0" in linear data "NaN" in log data (Not A Number)		(LFQ, iBAQ) than others (TMT, DIA)		Fold changes cannot be calculated. Proteins cannot be plotted.

7 Imputation = substitution of missing values with values used for computation 8 Imputed values are often chosen at the low end of the distribution of the values, assuming that the reason for the missing values is very low signal intensity. 9 Imputation has to be applied with distribution of the values, assuming that the reason for the missing values is very low signal intensity. 9

cases.

To determine whether the observed differences are statistically significant

	2. Log ₂	3.	4.	5.	6. Statistical	7. Remove	8. 1D	9. Table
Filtering	transformation	Plotting	Normalization	Imputation	tests	imputated values	enrichment	clean-up

Volcano plot is a common way to represent statistical significance (*y*-axis) and fold change (*x*-axis) in a single plot. By using –log10 transformation, low p-values (highly significant) appear toward the top of the plot.

	2. Log ₂	3.	4.	5.	6. Statistical	7. Remove	8.1D	9. Table
Filtering	transformation	Plotting	Normalization	Imputation	tests	imputated values	enrichment	clean-up

The final dataset should contain only real measured values

For functional interpretation of the data

Terms describing functional or structural characteristics, interactions, pathways or other features are added to the protein groups.

Sources (not exhaustive):Gene Ontology (GO)http://geneontology.org/KEGGhttps://www.genome.jp/kegg/Corumhttps://mips.helmholtz-muenchen.de/corum/Reactomehttps://reactome.org/

A statistical approach is used to identify annotations that are significantly over-represented in association with a quantitative trait, typically the fold-change between 2 conditions.

Limitations :

Statistical bias since the different areas of biology are more or less well annotated and/or curated

Redundant and complex annotations

1.	2. Log ₂	3.	4.	5.	6. Statistical	7. Remove	8. 1D	9. Table
Filtering	transformation	Plotting	Normalization	Imputation	tests	imputated values	enrichment	clean-up

To get a final dataset

P

Columns are removed and reordered

A table filtered for proteins identified by 3 or more peptides can be provided (more reliable quantitative values)

ZIP file with report, tables and plots.

Visit our website for an exemple : https://wp.unil.ch/paf/useful-infos/

FINAL TABLE FORMAT The exact names of the columns can vary

								Includes	oroda	ntid <u>oo but</u>	0.00	ana	المم		bish				Eg	Diffe uiv <u>ale</u>	erenc ent <u>tc</u>	ce of n o fo <u>ld (</u>	neans cha <u>ng</u> e	of cor e, b <u>ut</u>	nditio in l <u>og</u>	ns. "sc <u>ale</u>	
Quantitative values Quantitative values Total number of peptides used for quantitation. Unique peptides for this protein group Quantitative values Includes shared peptides group									Adj mu	. p-va ltiple t-tes (unco	al = p-v testin t p-val	value g co lue ed)	e after rrectio	on		ls p passi Usu	protein g ng statis t ually wit p-val<	roup stical est? h adj 0.05									
	inter	nsity	iBAC /, qua	2, LH antit	Q, У						•	•)									1			1		
Ctrl R1 iBAQ.log2	Ctrl R2 iBAQ.log2	Ctrl R3 iBAQ.log2	freated R1 iBAQ.log2	Freated R2 iBAQ.log2	Ireated R2 iBAQ.log2	iBAO	1aiority.protein.JDs	Protein.names	Gene.name	s Fasta.headers	Peptides Razor unique nentides	Juique.peptides	Ctrl R1.Razor.unique.peptides	Ctrl R2.Razor.unique.peptides	Ctrl R3.Razor.unique.peptides Treated	r.nazor.umque.peptues Freated R2.Razor.unique.peptides	Ra.Razor.unique.peptides Mol.weight.kDa	Sequence.coverage	Score	Intensity	MS.MS.count	p.value.Treated-Control	adj. p.value.Treated-Control	log2.fold.change.Treated- Control	s.significant.Treated-Control	GOBP name GOMF name	GOCC name KEGG name
3.52	2 3.44	3.29	NaN	⊢ NaN	NaN	2.37E+08	63328	Serine/threonine-protein	p Ppp3ca	sp P63328 PP2	22 22	2 14	15	14	14 0		0 58.6	36.3	159.18	 1.34E+10	269	NaN	NaN	NaN	false	G1/{cataly nu	ucle MAP
5.56	5.71	5.61	-0.30	-1.12	1.66	1.66E+09	P63330	Serine/threonine-protein	p Ppp2ca	sp P63330 PP2	21 21	1 4	15	15	14 1	1	1 35.6	70.6	323.31	5.24E+10	580	8.3E-05	2.0E-04	-5.7	true	mitcG-pro pr	otei mRN
6.22	2 6.54	6.03	3.39	2.17	1.50	3.22E+09	P67778;Q5SQG5	Prohibitin	Phb	sp P67778 PHI	27 27	7 27	14	16	16 12	7	7 29.8	73.9	323.31	1.45E+11	637	2.3E-04	4.5E-04	-3.7	true	neg protei nu	ucleus;ni
3.52	2 3.93	3.74	NaN	-1.2	NaN	3.78E+08	267871;G3UZJ5;G3UZA	Casein kinase II subunit l	Csnk2b	sp P67871 CSk	9 9	9	8	8	8 0	1	0 24.9	59.5	153.91	1.06E+10	228	1.4E-04	3.0E-04	-4.6	true	mor chron ch	nron Ribo
7.53	5 7.80	7./0	4.0	0.41 1.35	0.23 2.18	0.03E+09 4.53E+09	267964	Suanine pucleotide-bind	r Kpt22 ir Gpb2l1	sp1P679841KL2	9 9	8 6 26	20	ว 18	5 3 18 6	3	4 14.8 7 35.1	39.1	323.31	0.07E+10	794	2.0E-03	7.1E-05 2.8E-06	-2.6	true	regi enzym ni	icte KIDO
-0,2	8 -0.60	-1.10	NaN	NaN	NaN	4.05E+09	P68181	AMP-dependent protein	k Prkacb	sp1P681811KAF	17 4	4	20	1	1 0	0	0 40.7	31,6	12.47	1.02E+09	44	NaN	NaN	NaN	false	neu nucleini	icle MAP
7.2	5 7.31	7.39	2.35	2.00	2.91	3.99E+09	268254	L4-3-3 protein theta	Ywhaq	sp P68254 143	26 22	2 22	14	13	14 7	6	9 27.8	64.1	323.31	2.14E+11	735	3.2E-07	5.7E-06	-4.8	true	regi bindir cy	top Cell
								· ·													•	-	-			ļ	
	OG2 lorma an be	s ca alize e neg thar	ile ! ed va gativ	lues e ie diar	6		Database First one is	identifier. s the best		Use	this	for	filteri	ng	Ca	Tota an also colu	l numk o be us mn is	ber o sed f pres	f mate or filte ent (S	ched s ering/\ iILAC (spec alid or TN	tra. lation i MT)	if	Funct (ma	ional ny te	annotat rms per 18	ions line)

SOME DEFINITIONS Unique and razor peptides

MORE DEFINITIONS MaxQuant Output variables

iBAQ

Intensity-Based Absolute Quantification

Normalization based on protein sequence

- Protein intensity divided by the number of theoretically observable peptides
- Is a «pseudo-absolute» quantitation

What for: most samples

LFQ Label Free Quantification

Normalization based on run and samples

- Accurate relative quantitation across samples
- Assumes that samples are globally similar
- Protein must be identified with min. 2 peptides

What for: similar samples (NOT for IP)

Cox et al. (2014) Molecular & Cellular Proteomics 13(9): 2513-26

Note: Spectronaut calculates a «quantities», which are mostly similar to MaxQuant LFQ values

GENERAL FACTS AND THINGS TO REMEMBER

Statistical power is crucial to find significantly different proteins

Power is mostly determined by the number N of biological replicates.

N=3 is the minimum for reliable (and publishable !) data.

N >3 is recommended when quantifying mild changes, in case of high variability or for studies on individual animals.

EVALUATION OF PROCESSED OUTPUT How to define a list of candidates

...OUPS, IT DID NOT WORK OUT

Sometimes, no statistically significant proteins emerge

How to move on ?

Most frequent reasons:

Small differences between conditions Insufficient statistical power (**N** too low) High variability within groups

Often more than one of these factors combined !

It may simply indicate that the experiment was not perfect

- Select the best candidates (using the best foldchange & p-value, proteins identified with minimum 3 peptides)
- Try to quantify in a targeted way (WB, FACS, ELISA)
- Look at annotation enrichment for global trends
- Repeat with more replicates

PUBLICATION AND DATA SUBMISSION TO REPOSITORIES

Please read our guidelines on **acknowledging core facility work and authorship**

https://wp.unil.ch/paf/policy/

Remember to ask for **Material & Methods** descriptions sooner rather than later.

Retrieving all relevant information about your experiment may become challenging after a few years.

¥≡

Submission to the data repository requires

- Raw MS data
- Project title, description
- Materials and Methods
- Protein ID and quant data

A template for submission to PRIDE/Proteomexchange is available on :

https://wp.unil.ch/paf/useful-infos/

Upload of raw and processed data **to repositories** is highly recommended or mandatory for most journals. We recommend **proteomexchange.org** (part of PRIDE <u>https://www.ebi.ac.uk/pride/</u>).

We handle data preparation and upload for our users. However, we require **at least 2 weeks** prior to manuscript submission. For really complex datasets, additional time may be required. We may need to charge you for the work involved.

INFORMATION RESOURCES

LAB

MaxQuant https://maxquant.net/maxquant/ MaxQuant and Perseus are free

but for Windows or Linux only !

Tutorials can be found on YouTube

(https://www.youtube.com/c/MaxQuantCh annel/videos)

R

Many **R** packages used for genomics data analysis can be applied to proteomics data after raw MS data processing (e.g. for normalization, annotation enrichment, ..).

Dedicated packages also exist.

Perseus
https://maxquant.net/perseus/

FREQUENTLY ASKED QUESTIONS general considerations

moment?

Why are you talking about protein groups and not proteins ?	"Some proteins cannot be unambiguously identified by unique peptides (but have only shared peptides). They are grouped in one protein group and quantified together, e.g. if all detected peptides of protein A also belong to protein B, A and B form one protein group." (Maxquant)
Why should I do replicates ?	The question should rather be "why did you <u>not</u> do replicates?" Good science must be reproducible. Replicates provide « an estimate of between samples error». They also enhance reliability for low-abundance protein groups or subtle differences between samples.
What is the point of doing a pilot experiment ?	To test and optimize the different steps of both your and our experimental designs (such as proteins extraction and digestion from our side). A pilot gives an idea about feasibility and can save everyone time and money.
Can I analyse together data from replicates that were generated and analysed at different	Technically yes but there will be batch effects. By far the best consistency is obtained when all samples to be compared are prepared and analysed in the same session

same session.

FREQUENTLY ASKED QUESTIONS about imputation

Please read page 12 of this manual How does imputation work? Yes, imputation is usually done with random values taken from a low-shifted distribution, to simulate "real" data for low abundance proteins. Is imputation random? Not 100%, since the values used are random-generated. If the imputation is repeated, the imputed values will be slightly different. Is imputation reproducible? Since the values are all low and in a small range, the impact of the randomness of the imputed data on the final results should be limited. Imputation is random and not reproducible : how We also do not perform calculations on totally imputed data, i.e. when comparing is it reliable ?

FREQUENTLY ASKED QUESTIONS about data filtering

The PCA (principal component analysis) plot is the best tool to spot outliers. It also enables us to evaluate sample homogeneity within groups and differences between conditions.
We assume that protein groups identified with few peptides may represent low- abundance proteins / may be less reliable. We typically prioritize protein groups identified with minimum 2 Razor.unique peptides (i.e. >1 razor.unique peptides).
Assumption: protein groups identified in some, but not all, replicates of a group may represent low-abundance proteins / may be less reliable. We typically prioritize protein groups that are consistently identified across all replicates within at least one sample group. <i>Ex: protein groups with at least 3 intensity values in one group when working with</i> <i>triplicates</i>
As a rule of thumb, fold changes smaller than +/- 0.5 in log ₂ should <u>not</u> be considered. A safe minimal threshold is +/- 1 log ₂ , a two-fold change in linear data. Annotation enrichment analysis is a way to highlight global changes that are of low magnitude.

APPENDIX

Additional information about annotation enrichment

ANNOTATION ENRICHMENT Basic concepts

Note: the algorithm used in our analyses is described in Cox & Mann (2012) *BMC Bioinformatics*, *13* (*Suppl 16*), *S12*. <u>https://doi.org/10.1186/1471-2105-13-S16-S12</u>. It is conceptually similar to the widely used GSEA algorithm.

ANNOTATION ENRICHMENT Result table

Usually log ₂ (rold change)	F	-value fo	r enrichm	ent of this ter	m							
Number of protein groups in the list with this annotation type			n the /pe			Corrected p-value (Benjamini-Hochberg meth A cut-off of 0.02 is usually applied to generate the						
Column	Туре	Name	Size	Score	P value	eni, Hoch, FDR	Mean	Median				
log2.fold.change.Treated Control	GOBP name	drug transmembrane tr	6	0.92	1.01E-04	0.005	3.315	3.83				
log2.fold.change.Treated_Control	GOMF name	polyamine transmemb	8	0.74	2.71E-04	0.012	3.284	3.66				
log2.fold.change.Treated_Control	GOBP name	drug transport	7	0.89	4.68E-05	0.003	2.997	3.60				
log2.fold.change.Treated_Control	GOMF name	drug transmembrane tr	7	0.89	4.68E-05	0.002	2.997	3.60				
log2.fold.change.Treated_Control	GOBP name	mannose transport	7	0.96	1.02E-05	0.001	3.781	3.50				
log2.fold.change.Treated_Control	GOMF name	fructose transmembrai	7	0.96	1.02E-05	0.001	3.781	3.50				
log2.fold.change.Treated_Control	GOMF name	iron ion transmembrar	6	0.84	3.51E-04	0.015	2.313	2.07				
log2.fold.change.Treated_Control	GOCC name	intrinsic to plasma me	24	0.56	2.68E-06	0.000	1.971	1.97				
log2.fold.change.Treated_Control	GOCC name	anchored to membrane	10	0.77	2.86E-05	0.001	1.824	1.97				
log2.fold.change.Treated_Control	GOBP name	copper ion transport	10	0.74	5.34E-05	0.003	2.085	1.95				
log2.fold.change.Treated_Control	GOCC name	integral to plasma men	21	0.58	4.43E-06	0.000	2.071	1.91				
log2.fold.change.Treated_Control	GOCC name	vacuolar lumen	6	0.84	3.97E-04	0.007	2.646	1.70				
log2.fold.change.Treated_Control	GOMF name	cofactor transporter ac	8	0.77	1.64E-04	0.008	1.926	1.65				
log2.fold.change.Treated_Control	GOMF name	amine transmembrane	32	0.49	2.23E-06	0.000	1.522	1.56				
log2.fold.change.Treated_Control	GOBP name	cofactor transport	10	0.67	2.61E-04	0.010	1.542	1.52				

GOBP : Biological process GOCC: Cellular Compartment GOMF: Molecular fonction

Terms are often redundant, due to hierarchical organization of GO terms

Mean resp. Median of «T-test differences» for each GO term, calculated on the protein groups considered (Size). In log₂, >0 means increasing in Treated and *vice versa*.

Can be seen as normalized version of mean/medians. Values are always between -1 and +1, centered at 0.

ANNOTATION ENRICHMENT

How to retrieve proteins associated with a specific GO annotation?

Column	Туре	Name	Size	Score	P value	Benj. Hoch. FDR	Mean	Median
log2.fold.change.Treated_Control	GOBP name	drug transmembrane tr	6	0.92	1.01E-04	0.005	3.315	3.83
log2.fold.change.Treated_Control	GOMF name	polyamine transmemb	8	0.74	2.71E-04	0.012	3.284	3.66
log2.fold.change.Treated_Control	GOBP name	drug transport	7	0.89	4.68E-05	0.003	2.997	3.60
log2.fold.change.Treated_Control	GOMF name	drug transmembrane tr	7	0.89	4.68E-05	0.002	2.997	3.60
log2.fold.change.Treated_Control	GOBP name	mannose transport	7	0.96	1.02E-05	0.001	3.781	3.50
log2.fold.change.Treated_Control	GOMF name	fructose transmembrar	7	0.96	1.02E-05	0.001	3.781	3.50
log2.fold.change.Treated_Control	GOMF name	iron ion transmembrar	6	0.84	3.51E-04	0.015	2.313	2.07
log2.fold.change.Treated_Control	GOCC name	intrinsic to plasma me	(24)	0.56	2.68E-06	0.000	1.971	1.97
log2.fold.change.Treated_Control	GOCC name	anchored to membrane	10	0.77	2.86E-05	0.001	1.824	1.97
log2.fold.change.Treated_Control	GOBP name	copper ion transport	10	0.74	5.34E-05	0.003	2.085	1.95
log2.fold.change.Treated_Control	GOCC name	integral to plasma men	21	0.58	4.43E-06	0.000	2.071	1.91
log2.fold.change.Treated_Control	GOCC name	vacuolar lumen	6	0.84	3.97E-04	0.007	2.646	1.70
log2.fold.change.Treated_Control	GOMF name	cofactor transporter ac	8	0.77	1.64E-04	0.008	1.926	1.65
log2.fold.change.Treated_Control	GOMF name	amine transmembrane	32	0.49	2.23E-06	0.000	1.522	1.56
log2.fold.change.Treated_Control	GOBP name	cofactor transport	10	0.67	2.61E-04	0.010	1.542	1.52
log2.fold.change.Treated_Control	GOCC name	fungal-type vacuole lur	5	0.83	0.00133107	0.020	2.784	1.45
log2.fold.change.Treated_Control	GOBP name	transition metal ion tra	29	0.51	1.85E-06	0.000	1.359	1.40
log2.fold.change.Treated_Control	GOBP name	iron ion transport	11	0.62	4.15E-04	0.014	1.577	1.40
log2.fold.change.Treated_Control	GOCC name	organellar large riboso	41	0.67	1.16E-13	0.000	1.168	1.33
log2.fold.change.Treated_Control	GOCC name	mitochondrial large rib	4	0.67	1.16E-13	0.000	1.168	1.33
log2.fold.change.Treated_Control	GOMF name	amino acid transmemt	27	0.40	3.62E-04	0.015	1.107	1.29

ANNOTATION ENRICHMENT

How to retrieve proteins associated with a specific GO annotation?

		F	ILE +	IOME N	Menu I	NSERT	PAGE LAY	OUT F	ORMULAS	DATA	REVIEV	V VIEW	ADD-	INS	
Open the table in Excel		Fro	om From cess Web	From Fr Text S Get Exter	rom Other Sources -	Existin Connecti	g Refr	Connecti	nnections operties it Links ions	A↓ Z A Z↓ Sor	t Filter	Clear Reapp Advan	oly Tex ced Col	xt to Flas umns Fil	sh Remo I Duplic
		F1		•	×	f _x	GOBP	name				K			
Select the column that		_	A	B	C	D	E	F	G	H	I L	J	K	L	M
contains the annotation of interest			H/L normaliz ed	H/L normaliz ed	acid	Cnarge	i -test Significan t p005	name	name	name	ia	on prob	ΥΕΡ 3	score	score
		1	0.498	0.693	v	2		hiological	regulation	cell partic	45	1	2 88F-08	121.83	109.25
EX: GOBP		57	0.401	0.750	Y	2		apoptosis	enzyme a	cell junction	317	1	0.02792	43.083	15.558
		58	0.190	0.954	Y	3		biosynthe	binding;ca	cell part;c	424	0.99989	3.97E-07	71.692	67.747
		59	0.225	0.915	Y	3		assembly	binding;ri	Cajal body	383	0.99518	0.00031	72.652	72.652
		60	0.313	0.824	Y	2		alcohol m	catalytic a	brush boro	354	1	0.013	42.001	42.001
		61	-0.683	1.809	Y	4		axon guid	binding;ca	adherens	474	1	2.73E-15	87.659	87.58
		62	-0.013	1.113	Y	2		biological	binding;ca	adherens	94	0.99971	0.00587	61.999	18.753
	Go to «data»	63	0.329	0.752	Y	2		apoptosis	enzyme a	cell juncti	319	1	5.22E-09	92.063	85.024
		65	-0.121	1.191	r V	2		cell cycle	cytokinesi	cell divisio	332	0.00245	4.97E-08	87.18	87.18
	and	66	-1.370	2 332	v	2		antigen n	hinding.ca	cell partic	305	0.33243	0.00111	86 794	72 637
	and	67	-0.079	1.029	Y	3		biosynthe	binding;ca	cell part;c	423	1	7.16F-05	62.924	56.761
	oliok Filtor	68	-0.143	1.084	Y	3		actin cyto	adenyl nu	cell junctio	109	1	2.39E-20	94.384	90.986
	CUCK «FILLER»	69	-0.131	1.043	Y	3		/	receptor a	cell part;e	397	1	2.53E-21	102.6	102.6
		70	-0.043	0.947	Y	2		alcohol bi	binding;ca	cell part;c	112	1	3.17E-05	96.331	91.88

ANNOTATION ENRICHMENT

How to retrieve proteins associated with a specific GO annotation?

Thank you for your attention

We hope it was useful.....