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Abstract

Communication is fundamental to life on earth. All social organisms, from bac-
teria to humans, use communicative signals to coordinate their behaviors with
members of their own and other species. Despite its key role in social organi-
zation, many questions regarding the evolution of communication are yet to be
answered. This is in part due to the difficulty of conducting experimental evo-
lution on social species, and the challenges in experimentally manipulating and
measuring signaling and response strategies in communicating organisms.

In this thesis, we circumvent these problems by using a system of experi-
mental evolution with groups of foraging robots that could emit and perceive
light to communicate. With this system, we have explored how communication
can emerge and how different evolutionary conditions can determine the level
of reliability of evolving signals.

Our experiments revealed that foraging robots initially produced inadvertent
cues providing information to other robots about the location of the food. This
resulted in increased foraging efficiency, and consequently, in competition near
the food, which drove the co-evolution of signaling and response strategies. The
reliability of the resulting communication system was found to depend on the
level of relatedness between robots in a group and the level at which they were
selected. Robots that were highly related or selected at the group level evolved
reliable signals. In contrast, when relatedness between robots in a group was
low and selection was acting at the level of the individual, robots were selected
to suppress the inadvertent cues produced while foraging. However, because of
the effect of mutations, these cues were never completely suppressed and some
variability in signaling was maintained.

Because similar co-evolutionary processes should be common in natural sys-
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iv ABSTRACT

tems, our findings explain why communicative strategies are so variable in many
animal species when interests between them conflict. They also predict that re-
latedness will play an important role in the evolution of signal reliability in
natural systems of communication. Additionally, our analyses have led us to
devise a quantitative measure of signal reliability, which may be applied to mea-
sure reliability in natural systems of communication. The results of this study,
together with an extensive review of the literature, illustrate how evolutionary
robotic systems can be used to explore issues that cannot easily be studied ex-
perimentally with living organisms, and thus contribute to our understanding

of biological systems.

Keywords: Evolution, communication, cues, information, relatedness, reliability,

robots, signals.



Zusammenfassung

Kommunikation ist ein grundlegendes Element fiir Leben auf der Erde. Alle
sozialen Lebewesen, von den Bakterien bis zu uns Menschen, verwenden kom-
munikative Signale, um ihr Verhalten zu koordinieren. Trotz dieser zentralen
Rolle von Kommunikation fiir die Organisation sozialen Lebens, bleiben viele
Fragen zu ihrer Evolution bis heute unbeantwortet. Ein Hauptgrund dafiir ist
die Schwierigkeit, evolutiondre Experimente mit sozialen Arten auszufiihren
und die verschiedenen Signal- und Reaktionsstrategien zu manipulieren und
Zu messen.

In der vorliegenden Dissertation iiberwanden wir dieses Problem mit Hilfe
eines Systems zur experimentellen Evolution von Gruppen von Robotern. Die
nach Nahrung suchenden Roboter konnten Lichtsignale erzeugen und wahr-
nehmen. Mittels dieses Systems konnten wir die evolutiondre Entstehung von
Kommunikation, sowie den Einfluss verschiedener evolutiondrer Bedingungen
auf die Zuverlasslichkeit der evolvierten Signalen untersuchen.

Unsere Experimente haben gezeigt, dass Roboter zundchst unbeabsichtigte
Indikatoren aussendeten, die von anderen Robotern als Informationsquelle ge-
nutzt werden konnten. Dies steigerte die Effizienz bei der Nahrungssuche und
fiihrte in der Folge zu erhohter Konkurrenz bei der Futterquelle, was eine Koevo-
lution von Signalen und Reaktionen in Gang setzte. Die Zuverldssigkeit der re-
sultierenden Kommunikationssysteme hing einerseits vom Verwandschaftsgrad
zwischen den Robotern und andererseits von der Selektionsebene ab. Roboter,
die untereinander einen hohen Verwandschaftsgrad aufwiesen oder die der
Gruppenselektion unterlagen, evolvierten zuverldssige Signale. Dagegen wur-
den Roboter, die einen niedrigen Verwandschaftsgrad aufwiesen und der Indi-
vidualselektion unterlagen, selektiert, unbeabsichtigte Indikatoren bei der Nah-



vi ZUSAMMENFASSUNG

rungssuche zu unterdriicken. Allerdings konnten diese Signale aufgrund der,
durch Mutationen verursachten, hohen Variabilitit nie volkommen unterdriickt
werden.

Da wir erwarten konnen, dass dhnliche koevolutiondre Vorgidnge in natiir-
lichen Systemen ablaufen, erkldren unsere Resultate, warum Kommunikations-
systeme in vielen Tierarten, deren Interessen in Konflikt stehen, so variabel sind.
Aufierdem, konnen wir aus unseren Ergebnissen folgern, dass Verwandschaft
einen bedeutenden Einfluss auf Signalzuverldssigkeit hat. Zusétzlich
tithrte uns die Analyse unserer Experimente dazu, eine quantitatives Mafs fiir
Signalzuverldssigkeit auszuarbeiten, das auch in der Analyse natiirlicher Kom-
munikationssysteme angewandt werden kann. Die Ergebnisse dieser Disserta-
tion, sowie eine ausfiihrliche Literaturiibersicht, zeigen, wie evolutiondre robo-
tische Systeme die Moglichkeit erdffnen, Themen zu untersuchen, die mit biol-
ogischen Lebewesen nur schwer experimentell zugédnglich sind, und damit zum

besseren Verstandnis biologischer Systeme beitragen konnen.

Schliisselworter: Evolution, Kommunikation, Indikator, Information, Verwand-

schaft, Signalzuverlasslichkeit, Roboter, Signal.
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Introduction

In this opening chapter, we introduce the topic of animal communi-
cation and the important open questions surrounding its evolution.
We then outline the method we are using to explore these questions,
and place it in its historical context of interdisciplinary work between
biology and robotics. The chapter ends with an overview of the re-

maining chapters of this thesis.



2 INTRODUCTION

Communication! appears to be ubiquitous and indispensable to all social
organisms from humans to microbes. In these very different social organisms,
communication plays a variety of different roles, from coordinating group activ-
ities, such as navigation or foraging, to determining social hierarchies, choosing
mates or deciding on territorial boundaries. Moreover, communicative signals
are transmitted over a wide range of channels, including visual, acoustic, chem-
ical and tactile.

Because of the transient nature of many of these signals, they have left no
fossil record, which makes it difficult to study how these various forms of com-
munication evolved. Understanding how communication evolves in the first
place, and once it has evolved, how evolutionary forces can mold it into one
form or another is an important and fascinating problem: Important, because
it may lead to a deeper and more general understanding of social behavior in
a wide range of organisms; and fascinating, due to the complex dynamics that
arise through the co-evolution of signalers, receivers and the roles they play in a
given social interaction. These dynamics differentiate the problem of the evolu-
tion of communication from other types of social behavior that have been widely

studied, such as cooperation.

1.1 Open questions on the evolution of communica-
tion

Because communicative signals do not fossilize, one is restricted to studying
natural communication systems that are already in place. An important question
that thus remains difficult to study is how communication systems emerge as
a product of social interactions. The evolutionary origins of communication
represent somewhat of a paradox, because it is unclear why an individual would
evolve to signal if no receivers have evolved a response to the signal. Conversely,
if no signal exists, there is nothing for individuals to evolve a response to.

To resolve this paradox, current theory suggests that signals may originate
for reasons other than their communicative function, only to later evolve into
signals (Maynard Smith and Harper, 2003). For example, the behavior of an

injured bird can serve as a cue to a predator that the bird is vulnerable and a

!Terms written in bold font the first time they appear in the thesis are defined in the glossary.



1.1. OPEN QUESTIONS ON THE EVOLUTION OF COMMUNICATION 3

good object of attack. If predators consistently respond to the bird’s behavior
when injured by attacking it, the bird might evolve to fake injury to distract a
predator from attacking its offspring (Ristau, 1991). The bird’s behavior thus
evolves into a signal that alters the predator’s attack behavior. In other words,
it can be expected that communication systems originate through inadvertently
produced information that evolves into a signal. In this thesis, we provide the

first study demonstrating how this process can take place (see chapter 3).

Another key question in signaling theory that has been subject to much de-
bate concerns the evolution of reliable signals (Searcy and Nowicki, 2005). Al-
though researchers started out thinking that signaling systems would be over-
whelmingly honest, it soon became clear that this assumption was overly sim-
plistic (Johnstone, 1998b; Searcy and Nowicki, 2005). In 1978, Dawkins and
Krebs argued that if mutant deceivers could achieve higher fitness than their
honest conspecifics, they would quickly invade the population through their
more numerous deceptive offspring. They concluded from this that deceptive
communication should be more widespread in nature than had previously been
thought (Dawkins and Krebs, 1978).

Since then, many animals have been shown to communicate deceptively. In
an intriguing example, great tits have been shown to produce false alarm calls to
scare away conspecifics and gain access to an overcrowded food source (Meller,
1988). Similar behavior has been observed in two species of fly-catching birds
(Munn, 1986) and in tufted capuchin monkeys (Wheeler, 2009). It has also been
found that ravens can actively mislead conspecifics into searching for food in
empty caches to distract them from finding the actual food location (Bugnyar
and Kotrschal, 2004). In these example, deceptive signals result in receiving
individuals being worse off than if they had not perceived the signal. Many
other signals, although not deceptive (i.e., leading to lower performance than if
the signal had not been perceived), are unreliable, leading receivers to achieve
lower performance than if the signal were random (i.e., not subject to selection).
These include bluffing or exaggerating individual strength or quality (Adams
and Caldwell, 1990; Candolin, 1999; Lailvaux et al., 2008), mimicry, which is
common in plants and insects (Schiestl et al., 1999; Matsuura, 2006) and camou-
tlage (Stevens and Merilaita, 2009).

Given all these examples, research has focused on understanding how in-

formative communication can evolve at all if signalers stand to gain by deceit



4 INTRODUCTION

(Johnstone, 1998b; Diggle et al., 2007a). A number of factors have been predicted
to ensure the evolution and stability of honest communication. One of the first
factors that have been argued to influence signal reliability is the cost of sig-
nal production (Zahavi, 1975, 1997; Grafen, 1990). In a mate-choice scenario, for
example, where signals are used to indicate male quality to a choosy female,
the “handicap principle” states that a signal of quality will be honest if signal
production is less costly to higher quality individuals (Zahavi, 1975, 1997). In ad-
dition to sexual displays, the handicap principle also applies to threat displays
that provide information regarding fighting ability (Andersson, 1980; Grafen,
1990; Szdmado, 2000), or pursuit-deterrent signals emitted by prey to discour-
age predators from a pointless chase (Caro, 1994). Maynard Smith (1991) and
Johnstone and Grafen (1992) extended the handicap principle to include inter-
actions where a resource holder must decide whether to donate a resource to
a potentially needy partner, a so-called “Sir Philip Sidney” game. The predic-
tions of their models apply to various signals of need between parents and their
offspring (Maynard Smith, 1991; Johnstone and Grafen, 1992; Bergstrom and
Lachmann, 1998).

Another mechanism that is expected to play a role in maintaining honest
communication is relatedness between communicating individuals (Brown and
Johnstone, 2001; Keller and Surette, 2006; Diggle et al., 2007a). Relatedness is pre-
dicted to be particularly important when signaling constitutes an altruistic act
that is costly to the signaler, but benefits the receiver. This is expected to be the
case when signals provide information about the state of the signaling individ-
ual (Bergstrom and Lachmann, 1998) or about the state of the environment, such
as alarm calls or signals used for collective foraging. In these scenarios, signaling
individuals can increase their inclusive fitness by helping related individuals —
that carry some of the signaler’s genes — survive to the next generation by pro-
viding them with useful information (Hamilton, 1964; Keller and Surette, 2006;
Lehmann and Keller, 2006; West et al., 2007a). This idea is supported by em-
pirical data (Diggle et al., 2007b; Griesser, 2009), which suggest that relatedness
is important in ensuring honest communication. However, it has been difficult
to measure the level of honesty of signals in these systems, and to manipulate
experimental conditions to fully test the effect of relatedness on signal evolution.
In addition, the role of relatedness in the evolution of signals has been subject
to very little theoretical research (Brown and Johnstone, 2001). Consequently,
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although relatedness has been found to play an important role in the evolution
of social behavior more generally (Lehmann and Keller, 2006; West et al., 2007a),
it is largely unclear how it would influence the evolution of communication.

Similarly, social evolution theory predicts that the level at which selection acts
may also influence the evolution of cooperative behavior (Hamilton, 1975; Frank,
1998; Lehmann and Keller, 2006; West et al., 2007a). This is because selecting be-
tween individuals in a population leads to competition between them, whereas
selection between groups reduces within-group competition (Frank, 1998). This
effect has been shown experimentally by manipulating the level of selection in
social organisms within and between evolving groups (Rainey and Rainey, 2003;
Griffin et al., 2004). However, these mechanisms remain to be explored in the
context of communication.

Two of the factors that have been central to our understanding of social evolu-
tionary theory, relatedness and the level of selection, have thus remained under-
explored in the context of communication, particularly in communication sys-
tems where sharing information is costly to the signaler and beneficial to the
receiver. In this thesis we will attempt to shed some light on these issues. We
hypothesize that both relatedness, as well as the level at which selection operates
will influence the evolutionary dynamics of signal reliability in a social system

where signaling constitutes a costly act of information sharing.

1.2 Studying the evolution of communication

A range of different approaches have been used to study the evolution of com-
munication. One possibility is to conduct empirical research with living organ-
isms, either by studying one particular system in depth, or by comparing com-
municative behavior between related taxa or between populations of the same
species. Such observational work has inspired the formulation of many of the
important theories of communication, such as the handicap principle discussed
above (Zahavi, 1975), theories on receiver biases (Endler and Basolo, 1998), or on
signal ritualization (Maynard Smith and Harper, 2003). Unfortunately, however,
the produced theories can only be shown to hold by painstakingly collecting
data from a variety of taxa. A powerful alternative is to conduct experimental
evolution in species with an elaborate social organization (Griffin et al., 2004;

Fiegna et al., 2006). This allows researchers to observe the evolutionary process
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in action, and thus to systematically test the proposed theories. Although such
studies have been beneficial in addressing a variety of evolutionary questions, it
remains difficult to manipulate certain parameters that are relevant to commu-
nication, such as signal costs, and to measure their effects. Furthermore, highly
social species are not amenable to such experiments because they typically have

long generation times and are difficult to breed in the laboratory.

Another approach involves building abstract models of the communication
system by boiling it down to a few key components, thus avoiding the com-
plexity of the real world (Murray, 2007). The question that this raises is how to
determine these key components and which aspects of the real system to include
in the model. Perhaps because the answer to this question is unclear, researchers
have used a number of modeling techniques that differ largely in their level of
abstraction. The more abstract the model, the easier it is to manipulate in order
to study the effects of different parameters. In addition, it is straightforward to
replicate results obtained using highly abstract models and to compare them to
similar studies. On the down side, many of the factors that are typically ne-
glected in such diluted models have been shown to play an important role in
determining the evolutionary pathways of social systems. Interactions between
individuals, for example, are generally not taken into account in abstract math-

ematical models (Judson, 1994).

Instead, such interactions are studied using game theory (Maynard Smith
and Price, 1973), which is currently perhaps the most widespread approach to
studying signaling theory (Johnstone, 1998b; Maynard Smith and Harper, 2003;
Searcy and Nowicki, 2005). Game-theoretical models, in turn, rarely take en-
vironmental effects, such as noise into account and often ignore differences be-
tween individuals (Johnstone, 1998b; Rowell et al., 2006), which are all factors
that have been shown to play an important role in shaping communication sys-
tems (Ryan and Wilczynski, 1991; Johnstone, 1994; Wollerman and Wiley, 2002).

One more layer of abstraction can be removed by using individual-based
models (IBMs), which incorporate more details regarding individual differences,
interactions between individuals, and between individuals and their environ-
ment (DeAngelis and Mooij, 2005). Such models have become widespread in
studying the evolution of human language and animal communication (see sec-
tion 1.3).

In this thesis, following the rationale that the complexity of real systems may
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be important in forming communication systems, we go one step further. We use
mobile robots as model “organisms”, and evolve their behavior using a system
of artificial evolution (Holland, 1975). This technique can essentially be seen as
an individual-based model in which physical properties of the system are taken
into account. Although much of the work presented here is carried out using
accurate physics-based computer simulations of these robots, we argue (mainly
in chapters 5 and 6) that the use of robots as a base for these simulations makes
significant contributions toward our understanding of communication systems
and the forces that govern their evolution.

Many studies addressing evolutionary questions assume that evolution con-
stitutes a process of optimization. It has been shown that this simplification
neglects many properties of real evolutionary systems, such as genetic and phe-
notypic variation that are maintained through mutation-selection, which can
have a profound influence on evolutionary dynamics (Houle, 1992; Lenormand
et al., 2009) and thus on the evolution of social behavior (McNamara et al., 2004,
2008; Robinson et al., 2008). This view is supported by the results presented in
in chapters 2, 3 and 4.

1.3 Individual-based models and the evolution of com-

munication

The evolution of communication is one of the earliest subjects to be explored
using IBMs. Over the last 20 years, IBMs have been used to explore a wide
range of different questions (see Wagner et al. (2003); Nolfi (2005); Kirby (2006)
for reviews). For example, in a study using simulated robots that could only
perceive the environment using eight distance sensors, Quinn (2001) explored
how dedicated communication channels can evolve between two individuals to
coordinate their movement. Other studies have instead assumed that continuous
communication channels, such as sound, already exist and have investigated
how robots (or simulated robots) could evolve to coordinate the frequencies of
emitted sounds to construct communication systems that allow them to solve a
collective task (Marocco and Nolfi, 2006; Wischmann and Pasemann, 2006). This
line of work raises questions on how continuous perceptual information can

be categorized into discrete entities, and how a population of communicating
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individuals can then agree on a mapping between perceptual categories and
discrete signals (i.e., “words”). A number of studies have explored this process
of “symbol grounding” (Harnad, 1990) and vocabulary formation, often using
robots (e.g., Billard and Dautenhahn (1999); Steels and Vogt (1997); Steels (1999)),
but in some cases also with software models (e.g., Loula et al. (2008); Cangelosi
(2001)). By understanding how such vocabularies emerge, researchers have been
addressing questions regarding human language (Kirby, 2006). Similarly, other
research has explored the role of learning in shaping communication systems
(e.g., MacLennan and Burghardt (1993); Ackley and Littman (1994); Noble and
Cliff (1996); Billard and Dautenhahn (1999); Mirolli and Parisi (2005)), and how
linguistic units can organize themselves into syntactical structures (e.g., Batali
(1994); Kirby (2000); Cangelosi (2001); Kirby et al. (2008); Steels (2005)).

A number of studies also tackle questions that are more directly relevant to
this thesis. In particular, researchers have been interested in determining the
conditions that allow for the evolution of stable systems of honest communica-
tion. In one of the earliest studies on this topic, Werner and Dyer (1991) showed
how two types of software agents, blind mobile males and immobile sighted fe-
males, evolved communicative strategies that allowed them to locate each other
in a simulated arena. In their study, both signaler and receiver were rewarded
for an encounter, and thus had a common interest in solving the task. Similarly,
in an experiment where agents could share information about their local envi-
ronment, MacLennan and Burghardt (1993) showed that stable communication
could evolve if both signaler and receiver were directly rewarded for successful

information transfer.

To explore whether communication could evolve to be stable even if a sig-
naler had no direct benefit in transmitting information to a receiver, Ackley and
Littman (1994) and Oliphant (1996) conducted two independent studies, both
suggesting that imposing a spatial structure on the population of agents (i.e.,
where an individual’s offspring were placed closed to it on a two-dimensional
lattice) could lead to the evolution of stable communication. They argued that
the spatial structure increased the likelihood that an individual would commu-
nicate with its kin than with unrelated individuals, thus selecting for cooperative
behavior (Hamilton, 1964). However, because these studies did not systemati-
cally explore whether relatedness was indeed the reason for the evolutionary
stability of the communication system, Di Paolo (1999) has argued that their ob-
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servations may have been a product of other properties of the spatial setup (see
also (Wakano et al., 2009), e.g.), rather than relatedness. In addition, theoreti-
cal work has shown that although population viscosity increases the probability
of interacting with relatives, thus promoting cooperative behavior, this effect is
cancelled out by an increase in local competition between individuals, which
inhibits cooperation (Taylor, 1992; Griffin and West, 2002).

The role of relatedness on the stability of evolving communication systems
was only explored much later by Mirolli and Parisi (2005), who conducted an
experiment on foraging agents that could evolve to transmit information allow-
ing other agents to distinguish edible from poisonous objects. The results of
their study indicated that the average “language quality” of agents improved as
the probability of an individual communicating with its siblings was experimen-
tally increased. However, because of a lack of statistical analysis, their results can
only be taken to be indicative, and require further testing. In addition, Ackley
and Littman (1994) and Mirolli and Parisi (2005) claim to study altruistic com-

munication, although there was no cost to producing signals.

1.4 In this thesis

Including this introductory chapter, the thesis is organized into six chapters. In
the second through fourth chapter, we present the results of experiments carried
out with our evolutionary robotic model of communication to explore the factors
that shape the evolution of communication.

The second chapter introduces the model and tests the hypothesis stated in
section 1.1 by exploring how relatedness and the level of selection influence the
evolution of communication. Our findings indicate that qualitatively similar
communication systems evolve if relatedness is high or robots are selected at
the level of the group, i.e., competition between individuals in a group is low.
However, when robots in a group are unrelated and the competition between
them is high, the evolutionary process results in what looks like a deceptive
communication system.

In chapter 3, we explore the evolved communication system in unrelated
groups in more detail. The results of this analysis revealed that although robots
did not evolve to deceive each other, they were concealing information from

other robots by suppressing signal production. This strategy is found to be
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unreliable compared to the other communication strategies presented in chapter
2.

To quantify the reliability of the signaling systems observed in chapters 2 and
3, we devise a measure of signal reliability in chapter 4, and use it to explore how
gradually increasing within-group relatedness affects reliability. In addition, we
discuss other methods that are widespread in studying reliability in signaling
systems and show how the measure of reliability introduced in this chapter can
contribute to more general comparisons between communication systems.

In chapter 5, we take a wider perspective and evaluate the use of robots not
only in studying communication, but social behavior in general. By reviewing
a number of studies in which robots — or simulations thereof — are used, we
explore the advantages and disadvantages of robotic models and draw lessons
from these studies to formulate an agenda for the future of the field.

Chapter 6 concludes the thesis with a summary of the main achievements,
a broader perspective of its implications both for biology and robotics and an

outlook towards future work.



Evolutionary Conditions for the
Emergence of Communication

In this chapter!, we will introduce the methodology used through-
out this thesis, where we conduct experimental evolution on groups
of foraging robots that could produce visual signals to provide in-
formation on the location of a food source. We then show how this
system can be used to test the hypothesis formulated in chapter 1 that
kin structures and the level of selection will influence the evolution
of communication.

IThis chapter is based on Floreano, D., Mitri, S., Magnenat, S., and Keller, L. (2007). Evolu-
tionary conditions for the emergence of communication in robots. Current Biology, 17:514-519.

11
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Although the evolution of signals has been studied in a range of scenarios where
the signaler stands to gain from manipulating the receiver’s behavior (May-
nard Smith and Harper, 2003), it remains unclear why individuals would con-
vey useful information to conspecifics if it incurs costs, yet no obvious benefits
to them. Previous theoretical studies suggest that the kin structure of groups
(Hamilton, 1964; Maynard Smith, 1991; Johnstone and Grafen, 1992) and the
scale at which competition occurs (i.e., the level of selection) (Keller, 1999; West
et al., 2002) will play a key role in determining whether individuals will evolve to
share costly information. To determine the evolutionary conditions under which
such communication systems can evolve, we explore the influence of these two
factors in an artificial selection experiment involving groups of foraging robots

that can use light to communicate.

2.1 Methods

2.1.1 Experimental setup

At the beginning of each experiment, a group of ten s-bot robots (Fig. 2.1B,
Mondada et al. (2004)) was randomly placed in a 3m x 3m foraging arena that
contained a food and a poison source, each placed at Im from one of two oppo-
site corners (see Fig. 2.1A). The 10cm-radius food and poison sources constantly
emitted red light that could be seen by robots in the whole foraging arena. A
circular piece of gray paper with a radius of 25cm was placed under the food
source and a similar black paper under the poison source. A robot could thus
only discriminate between the two sources using its floor sensors once it was
driving over the colored paper. In addition to these sensors, the robots were
equipped with two tracks that could independently rotate in both directions, a
translucent ring around the body that could emit blue light, and a 360° vision
system that could detect the amount and intensity of red and blue light (see Fig.
2.1B).

The robots had a sensory-motor cycle of 50ms during which they used a
neural controller to process the visual information and the floor sensor input

to set the direction and speed of the two tracks and control the emission of
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Figure 2.1: Experimental setup. (A) A food and poison source, both emitting red light in
the square arena. Robots (small circles) can distinguish the two by sensing the color of
the circles of paper using their floor sensors. (B) The 6cm-radius robot used for the ex-
periments is equipped with two tracks to drive, an omni-directional (360°) vision camera,
a ring of lights used to emit blue light and floor sensors to distinguish food and poison
sources.
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blue light accordingly during the next 50ms cycle. During each cycle, a robot
gained one performance unit if it detected food with its ground sensors and
lost one performance unit if it detected poison. For each group of ten robots,
we conducted ten foraging trials, each lasting one minute. The performance
of each robot at the end of a trial was computed as the sum of performance
units obtained during that trial (1200 sensory motor cycles of 50ms). The robot’s
overall performance was quantified as the sum of performance units over all ten
trials, normalized over the total number of time units (see Appendix A). Group
performance was equal to the average performance of all robots in the group.
Under such circumstances, foraging efficiency can potentially be increased
if robots transmit information on food and poison location. However, such
communication may also incur direct costs to the signaler because it can re-
sult in higher robot density and increased competition and interference nearby
the food?. Thus, although beneficial to other group members, signaling of a food
location can constitute a costly act (Hamilton, 1964; Lehmann and Keller, 2006)
because it decreases the food intake of signaling robots. This setup thus mim-
ics the natural situation where communicating almost invariably incurs costs in

terms of signal production or increased competition for resources (Zahavi, 1997).

2.1.2 Neural controller

The control system of each robot consisted of a feed-forward neural network
with 11 input and three output neurons. Each input neuron was connected to
every output neuron with a synaptic weight representing the strength of the
connection (Fig. 2.2). One of the input neurons was devoted to the sensing of
food and the other to the sensing of poison. Once a robot had detected the food
or poison source, the corresponding neuron was set to 1. This value decayed to 0
by a factor of 0.95 every 50ms and thereby provided a short-term memory even
after the robot’s sensors were no longer in contact with the gray and black paper
circles placed below the food and poison. Eight of the remaining neurons were
used for encoding the 360° visual-input image, which was divided into four
sections of 90° each. For each section, the average of the blue and red channels

was calculated and normalized within the range of 0 and 1 such that one neural

2Spatial constraints around the food source allowed a maximum of eight robots out of ten to
feed simultaneously and resulted in robots sometimes pushing each other away from the food.
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Figure 2.2: Neural network architecture. The first two input neurons are activated when
feeding on either food or poison. The omnidirectional camera image is pre-processed
to filter out red and blue channels, divided into sections and input to the neural network
as fractions of red or blue in each section (between 0 and 1). Three output neurons
with sigmoid, asymptotic activation receive weighted input from the 11 input units, which
encode the speed of the tracks and whether to emit blue light.

input was used for the blue and one for the red value. Finally, a “bias” input
neuron, constantly set to —1, was used to enable the robot to produce some

behavior even if it perceived no sensory data.

The activation of each of the output neurons was computed as the sum of
all inputs multiplied by the weight of the connection and passed through the
continuous tanh(x) function (i.e., their output was between —1 and 1). Two of
the three output neurons were used for controlling the two tracks, where the
output value of each neuron gave the direction of rotation (forward if > 0 and
backward if < 0) and velocity (the absolute value) of one of the two tracks. The
third output neuron determined whether to emit blue light, which was the case

if the output was greater than 0.

The way in which a robot responded to environmental stimuli depended on
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the values of the 33 synaptic weights connecting the 11 input neurons with the
three output neurons. These synaptic weights were encoded in artificial genomes
(Fogel et al., 1990; Nolfi and Floreano, 2001). A genome, which consisted of a list
of these weights, was assigned to each robot. Each synaptic weight was encoded
in 8 bits, such that each weight could take one of 256 values that were mapped
onto the interval [—1,1]. The total length of the genetic string of an individual
was therefore 8 bits x 11 input neurons x 3 output neurons (i.e., 264 bits).

2.1.3 Artificial selection

A population of 100 groups of 10 robots each was used to conduct selection
experiments over 500 generations. In the first generation, the genomes of the
robots were randomly generated genomes, corresponding to randomly wired
neural controllers with no information about how to move and identify the food
and poison sources. At each generation, the performance of the robots in the
population was determined using the foraging task described in section 2.1.1,
which allowed for the selection of the best robots, which were subjected to mu-
tation, sexual reproduction, and recombination to form the population of robots
for the next generation (Fig. 2.3) (Holland, 1975). The method of selection de-

pended on the experimental treatment in question.

2.1.4 Experimental treatments

Studying why group members convey information when it incurs costs requires
consideration of the kin structure of groups (Hamilton, 1964; Maynard Smith,
1991; Johnstone and Grafen, 1992) and the scale at which cooperation and com-
petition occurs (level of selection) (Keller, 1999; West et al., 2002). We therefore
chose two kin structures (low and high relatedness) and two levels of selection
(individual- and group-level regimes). There were thus four treatments: high
relatedness with group-level selection, high relatedness with individual-level se-
lection, low relatedness with group-level selection, and low relatedness with
individual-level selection (Fig. 2.4).

For each of the four treatments, selection experiments were repeated in 20
independent selection lines (replicates of populations with newly generated ge-
nomes), each consisting of 100 groups of 10 robots. In the individual-level se-
lection treatment, we selected the best 20% of individuals from the population
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Figure 2.3: lllustration of the process of artificial selection in robots. The performance
of each robot in the population (2) is calculated by testing the robot driven by the neural
controller encoded in its genome (1) on a given task. The robots in a population are then
ranked, selected (3), mutated and recombined (4) to form the genomes of the subsequent
generation (5). Credit: Daniel Marbach.

of 1000 robots (Fig. 2.4). This selected pool of 200 robots was used for creating
the new generation of robots. To form groups of related individuals r = 1, we
randomly created (with replacement) 100 pairs of robots. A crossover operator
was applied to their genomes with a probability of 0.2 at a randomly chosen
point, and one of the two newly formed genomes was randomly selected and
subjected to mutation (probability of mutation 0.01 for each of the 264 bits). The
other genome was discarded. This procedure led to the formation of 100 new
genomes that were each cloned ten times to construct 100 new groups of 10
identical robots. To form groups of unrelated individuals » = 0, we followed
the same procedure but created 1000 pairs of robots from the selected pool of
200 robots. The 1000 new robots were randomly distributed among the 100 new

groups.

In the group-level selection treatment, we followed exactly the same proce-
dure as in the individual-level selection treatment, but the selected pool of 200
robots was formed with all of the robots from the best 20% of the 100 groups
(Fig. 2.4).

Robots could communicate the presence of food or poison by producing blue
light that could be perceived by other robots (light production was not costly).
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Figure 2.4: lllustration of the group composition and selection regime in the four treat-
ments.
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For each treatment, we determined whether communication evolved and quan-
tified the benefits of communication by comparing group performance with con-
trol groups where robots were experimentally prevented from communicating
(i.e., the blue lights were disabled).

All methods concerning measuring performance, signaling and response be-
haviors, as well as the tools used for statistical analysis are outlined in Appendix
A.

2.1.5 Simulated vs. real robots

All experiments were conducted with a physics-based simulator that accurately
models the dynamical properties of real robots. At the end of the experiments,
we were able to successfully implement the evolved genome in real robots (Fig.
2.1) that displayed the same behavior observed in simulation, demonstrating that
the physics-based simulations allowed us to mimic the behavior of real robots. A
discussion of the merits and drawbacks of this approach is provided in chapter
5.

2.2 Results

2.2.1 Robots evolve to forage efficiently

In the control groups where robots could not emit blue light, foraging efficiency
greatly increased over the 500 generations of selection (Fig. 2.5A). In each of the
four experiments, robots evolved the ability to rapidly localize the food source,
move in its direction, and stay nearby (more than half the robots found the food
source within the first 30s). Both the degree of within-group relatedness and
the level of selection significantly affected the overall performance of groups
(Kruskal-Wallis test, df = 79, P < 0.001, Fig. 2.6). Groups where robots were
highly related and subjected to group-level selection were more efficient than the
three other types of groups (Mann-Whitney test, df = 39, all P < 0.001). The two
treatments with individual-level selection led to intermediate performance val-
ues (non-significantly different from each other, P = 0.39, but different from the
two other treatments, both P < 0.001). The lowest performance was achieved by
robots in the low relatedness/group-level selection treatment with performances
significantly lower than in all other treatments (all P < 0.001). This variation of
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Figure 2.5: Mean performance (A) in control groups where robots could not emit blue
light (20 replicates per treatment), and (B) in groups where robots could emit blue light
(20 replicates per treatment).

performances in the control condition where robots could not emit blue light re-
flects differences in selection efficiency among the four treatments (Waibel et al.,
2009).

In groups where robots could produce blue light, foraging efficiency also
greatly increased over the 500 generations of selection (Fig. 2.5B). Importantly,
the ability to emit blue light resulted in a significantly greater group efficiency
compared to control experiments in three out of the four treatments (Fig. 2.6).
An analysis of the robots” behavior revealed that this performance increment

was associated with the evolution of effective systems of communication.

2.2.2 Cooperative signaling strategies

In groups of related robots with group-level selection, two distinct communica-
tion strategies evolved. In 12 of the 20 evolutionary replicates, robots preferen-
tially produced light in the vicinity of the food, whereas in the other eight, robots
tended to emit light near the poison (see Fig. 2.7 and 2.8). The response of robots
to light production was tightly associated with these two signaling strategies, as
shown by the strong positive association between the tendency of robots to be
attracted to blue light and the tendency to produce light near the food rather
than the poison source across the 20 replicates (Spearman’s rank correlation test,
rs = 0.74, P < 0.01; see Fig. 2.7A). Overall, robots were positively attracted to
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Figure 2.6: Comparison of mean 4+ SD performance of robots during the last 50 genera-
tions for each treatment when robots could versus could not emit blue light (20 replicates
per treatment).

blue light in all the 12 replicates where they signaled in the vicinity of the food
and repelled by blue light in seven out of the eight replicates where they had
evolved a strategy of signaling near the poison. The communication strategy
where robots signaled near the food and were attracted by blue light resulted
in higher performance (mean £ SD: 0.43 £ 0.05) than the alternate strategy of
producing light near the poison and being repelled by blue light (0.33 = 0.03,
Mann-Whitney test, df =7, P < 0.01). This is probably because signaling near
the food allows robots to signal in a more efficient, sustained way while they
feed and because the food signal can easily be detected by other robots, even
though the red light of the food is obscured by the robots feeding around it. In-
terestingly, once one type of communication was well established, we observed
no transitions to the alternate strategy over the last 200 generations. This is be-
cause a change in either the signaling or response strategy would completely
destroy the communication system and result in a performance decrease. Thus,
each communication strategy effectively constitutes an adaptive peak separated
by a valley with lower performance values (Wright, 1932).

The possibility to produce blue light also translated into higher performance
in two other treatments: high relatedness with individual-level selection and
low relatedness with group-level selection. In both cases, signaling strategies
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Figure 2.7: Relationship between signaling strategies and response to blue light in all four
treatments (panels A to D). Each dot is the average for the 100 groups in one replicate
after 500 generations of selection. Positive values for the signaling strategy indicate a
tendency to signal close to the food, and negative values indicate a tendency to signal
close to the poison. Positive values for the response to blue light indicate an attraction
to blue light, and negative values indicate an aversion (see Appendix A for details). The
darkness of the points is proportional to the mean performance. The two points “a” and
“b” highlighted in panel (A) are examples of the two different signaling strategies of robots.
The signaling strategies of the best group in these two experimental runs are shown in
Figures 2.8A and 2.8B.
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Figure 2.8: Spatial signaling frequency measured in each area of the arena for robots
from two groups at generation 500. (A) The group was one where robots signal the
presence of food (group with highest performance in population “a” in Figure 2.7A). (B)
In this group, robots signal the presence of poison (group with highest performance in
population “b” in Figure 2.7A). The darkness of each square is proportional to the amount
of signaling in that area of the arena and is normalized by the highest amount of signaling
in that particular trial.
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evolved that were similar to those observed in the selection experiments with
high relatedness and group-level selection (see Fig. 2.7B and 2.7C). There was
also a strong positive correlation between the tendency to signal close to food
and being attracted to blue light (high relatedness/individual-level selection:
rs = 0.81, P < 0.01; low relatedness/group-level selection: r¢ = 0.60, P <
0.01). Moreover, in both treatments the strategy of signaling close to food yielded
higher performance than the alternative poison-signaling strategy (both P <
0.01). However, when robots signaled near the poison, they were less efficient
than in the treatments with high relatedness and group-level selection. In the
case of high relatedness and group-level selection, robots signaled on average
82.3% of the time when detecting the poison, whereas the amount of poison
signaling was only 18.3% (Mann-Whitney test, df = 6, P < 0.001) in groups with
related individuals and individual-level selection and 24% (P < 0.01) in groups
with low relatedness and group-level selection. Interestingly, the less efficient
poison-signaling strategy permitted a switch to a food-signaling strategy in the
last 200 generations of selection in three replicates for related robots selected at
the individual level and in one replicate for low relatedness robots selected at

the group level.

2.2.3 Signaling reduces foraging efficiency in unrelated robots

The only treatment where the possibility to communicate did not translate into
a higher foraging efficiency was when groups comprised low-relatedness robots
subjected to individual-level selection (Fig. 2.7D). In this case, the ability to
signal resulted in a signaling strategy that led to a significant decrease in group
performance compared to the situation where robots could not emit blue light.
An analysis of individual behaviors revealed that in all replicates, robots tended
to emit blue light when far away from the food. However, contrary to what one
would expect, the robots still tended to be attracted rather than repelled by blue
light (17 out of 20 replicates, binomial-test z-score = 3.13, P < 0.01). A potential
explanation for this surprising finding is that in an early stage of selection, robots
randomly produced blue light, and this resulted in robots being selected to be
attracted by blue light because blue light emission was greater near food where
robots aggregated. Emission of light far from the food would then have evolved
to decrease competition near the food. This explanation is explored in chapter 3.



2.3. DISCUSSION 25

2.3 Discussion

Our results provide a clear experimental demonstration of how the kin structure
and the level of selection jointly influence the evolution of cooperative com-
munication. Under natural conditions, most communication systems are also
costly because of the energy required for signal production or increased compe-
tition for resources resulting from information transfer about food location (May-
nard Smith and Harper, 2003). Thus, cooperative communication is expected to
occur principally among kin or when selection takes place at a group rather
than an individual level. Consistent with this view, most sophisticated systems
of communication indeed occur in animals forming kin groups as exemplified by
pheromone communication in social insects (Wilson, 1971; Bourke and Franks,
1995) and quorum sensing in clonal groups of bacteria (Keller and Surette, 2006).
Humans are a notable exception, but other selective forces such as direct and
reputation-based reciprocity may operate to favor cooperation (Nowak and Sig-
mund, 2005) and costly communication.

This study demonstrates that sophisticated forms of communication includ-
ing cooperative communication and communication that decreases performance
of receivers can evolve in groups of robots with simple neural networks. Impor-
tantly, our results show that once a given system of communication has evolved,
it may constrain the evolution of more efficient communication systems because
it would require going through a stage where communication between signalers
and receivers is perturbed. This finding supports the idea of the possible arbi-
trariness and imperfection of communication systems, which can be maintained
despite their suboptimal nature. Similar observations have been made about
evolved biological systems (Jacob, 1981), which are formed by the randomness
of the evolutionary selection process, leading, for example, to different dialects
in the language of the honey-bee dance (Von Frisch, 1967).

Finally, these experiments provide the first example in this thesis that the
evolutionary principles governing the evolution of social behavior also operate in
groups of artificial agents subjected to artificial selection, indicating that the use
of evolutionary robotics may contribute to advancing the field of evolutionary
biology.
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Evolution of Communication
when Interests Conflict

In chapter 2, we found that when robots were unrelated and com-
peting for a chance to reproduce, they evolved a strategy where they
were less likely to emit blue light by the food than by the poison, but
were nevertheless attracted to blue light. In this chapter!, we explore
this unintuitive result, starting with a hypothesis that the robots’ for-
aging behavior, which resulted in them clustering around the food,
inadvertently provided information to other robots on the location of
the food. This would explain the persistent attraction of robots to
blue light. Through this analysis, we discuss the role of such cues
in the evolution of communication systems where interests between

signalers and receivers conflict.

IThis chapter is based on Mitri, S., Floreano, D., and Keller, L. (2009). The evolution of
information suppression in communicating robots with conflicting interests. PNAS, 106:15786-
90.
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Cues are thought to be common sources of information in nature. Indeed,
in many species, individuals have been shown to monitor each other to decide
how to behave (Giraldeau, 1997; Franks, 1999; West et al., 2000; Shuker and
West, 2004; Tibbetts and Dale, 2004; Dall et al., 2005; Bshary and Grutter, 2006).
For example, when foraging, simply observing the behavior of conspecifics can
inform an animal about the location of a source of food (Buckley, 1997; Galef
and Giraldeau, 2001). In many situations, producing inadvertent cues will also
affect an individual’s own fitness and should thus be under selection, with the
consequence that cues providing inadvertent social information should evolve
into signals. Importantly, selection on inadvertent cues may frequently take the
form of decreasing the social information provided. An example of this would
be birds living in a roost trying to hide information from other group members

about a food source they have discovered (Bugnyar and Kotrschal, 2002).

Similarly, we may expect competing robots that produce inadvertent cues to
be selected to decrease such information. In the following sections, we explore
the hypothesis that the unrelated robots selected at the level of the individual
described in the previous chapter were producing inadvertent cues, and that
selection to reduce this information can explain the surprising findings of stable

signaling that was detrimental to performance.

In addition to testing this hypothesis, this study represents a first exploration
of the role of inadvertent social information on signal evolution. Relatively little
attention has been given to this issue until now, since most research on the evolu-
tion of signals has focused on signaling as an independent behavior, decoupled

from its social and behavioral context (Searcy and Nowicki, 2005).

3.1 Methods

The hardware and controllers of the robots, as well as the experimental setup are
described in section 2.1. The selection method used in this chapter is identical
to the experimental treatment where robots were unrelated and selected at the
individual level, as described in section 2.1.4. The behavioral analysis of signal-
ing and response behaviors of robots, in addition to the statistical tools used are
presented in Appendix A. The measure of information is detailed in Appendix
B.1.
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3.2 Results

3.2.1 Inadvertent information

An inherent property of the foraging system used in this thesis is that blue light,
even if emitted randomly, could provide inadvertent social information on food
location. This is because in this physical setup, information is provided not
only through patterns of light emission, but also through the robots” behavior.
Thus, once robots evolve the ability to find food and stay nearby, their increas-
ing density near the food source should translate into higher blue density near
the food and a source of information for other robots in the arena. This was
confirmed in an experiment where robots were constrained to produce light
randomly (light was emitted with a probability of 0.5 for each unit of time). As
robots became more efficient at finding and remaining near the food (Fig. 3.1),
the concentration of blue light near food also increased, such that in all genera-
tions after generation 2, the intensity of blue light was significantly higher in the
vicinity of the food than in the rest of the arena (Mann-Whitney test, df = 39,
P < 0.001 for all generations). To quantify the amount of inadvertent informa-
tion produced by the emission of blue light, we devised an index of information
I (Shannon, 1948; Haldane and Spurway, 1954; Wilson, 1962, 1975; Harms, 2006),
which varies between 0 when blue light is equally distributed in all directions
relative to the direction of the food and 1 when light is always perceived in a
predictable direction relative to the food (see Appendix B for a detailed descrip-
tion). The level of information rapidly increased over the generations (Fig. 3.2A)
and robots became significantly attracted to blue light after generation 9 (aver-
age value between generation 9 and 500: 0.2 + 0.03, two-sided sign test, df = 19,
all P < 0.001, Fig. 3.2B).

This experiment revealed that, when emitted randomly, blue light was an
inadvertent cue providing information on food location. Although light produc-
tion was cost-free, sharing such information should be costly because it results in
higher robot density and increased competition and interference nearby the food
(i.e., spatial constraints around the food source allowed a maximum of 8 robots
out of 10 to feed simultaneously and resulted in robots sometimes pushing each
other away from the food, see section 2.1.1). Since selection occurred at the in-
dividual level and because there is no kin structure among the 100 groups of

robots, selection should favor individuals concealing information on food loca-
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Figure 3.1: Mean and standard error (gray bands) of performance of robots in the 20
independent replicates over 500 generations in the experiments where robots were con-
strained to emit light randomly and the experiment where light emission could evolve.

tion (Hamilton, 1964; Wiley, 1983; Floreano et al., 2007). To test whether conflicts
of interest between robots would affect blue light emission, we conducted a sim-
ilar experiment with the difference that we allowed the rate of emission of blue

light to evolve as part of the robots” behavior.

3.2.2 Evolving light emission

As in the previous experiment, the robots initially produced blue light randomly
(gene values were random, such that the probability of light emission in any area
of the arena was not different from 0.5 in the first 3 generations, two-sided sign
test, df =19, all P > 0.1, Fig. 3.3A). This random emission of blue light, together
with the increase over generations in the density of robots near food, resulted
in a rapid increase of information, the maximum (I = 0.12) being reached at
generation 16 (Fig. 3.2A). However, because the increased information resulted
in robots crowding around the food, robots were selected to decrease the rate of
blue light emission (Fig. 3.3A). This decrease was significantly greater near the
food than elsewhere, such that after 52 generations, robots became much less
likely to produce light near food than near poison (P < 0.01 in all generations
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Figure 3.2: Information and response to blue light. Change over generations in (A) in-
formation content provided by blue light (i.e., the strength of the association between the
direction in which robots perceived most light and the direction of the food, see Appendix
B.1) and (B) the response to blue light, where positive values indicate attraction and neg-
ative values repulsion to blue light (see Appendix A). Both panels show the mean and
standard error (gray bands) of the 20 independent replicates for both the random and
evolved light emission experiments.
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after generation 52, df = 39) or elsewhere (P < 0.05 in all but one of the gen-
erations 53-500, df = 39; Fig. 3.3A). Altogether, these changes in light emission
strategy led to a drastic decrease in the amount of information provided by blue
light intensity between generations 16 and 46 (Spearman’s rank correlation test,
rs = —0.997, P < 0.001, Fig. 3.2A) such that, in all generations after generation
22, the level of information was significantly lower than in the experiment where
blue light emission was random (all P < 0.05, df = 39, Fig. 3.2A).

Although selection was acting towards suppressing information on food lo-
cation, the information content did not decrease to zero over the 500 generations
of selection (Fig. 3.2A), resulting in robots remaining significantly attracted to
blue light until generation 500 (average attraction between generations 36-500:
0.06 +0.01, two-sided sign test, df = 19, all P < 0.001, Fig. 3.2B). This somewhat
surprising result can be explained by the fact that the strength of selection on
light emission strategies depends on the level of information content and the
robots” response to blue light. Thus, when the information content provided
by blue light intensity is high, robots should be highly attracted to blue light
and there should be a relatively important performance drop for robots emitting
light near the food (i.e., strong selection pressure to reduce light emission by
the food). By contrast, low information content should translate into a lower
response of robots to blue light and a smaller performance reduction for robots
that emit light near food (i.e., low selection pressure on reducing light by the
food).

Support for suppression of information being impeded by the reduced strength
of selection comes from the analysis of the response strategies of individual
robots and their influence on the light emission strategies and performance over
the 500 generations of selection. In both the experiments where light emission
could evolve or was random, the level of attraction of robots to blue light rapidly
increased during the first 36 generations of selection (Fig. 3.2B). However, while
the level of attraction continued to increase when light production was random,
it significantly decreased between generations 36 and 200 (rs = —0.8, P < 0.001,
Fig. 3.2B) in the experiment where the emission of light could evolve. This
decrease in attraction to blue light, which resulted from the decrease in informa-
tion content that occurred after generation 16 in this experiment (Fig. 3.2A), has
important implications because the strength of selection on reducing the emis-
sion of light by food was positively correlated with the response of robots to
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Figure 3.3: Light emission strategies and selection pressure. Change over generations
in (A) the frequency of light emission in different areas of the arena (see Appendix A) for
both the experiments where light was emitted randomly and evolved and (B) selection
pressure to reduce emission of light by food (see Appendix A). Positive or negative se-
lection pressure indicates that robots were selected to reduce or increase light emission
near the food, respectively. Both panels show mean and standard error (gray bands) of
the 20 independent replicates.
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blue light (rs = 0.13 £ 0.13; correlation significant in 11 of the 20 selection lines,
Fig. 3.2B, 3.3B). Thus, the reduced response to blue light after generation 36 led
to weaker selection on reducing light emission by food (Fig. 3.3B) and a sta-
ble level of information being reached by mutation-selection after about 50-100
generations (Fig. 3.2A).

To test whether the stable level of production and attraction to light was
affected by the mutation rate, we conducted an additional experiment with the
only difference that between generations 250 and 500 we used a 100-fold lower
mutation and crossing-over rate (mutation rate of 0.0001 per locus instead of
0.01; crossover rate of 0.002 instead of 0.2)2. The reduction resulted in a 33%
decrease in the frequency of signaling near food (over the last 10 generations,
mean + SD: 0.08 £ 0.24 instead of 0.12 £ 0.1, Mann-Whitney test, df = 39, P <
0.001). Interestingly, however, the reduced emission of blue light near food did
not translate into a decrease in the level of information (df = 39, P = 0.48) nor
a decrease in attraction to blue light (df = 39, P = 0.36), because the decreased
mutation rate also led to an increase in the average foraging efficiency of robots
and thus a higher concentration of robots near food (0.91 & 0.01 compared to
0.83 £ 0.01 with the regular rates, df = 39, P < 0.001). In other words, the
lower rate of signaling combined with a higher concentration of robots at the
food nevertheless generated a sufficient amount of information for the robots to

remain equally attracted to blue light.

3.2.3 Within-population variation

An important consequence of the reduced selection pressure on light emission
is that, at equilibrium, there was considerable individual variation in both the
production and response to light (Fig. 3.4). While the majority (61.5%) of the
robots never emitted light near food in the last 10 generations, there was high
variation in light emission strategies with 11.2% of the robots emitting light over
50% of the time when near food (Fig. 3.4A). Similarly, the level of attraction of
robots greatly varied with most robots exhibiting a low attraction to blue light,

2Since the lower mutation and crossover probabilities in the new treatment did not sustain
sufficient diversity in the population to evolve good foraging behaviors (e.g., driving towards
red light) in the initial generations, we used different mutation and crossing rates only after
generation 250.
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but 32.6% showing a negative attraction (i.e., repulsion) to blue light and 36.1%
an attraction more than twice higher than the average (Fig. 3.4B). Furthermore,
the within-population variance in attraction of robots to blue light was signifi-
cantly higher in the last 10 generations where blue light production could evolve
(0.15 £ 0.02) than when it was random (0.13 £ 0.01, df = 39, all P < 0.01).
These findings are interesting with regard to the discrepancy between theo-
retical predictions and previous empirical studies on the association between the
strength of selection and phenotypic diversity. While theory suggests that lower
selection and genetic drift should lead to higher within-population variation
(Fisher, 1958; Falconer, 1981; Lynch and Hill, 1986), empirical studies failed to
support this prediction (Houle, 1992). However, a problem with these empirical
studies is that the strength of selection is assessed indirectly, for example by as-
suming greater selection on life-history traits than morphological traits (Houle,
1992). In our experiments, robots exhibited greater phenotypic variability in
their response to blue light when light emission could evolve (i.e., when the
level of information and strength of selection were low) than when light emis-
sion was fixed (i.e., when robots emitted light randomly, such that the level of
information and strength of selection were higher). This is in line with theo-
retical predictions and supports the view that more controlled experiments are

needed in studies with real organisms.

3.2.4 Performance reduction

Although these analyses provide an explanation for the attraction of robots to
blue light despite the reduction in information, the paradox noted in the previ-
ous chapter, that allowing robots to produce blue light decreases performance,
still remains. To explore this issue, we investigated the relationship between the
robots’ response strategies and individual performance. The maximum mean
performance (0.29 & 0.16) was achieved at a level of attraction of 0.09 but the
large variation in response strategies meant that not all robots managed to
maintain such high performance. While the performance of robots with re-
sponse values around 0.09 (all values between —0.29 and 0.37, comprising 97.7%
of all individuals) did not differ significantly from the maximum performance
(Kruskal-Wallis test, P > 0.05, Fig. 3.5), the mean performance of the remain-
ing 2.3% individuals was very low (0.01 & 0.07), hence accounting for the lower
overall performance of robots when blue light production was possible than in
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Figure 3.4: Variation in communicative strategies. Histograms of the frequency of blue
light emission near the food in panel (A), and the response to blue light in panel (B) of the
1000 robots in each of the last 10 generations in all 20 independent replicates (200,000
robots in total) of the experiment where light emission was evolved. In panel (B), positive
response values reflect attraction to blue light and negative responses repulsion. The
vertical line marks the level at which robots exhibit no positive or negative response to

blue light.
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Figure 3.5: Performance of the 1000 robots in each generation from 491 to 500 in all 20
independent replicates (200,000 robots in total). Positive response values reflect attrac-
tion to blue light and negative responses repulsion. The vertical dashed line marks the
level at which robots exhibit no positive or negative response to blue light. Circles show
the mean performance of all individuals with a specific response. Two means are signifi-
cantly different (Kruskal-Wallis test, P < 0.05) if their intervals (vertical lines) are disjoint,
and are not significantly different (P > 0.05) if their intervals overlap. The maximum mean
performance is at 0.09 (solid black point).

the control where it was prevented.

3.3 Discussion

3.3.1 The evolution of cues into signals

The complex dynamics between suppression of social information and selec-
tion pressure described in this study are likely to be general features of natural
systems in which cues evolve into signals. When there are conflicts of interest

between interacting individuals, those producing cues providing useful infor-
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mation to others should be selected to hide the information by interfering on the
channel that carries the cue, thus resulting in signals carrying little information
(Wiley, 1983; Hasson, 1994). However, complete information suppression might
never be achieved, since a reduction in information will simultaneously reduce
selection pressure on information reduction, resulting in a stable equilibrium,
where information is not completely suppressed. Moreover, there might be con-
straints making some cues more difficult to suppress. For example, when a
small nocturnal rodent moves on the forest floor, the sound emitted by brushing
against the substrate provides a cue for an avian predator to detect it. Clearly,
it will be impossible for the rodent to move without making any noise. But, by
altering the way the rodent moves or by inducing it to avoid some noisy sub-
strates natural selection can act so as to decrease the information provided to the
predator. In the same way, it is likely that all inadvertent cues are to some extent
subject to natural selection with a continuum in the degree by which the effect
of natural selection is hindered by morphological, physiological or behavioral

constraints.

In addition, our results suggest that considerable phenotypic variation within
populations will be present at equilibrium when the degree of selection on com-
munication strategies is weak. The magnitude of this variation should be depen-
dent on the rate of mutation and complexity of the genetic architecture (Lande,
1976). Thus, considerable variation is to be expected in communication systems
that rely on complex traits driven by many genes and a complex brain circuitry.
Several empirical studies indeed report higher than expected intra-population
variation in communication strategies when interests between parties conflict
(Poulton, 1890; Whiteley et al., 1997; Dewitt et al., 1999; Bond and Kamil, 2002;
Bond, 2007). For example, the great amount of polymorphism in the cryptic col-
oration in moths has fascinated naturalists for centuries, but explanations have

remained elusive (Bond, 2007).

Finally, our study also underscores the importance of considering the cou-
pling between communication and behavioral effects when studying communi-
cation systems (Pfeifer et al., 2007), which is rarely taken into account in current
analytical and game-theoretical models (Johnstone, 1998a; Rowell et al., 2006).
Evolutionary robotic systems implicitly encompass many behavioral compo-
nents, such as the inadvertent production of information through foraging be-

havior, thus allowing for an unbiased investigation of the factors driving signal
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evolution (see chapter 5 for a detailed discussion). Moreover, the use of ac-
curate robotic simulations is advantageous because it simultaneously preserves
the mechanistic properties of hardware robotic models and allows one to con-
duct experimental evolution in large populations over many generations. The
great degree of realism provided by evolutionary robotic systems thus provides

a powerful tool for studies that cannot readily be performed with real organisms.
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The Effect of Relatedness on
Signal Reliability

Chapters 2 and 3 provided a detailed analysis of both reliable and
unreliable signaling systems. However, determining the reliability
of these signaling systems has been based on observations of perfor-
mance measures and signaling strategies rather than directly measur-
ing the reliability of signals. In this chapter!, we introduce a quanti-
tative measure of signal reliability and use it to explore the influence
of varying within-group relatedness on the reliability of the evolving
systems of communication.

IThis chapter is based on Mitri, S., Floreano, D., and Keller, L. (In preparation).
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Empirical observations in very different taxa suggest that honest and reliable
communication frequently occurs among highly related individuals (Hamilton,
1964; Dunford, 1977; Cheney and Seyfarth, 1985; Diggle et al., 2007b; Boncoraglio
et al., 2009). This is in line with current social evolutionary theory, which predicts
that relatedness is a key component selecting for cooperative behavior (Hamil-
ton, 1964; Lehmann and Keller, 2006; West et al., 2007b). However, because of
the lack of quantitative measures of signal reliability in natural communication
systems, it has proven difficult to test whether high relatedness is an important
factor promoting reliable signaling.

To quantitatively explore how relatedness influences the evolution of signal
reliability, in this chapter, we vary the level of relatedness within groups of robots
over five different values (0, 0.25, 0.54, 0.75 and 1), and devise a measure of
signal reliability to investigate how this index is influenced by within-group
relatedness.

41 Methods

The hardware and controllers of the robots, as well as the experimental setup
are similar to those used in the two previous chapters (see section 2.1). The only
differences are that in this chapter, groups are made up of eight robots each,
making a population size of 800, and the food and poison sources are smaller
(radius of 8cm, instead of 10cm), i.e., robots still have to compete for space
around the food. Selection is carried out at the individual level in this chapter
(see section 2.1.4 for a description). The behavioral analysis of the signaling
behaviors of robots, in addition to the statistical tools used are presented in
Appendix A. The index of signal reliability is described in Appendix B.2.

4.1.1 Relatedness

To form a group of relatedness r = 1, as in chapter 2, one individual was ran-
domly chosen from the pool of the 160 selected individuals (best 20% of popula-
tion), recombined, mutated (according to probabilities given in section 2.1.4) and
cloned 7 times, to make groups of 8 robots with identical genomes. At the other
extreme, groups of unrelated robots (r = 0) were composed by repeatedly choos-
ing 8 different genomes from the pool and assigning them to the same group.
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For intermediate levels of relatedness, r = 0.25, r = 0.54 and r = 0.75, different
proportions of clones were used to form groups of 8 robots (3:3:2, 1:1:6 and 1:7,
for the three levels of relatedness, respectively, see Appendix B.3). Although this
group composition differs from relatedness in most natural populations, social
evolution should depend only on the average relatedness within a group, since
the robots have no way of directing interactions towards specific individuals. 20

experimental replicates were conducted for each of the five levels of relatedness.

4.2 Results

4.2.1 Relatedness, performance and signal reliability

Over the 500 generations of selection, the performance of the robots increased
at all levels of relatedness (Fig. 4.1). At the end of the selection experiment, the
performance of robots was positively associated with within-group relatedness
(Spearman’s rank correlation test, rs = 0.76, P < 0.001, Fig. 4.2A). The per-
formance of the robots significantly increased between relatedness values 0 and
0.75 (Mann-Whitney tests, all df = 39, P < 0.01), but the performance did not
differ significantly between relatedness values 0.75 and 1 (df = 39, P = 0.88).

To test whether these differences in performance were due to differences in
signaling strategies, we conducted an additional experiment where robots were
blind to blue light. In this experiment, blue light emission could evolve but
it could no longer affect the robots” performance, as it could not be perceived.
Consistent with the view that relatedness affected performance by altering the
robots” communication strategy, there was no significant correlation between

relatedness and performance in this experiment (rs = 0.17, P = 0.07, see Fig.
4.2A).

To investigate how variations in relatedness affected the reliability of signal-
ing, we devised an index of signal reliability, which consists of analyzing the
inputs of each robot’s visual system to establish whether robots perceived more
blue light in a consistent direction with respect to the direction of the food (see
Appendix B.2). This index could vary between 0 when blue light was equally
distributed in all directions relative to the direction of the food (i.e., the signal
is completely unreliable) to 1 when blue light was always perceived in a pre-
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Figure 4.1: Mean and standard error (gray bands) of performance of robots in the 20
independent replicates over 500 generations at different levels of relatedness.

dictable direction relative to the food (i.e., the signal is completely reliable)?.
The reliability index was significantly correlated with relatedness (Spearman’s
correlation test, rg = 0.59, df = 99, P < 0.001, Fig. 4.2B) as well as with perfor-
mance (rg = 0.76, df =99, P < 0.001).

To investigate how the signaling strategies of the robots changed with relat-
edness, we compared the frequency of blue light production in different areas
of the arena (near the food, near the poison, and elsewhere in the arena) across
relatedness treatments in the experiment where robots could perceive blue light.
As relatedness increased, there was an increase in the frequency of signaling
near the food (rs = 0.49, P < 0.001) and a reduction in signaling frequency near
poison (rg = —0.62, P < 0.001) and elsewhere in the arena (r¢ = —0.29, P < 0.01,
Fig. 4.3).

2The index of signal reliability is similar to the index of information I presented in chapter 3.
The difference is that the index of reliability only considers instances in which robots perceive
blue light, whereas the measure of information also includes time-steps in which no blue light
is perceived. See Appendix B for exact definitions.
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Figure 4.2: Performance (A) and signal reliability (B) at different levels of relatedness
for robots that could perceive blue light compared to robots that were blind to blue light.
Each point represents the median of 20 independent replicates, where the value of each
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bands represent the uncertainty about the median. Bands that do not overlap indicate
that the medians differ at the 5% significance level.
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Figure 4.3: Frequencies of blue light emission in different areas of the arena at different
levels of relatedness. Each point represents the median of 20 independent replicates,
where the value of each replicate is the average reliability over all individuals in the last
20 generations. The gray bands represent the uncertainty about the median. Bands that
do not overlap indicate that the medians differ at the 5% significance level.
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4.2.2 Signal frequency vs. signal reliability

Because measuring signal reliability is difficult under natural conditions, re-
searchers have typically used signal production frequencies as a proxy for signal
reliability in a variety of contexts (e.g., signals of need (Redondo and Castro,
1992; Cotton et al., 1996), sexual signals (Zahavi, 1975) and cooperative signals
(Wauters and Richard-Yris, 2003)). To explore whether signal production fre-
quencies are good indicators of signal reliability in our system, we analyzed the
frequency of blue light emission in the different treatments. There was no signif-
icant difference in light emission frequencies across the five levels of relatedness
(Kruskal-Wallis test, df = 99, P = 0.14). Furthermore, within each relatedness
treatment, we found no consistent association between signal frequency and
performance. Across the 20 replicates the correlation between the frequency of
signaling and performance was negative for relatedness 0 and 0.54 (Pearson’s
correlation coefficient p = —0.44 at r = 0and p = —0.53 at r = 0.54, P < 0.05),
positive for relatedness 1 (o = 0.89, P < 0.001) and not significant for relatedness
0.25 and 0.75 (P > 0.05, Fig. 4.4A). Because a good measure of signal reliability
is expected to correlate positively with performance, these data show that signal
frequency is not a good estimate of signal reliability in our experiments.

By contrast, a similar analysis between the index of reliability and perfor-
mance revealed a significant positive correlation at all levels of relatedness greater
than 0 (r = 0.25 to r = 1, all 4 Pearson’s correlation coefficients p > 0.63,
P < 0.01, Fig. 4.4B). At r = 0, light emission was unreliable and resulted in low
performance in all experimental replicates and thus, no significant correlation

between the two measures was observed (p = —0.01, P = 0.97).

4.3 Discussion

In this chapter, we have shown that increasing relatedness within groups results
in an increase in the reliability of the robots” evolved signaling strategies. These
tfindings can be explained by kin selection theory (Hamilton, 1964). Because
unrelated robots were selected to behave selfishly rather than altruistically, they
were selected to avoid providing reliable information on the location of food,
as this would result in crowding by the food, increased competition and thus
decreased individual performance (chapter 3). Conversely, high relatedness be-
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tween robots selected for the evolution of reliable signals that allowed related
individuals to easily locate the food (chapter 2).

Higher relatedness has also been shown to lead to more reliable signals in
natural communication systems (Hamilton, 1964; Dunford, 1977; Cheney and
Seyfarth, 1985; Diggle et al., 2007b; Boncoraglio et al., 2009). For example, chicks
that beg for food from their parents produce less intense begging displays in
groups of siblings than in mixed groups (Boncoraglio et al., 2009). Similarly,
bacterial cells that are closely related produce more signal molecules that help
the group to coordinate cooperative behaviors than strains of unrelated bacteria
(Diggle et al., 2007b). In these two examples, it is notable that two opposing
trends in signal frequency are taken to indicate reliable signaling. This apparent
contradiction stems from the difference in the benefits of signaling in the two
scenarios. In the case of the chicks, louder signaling will lead to larger rewards
for the individual signaler and consequently less for its nest-mates, whereas in
the case of the bacteria, stronger signaling tends to increase the benefits for the
group rather than for the signaling individual alone. The individual microbe
instead gains more by signaling less and reaping the benefits of the collective
behavior of its conspecifics.

The context in which signals are produced and perceived, such as the way
in which benefits gained through signaling are distributed among individuals,
are thus expected to largely influence the frequency of signal production and its
relation to signal reliability. Nevertheless, many studies use signal production
frequencies to estimate signal reliability (see Searcy and Nowicki (2005) for a
review). An alternative is to measure signals at the receiving end, as we have
shown in this chapter, resulting in a measure of signal reliability that is inde-
pendent of such contextual elements. This is, of course, an easier task to accom-
plish using robots, where the experimenter can access the robots” sensory inputs.
However, technical advances should allow the measurement of physiological as-
pects of signal perception in living organisms (Cummings and Partridge, 2001;
Cummings, 2007; Ryan, 2007; Stuart-Fox et al., 2007), making quantitative mea-

surements of signal reliability possible in natural systems.
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Using Robots to Model Social
Behavior

The approach of using robots to study social behavior is relatively
novel. It is thus important to carefully consider whether the use of
robots really can lead to relevant contributions to understanding so-
cial behavior, which would not have been possible with other, more
traditional approaches. In this chapter! we give an overview of the
different approaches to studying social behavior and discuss the mer-
its and drawbacks of the use of robots by reviewing related work,
including the experiments described in this thesis, where robots are
used to study social behavior.

IThis chapter is based on Mitri, S., Wischmann, S., Floreano, D., and Keller, L. (In prepara-

tion).
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Robots are machines that have sensors with which to perceive the world
around them, actuators to manipulate it, and control programs that allow them
to translate perception into action. Even with a very simple control program, the
behavior of a robot can look uncannily life-like (Braitenberg, 1984). Furthermore,
having many of these robots interact together in “robot societies” has revealed
emergent behavior akin to many self-organizing collective behaviors observed
in nature: cooperative transport (Kube and Bonabeau, 2000; Grofs and Dorigo,
2004; Mondada et al., 2004; Waibel, 2007), object sorting (Holland and Melhuish,
1999; Melhuish et al., 2006) and even communication (Nolfi (2005); Ampatzis
et al. (2008), chapters 2, 3 and 4 in this thesis). Although much of this work was
initiated as a way of solving engineering problems by taking inspiration from
natural collective systems, it has become clear that contributions can also be
made in the opposite direction, leading to progress in the fields of sociobiology,

ecology and evolutionary biology (Floreano and Mattiussi, 2008).

Social behavior is inherently difficult to model. This is firstly because of
the complexity that arises from modeling many individuals simultaneously and
secondly because of the importance of their local interactions with each other
and with their environment (Judson, 1994). One way of understanding how
groups of animals behave is to build robots that are in some ways similar either
to a specific animal or to animals in general (Holland and McFarland, 2001;
Webb, 2001, 2009), to program their individual behavior, and then to analyze
the collective behavior resulting from allowing them to interact. If the collective
or social behavior is similar to that of real animals, testable hypotheses can be
proposed to empirically investigate whether the animals may be using similar
rules. Alternatively, one could imagine allowing the robots to interact directly
with real animals to explore how the animals will react to different stimuli from

their “artificial conspecifics”.

Although such ideas may sound appealing, it is necessary to carefully con-
sider whether it really is worthwhile to use robots to understand collective be-
havior in living organisms. Our aim in this chapter is to discuss this issue by
comparing robot models to other, more traditional modeling techniques, review-
ing studies that have used robots to study social behavior and providing guide-
lines on how to exploit the potential power of this approach.
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5.1 Modeling social behavior

A number of different approaches are used to study social behavior, which vary
on a scale of situatedness (see Fig. 5.1). By situatedness we refer to the extent
to which individuals are embedded in an environment that can be sensed and
modified by those individuals (Varela et al., 1991; Clark, 1996). At one extreme,
abstract mathematical models (also known as analytical, classical or minimal
models (Grimm and Railsback, 2005)) aim to boil down a system to its minimal
components to explore the effects of what are considered to be key parameters
on its dynamics (e.g., the effects of the interaction rates between a population of
predators and their prey on changes in the sizes of the two populations (Lotka,
1925; Volterra, 1926)). These models are at the low end of the situatedness scale
(left of Fig. 5.1) because they do not model individuals nor their environment
explicitly, but instead assume that they will not have a significant influence on

the conclusions obtained using the model (Murray (2007)).
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Figure 5.1: Different approaches to studying social behavior on a scale of situatedness,
i.e., the extent to which individuals are embedded in an environment that they can sense
and modify (Varela et al., 1991; Clark, 1996).

At the other end of the situatedness spectrum (right of Fig. 5.1), researchers
conduct experiments using living organisms. Field work, conducted in the or-
ganisms’ natural habitats can be seen as the highest level of situatedness, since
the effect of all the different properties of the organism’s natural environment
are included in the observed social behavior. For example, studying frogs” mat-
ing calls in their natural environment will take the influence of environmental
noise into account, which may have an impact on their vocalizations (Wollerman

and Wiley, 2002). This is a challenging approach, however, because the experi-
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menter has very little control over these environmental factors, and cannot easily
disentangle all their effects from the parameters of interest. A partial solution
to this problem is to conduct studies of social systems in the laboratory (Fig.
5.1), where the environment is controlled. By doing this, the experimenter must
make some simplifying assumptions as to which aspects of the organism’s nat-
ural habitat are important for the particular question at hand. More generally,
when choosing the level of situatedness at which to study a given problem, a
trade-off exists between an increasing ease in manipulating and understanding
the system, and a simultaneous increase in the risk of removing elements of
the real system (living organism in its natural habitat) that may be crucial to its
resulting behavior.

To balance these trade-offs, researchers have resorted to a type of model-
ing that is intermediate on the scale of situatedness: individual-based models
(IBMs). Compared to living organisms, IBMs are easier to manipulate and un-
derstand. At the same time, they take differences between individuals (e.g.,
age or size) and their interactions into account, which have proven to have im-
portant consequences on collective and social behavior, and are generally not
included in abstract mathematical models (Judson, 1994; Grimm and Railsback,
2005; DeAngelis and Mooij, 2005). For these reasons, IBMs have largely been
accepted as part of the toolbox for modeling social systems from small groups
to populations and ecosystems (DeAngelis and Mooij, 2005).

Robotic models can be seen as more situated IBMs (Fig. 5.1). Robots allow
abstract individuals to leave their simplified, artificial world and inhabit the
physical world, with all its complexity. It is important, however, to explore

whether anything is to be gained from this increase in situatedness.

5.2 The pleasures and perils of social robots

The main advantage of using robotic organisms over agent-based models is that
fewer assumptions need to be made regarding the environmental properties of
the model. This is because the laws of physics are included in robotic models
“for free”. A direct consequence of this, is that it is more likely that experiments
using robots will lead to surprising outcomes, because some unexpected prop-
erty of the physical world — that would intuitively not have been included in the

equivalent agent-based model — has an important influence on the results.
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This point is nicely illustrated by the experiments presented in chapter 3,
where we have shown that the spatial properties of the environment and the
robots” visual system were important in the evolution of the signaling system.
This is because the visual effects of robots clustering around the food provided
cues to other robots, which had an important influence on the resulting dynam-
ics of the communication system. Another example is provided by two studies
on cockroach aggregation behavior using robots (Garnier et al., 2008) and soft-
ware agents (Jeanson et al., 2005), respectively. Garnier and colleagues found
that their robotic model resulted in more accurate predictions of the cockroaches’
behavior than the agent-based model because the computer simulation did not
allow for robots to hide behind objects or each other. This effect proved to be
crucial to the resulting collective behavior (Garnier et al., 2008). Other studies
have shown that friction caused by collisions (Krieger et al., 2000; May et al.,
2006) also plays an important role in shaping social behavior. Although in some
cases it may be possible to simulate these physical properties in a simpler model,
it is difficult to predict a priori which factors of the physical model will influence
the resulting social behavior. The use of robots thus allows the experimenter to

discover these factors.

A second advantage of using physical robots, as opposed to agent-based
models, is that they can interact with living organisms. A growing number of
researchers are using such mixed models, where robots are used to infiltrate an-
imal societies by playing back behavioral sequences. By analyzing the animals’
responses to the robots, the experimenter can gain insights into the animals’ be-
havioral codes. Although he did not use robots, Tinbergen (1948) designed one
of the earliest experiments of this type, in which static models of sticklebacks
with different visual properties were used to explore how real sticklebacks re-
acted to visual cues from conspecifics. More recently, as technology has become
more advanced, affordable and accessible, dummies (such as Tinbergen’s stick-
lebacks) have been replaced by robots. Robots provide an advantage in such
studies because they enable the researcher to disentangle the effects of different
mechanistic components on the resulting social behavior. Thus, one of the main
uses of robots in mixed models has been to explore the role of different compo-
nents of a signal on the resulting communication system (Michelsen et al., 1992;
Patricelli et al., 2002; Goth and Evans, 2004; Martins et al., 2005, Fernandez-
Juricic et al., 2006; Halloy et al., 2007; Rundus et al., 2007; Taylor et al., 2008;
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Partan et al., 2009).

Because robots need to work in the real world, however, their use often poses
many technical challenges. Consider, for example, the problem of building a
robot that can visually distinguish between its peers. While there are many
straight-forward ways to deal with this problem using software agents, this is
a considerable challenge for the state-of-the-art in robotics. Although some of
these problems may provide insights into the biological species being modeled,
this is often not the case (Webb, 2009). In addition, surprising outcomes may be
a result of artifacts that are specific to the robots and do not have parallels in the
natural world. Another reason why one might decide against using robots is be-
cause they are expensive to build. This is particularly problematic when study-
ing collective behavior because construction costs limit the number of robots a
modeler can use. One is therefore limited to study systems of small group sizes,
or where the size of the group is expected to be irrelevant to its dynamics. A
related problem is that working with robots can be extremely slow (Holland
and McFarland, 2001). Because robots live in real-time, experiments cannot be
accelerated, as they might when using agent-based models, for example. This
problem particularly affects studies using artificial evolution where hundreds of
robot controllers need to be tested over many generations (Nolfi and Floreano,
1998; Marocco et al., 2003; Floreano et al., 2007, Waibel, 2007, Ampatzis et al.,
2008; Mitri et al., 2009).

Many of the disadvantages of using robots can be avoided by building physics-
based software simulations of the robots, which has become possible because of
the recent rise in computational power and simulation technology (Waldner,
2008). We place these software simulations of robots at an intermediate level
on the situatedness scale between agent-based models and real robots (Fig. 5.1).
Although at first sight, such simulations appear to be equivalent to using agent-
based models, the crucial difference is that they are based on already-existing
physical robots, and simulate them as accurately as possible (see e.g., Fig. 5.2A).
This can be ensured by systematically comparing results obtained using a small
number of real robots and the simulation until the latter proves to be a reli-
able substitute for the former, as we have done in this thesis (see section 2.1.5).
However, simulations similarly suffer from a scaling problem, since the neces-
sary computations grow exponentially with the number of robots (Martinoli and
Easton, 2002; Waldner, 2008).
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Figure 5.2: Robots used to study social behavior. A. Simulated robots to study coor-
dination of collective behavior (Baldassarre et al., 2006). B. Foraging robots used in
this thesis. C. Robotic squirrel built to disentangle the effects of different communication
channels in squirrels (Partan et al., 2009). D. Modeling rat pup aggregation behavior us-
ing robots (May et al., 2006). E. Robots used to explore decision-making in cockroaches
(Halloy et al., 2007).
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5.3 Three ways to study social behavior using robots

To understand how researchers make use of robotic models, we have reviewed
articles that use robots or simulated robots to study questions regarding social
behavior in nature. We suggest that these studies can be classified into three

categories depending on the goals of the study (Table 5.1).

Firstly, robotic models can be used to test the validity of established theories
that have been difficult to test empirically. This is because robotic models (or
even simulations of robots) are more situated, and thus implicitly include more
environmental properties than mathematical or agent-based models. An exam-
ple of a theory that has proven difficult to test quantitatively in living organisms
is Hamilton’s rule, which predicts when individuals in a group will evolve to
behave cooperatively, as a function of the average relatedness in the group, and
the costs and benefits of the cooperative act (Hamilton, 1964). Although tests
of the theory have been conducted in living organisms by manipulating related-
ness in colonies of bacteria (Griffin et al., 2004), fig wasps (West et al., 2001) and
ants (Sundstrom et al., 1996), the costs and benefits of cooperative acts have been
difficult to precisely quantify and vary in these systems. Alternatively, Waibel
(2007) conducted a test of Hamilton’s rule using groups of robots that evolved
through artificial selection, where relatedness, costs and benefits could be var-
ied. These experiments have confirmed that the quantitative predictions of the
theory hold even with the noise and complexity of the real world. In another
example, Michelsen et al. (1992) used a robotic bee to test a long-standing the-
ory regarding the honeybee dance language. With their robot, the researchers
could isolate the effects of different components of the waggle dance on the bees’
foraging behavior, thus confirming that abstract information on distance and di-
rection of a source of food were carried by the waggle dance. Other such studies

that test existing theories are listed in the first column of Table 5.1.

A second way in which robots are used is to model a particular social behav-
ior with a general question in mind, and to explore whether the implicit inclu-
sion of physical properties in robotic models will reveal novel aspects concerning
the collective behavior in question. Results of such studies can then be used to
formulate new, empirically testable hypotheses (see “exploratory” studies in Ta-
ble 5.1). For example, Krieger et al. (2000) used a swarm of small, ant-like robots

to explore how collective behavior and division of labor may influence foraging
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Testing

Exploratory

Gap-filling

Robots or simulated robots

Floreano et al., 2007 (ch.2)
Garnier et al., 2008
Marocco et al., 2003
Waibel, 2007

Chapter 4

Baldassarre et al., 2006
Belpaeme & Birk, 1997
Birk & Wiernik, 2002

Di Paolo, 2000

Holland & Melhuish, 1999
Krieger & Billeter, 2000
Krieger et al., 2000
Kube & Bonabeau, 2000
Marocco et al., 2003
Marocco & Nolfi, 2006
Mataric, 1993
McFarland, 1994

Mitri et al., 2009 (ch. 3)
Nolfi & Floreano, 1998
Quinn, 2001

Rubenstein et al., 2009
Steels & Vogt, 1997
Steels, 1998

Vogt, 2000

Wischmann et al., 2006a
Wischamnn et al., 2006b

Grof et al., 2008
May et al., 2006
Melhuish et al., 2006
Mitri et al., 2009 (ch. 3)

Mixed models

Goth & Evans, 2004
Halloy et al., 2007
Michelsen et al., 1992
Taylor et al., 2008

Bohlen, 1999

Fernandez-Juricic et al., 2006

Kubinyi et al., 2004
Takanishi et al., 1998

Fernandez-Juricic et al., 2006
Goth & Evans, 2004

Martins et al., 2005

Ord & Stamps, 2008

Partan et al., 2009

Patricelli et al., 2002

Reaney et al., 2008

Rundus et al., 2007

Table 5.1: The articles in this table were chosen because they report on research using
robots or simulated robots (based on a physical robot), and explicitly state that they aim
to understand social behavior in living organisms. One representative article was chosen
when numerous articles were found that all had similar conclusions. Citations in bold

have generated new, concrete, testable hypotheses.
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efficiency. Although their original intention was not to study the effects of differ-
ent group sizes, they found that as the number of robots in a group grew beyond
a certain size, the robots” foraging efficiency began to drop. They thus hypoth-
esized that increased interference between individuals through crowding may
be responsible for the decrease in efficiency and that such effects may also limit
group size in social insect colonies — a conclusion that could hardly have been
drawn from a model that does not contain the physical constraints of moving

bodies in the real environment.

A third and final use of robots is to provide evidence that may explain an
observed natural phenomenon for which previous research had provided con-
tradictory or no evidence. We will designate studies of this type as “gap-filling”,
since they fill a gap in scientific knowledge (see Table 5.1). We differentiate
such studies from studies of the “testing” type, in which well-established the-
ories that have already been modeled at lower levels of situatedness are tested
in a robotic scenario. By contrast, “gap-filling” studies test novel hypotheses
that constitute open questions. For example, ground squirrels have been found
to repeatedly raise their tails at threatening rattlesnakes, even in a dark experi-
mental room, where the visual component of the signal was completely absent.
This led researchers to hypothesize that there might be an infrared component
to the squirrels’ signal. By building a robotic squirrel that emitted such infrared
signals and observing the snakes’ reaction to it, Rundus et al. (2007) provided
evidence that this was indeed the case. Similarly, the study presented in chapter
3 has provided a novel hypothesis, supported by experimental evidence that the
variability in natural communication strategies when interests between commu-
nicating individuals conflict, may be explained by the interplay between genetic
variability introduced through mutations and weak selection pressure on signal-

ing and response behaviors.

Some patterns stand out in the list in Table 5.1. Firstly, it is notable that the
majority of articles (~72%) that report on using robots or simulated robots to
study collective behavior are of the exploratory type. Although the power of ex-
ploratory studies lies in formulating concrete, testable hypotheses as a result of
using robots, we found that only few studies of this type (~24%) generated such
novel hypotheses. By contrast, we found that hypotheses were often generated
in the two other types of studies (testing and gap-filling studies).

Another observation is that gap-filling studies were pre-dominantly mixed
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models (~73%), and that half of the mixed models were of the gap-filling type.
This is likely to be because mixed models are often designed by researchers al-
ready working on a living system, who then turn to robots to address a specific
question that they could not have answered otherwise, such as the role of differ-
ent signal components on response strategies (see previous section). In contrast,
studies involving robots or simulated robots alone seemed to either be used to

test theories or to address more general, exploratory questions.

5.4 Lessons learned: when and how to use robots

Models can result in scientific contributions if they accomplish one of three
things: either allow the testing of an existing theory, provide a novel explana-
tion to a puzzling biological phenomenon, or generate novel testable hypothe-
ses. Among the studies covered in this review, many can be considered to have
made such contributions to our understanding of social systems. These stud-
ies have shown how some theories can stand the test of reality (e.g., Michelsen
et al. (1992), Floreano et al. (2007) (chapter 2), Waibel (2007), chapter 4), they
have addressed questions that were considered difficult or even impossible to
answer (e.g., Rundus et al. (2007); Taylor et al. (2008)), and they have inspired
us by proposing alternative, non-intuitive answers to long-standing questions
(e.g., May et al. (2006); Reaney et al. (2008)). However, some studies — although
potentially interesting — have so far contributed little to our understanding of
social behavior. What lessons can we take home from these studies? What are
the promising directions to follow? And how can we avoid the pitfalls?

Of the three types of studies that we have considered in this review (Table
5.1), testing and gap-filling studies have been found to contribute the most to
the field (in the terms defined above). Although exploratory studies can and do
make important contributions, this is only the case if researchers use the findings
of the model to generate relevant hypotheses and ensure that they lead to con-
crete follow-up studies. Furthermore, they are risky endeavors, since there is no
guarantee that any interesting findings will be made, and because they often set
out to answer broad questions, which are more difficult to answer (Jacob, 1977).
We therefore suggest that research is more likely to lead to fruitful outcomes
if robots are used to test existing theories, which are difficult or impossible to
test using living organisms. Understanding whether theoretical predictions of
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social behavior hold at all levels of situatedness, independently of various envi-
ronmental factors, is important both for theoretical and empirical biologists. In
addition, we suggest that robots be used to answer precise questions, for which
they provide a clear advantage over simpler modeling methods.

In section 5.2 we have suggested that robots may be preferred over agent-
based models in two types of studies. Firstly, when physical features of the
real world, such as sensory noise, friction, visual or spatial effects, are expected
to play an important role in shaping the social behavior in question. And sec-
ondly, when the question of the study is specifically about the influence of such
physical properties on social behavior. At first sight, it may seem that we are
arguing that robots are restricted to questions regarding mechanistic aspects of
social behavior and cannot be used to answer questions regarding its ultimate
(evolutionary) causes. However, a potential use of robots would be to study the
interplay between effects at the behavioral level that may be highly dependent on
physical factors, and effects at the level of evolutionary dynamics. Mayr (1961)
and Tinbergen (1963) were perhaps the first to argue for the synergistic ben-
efits of a complementary approach addressing both proximate (life-time) and
ultimate (evolutionary) causes. Our experiments in chapter 3 provide a good
example of this complementary approach, by showing that inadvertent informa-
tion produced by the spatial distribution of signaling robots had an important
influence on the evolutionary dynamics of the communication system. If the
behavior of robots, the spatial properties of their environment and their percep-
tual mechanisms can influence evolutionary dynamics, we must suppose that
the mechanistic properties of a system may indeed be important in understand-
ing the bigger evolutionary picture. Robotic models may thus play a key role in
addressing ultimate questions in sociobiology.

This complementary approach can be taken one step further by using mixed
models to study the interplay between behavior and evolutionary processes. A
nice illustration of this idea is provided by a study by Bond and Kamil (2002),
in which blue jays searched for digital moths on computer monitors. The digital
moths that were not pecked by the birds survived to subsequent generations,
thus allowing the researchers to determine how selection shapes the coloration
of real moths. Although this study did not involve any robots, we believe it
may inspire similar studies using mixed models where the robots’ controllers or

morphology can evolve over time. Such studies provide a unique opportunity
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to manipulate behavioral processes of living organisms and to explore how they
affect the evolution of social systems.

As robots become more affordable and easier to construct and manipulate,
we predict that the use of robots in studies of social behavior will increase. In
this chapter, we have shown how robotic models can address questions that are
difficult to answer with more traditional methods, test well-established theories
in a realistic setup or uncover interesting phenomena that have gone unnoticed.
However, this research is only possible if collaborations between researchers
from different disciplines are formed, if roboticists focus on well-formulated
questions to which the robots can make important contributions and biologists

recognize problems for which robotics may provide a solution.



64

USING ROBOTS TO MODEL SOCIAL BEHAVIOR




Conclusions

Communication is the glue that holds societies together.

Carl Zimmer, 2008

By applying experimental evolution to groups of robots that could
use communication to more efficiently solve a foraging task, this the-
sis has resulted in a number of contributions that may help in better
understanding the forces that govern the evolution of communica-
tion in nature. Moreover, throughout this work, we have drawn some
lessons regarding the different approaches to studying this question.
In this chapter we will summarize the work presented in previous
chapters, discuss the overall significance of our findings and how
they can inspire future research, both in theoretical and empirical
studies.

65
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6.1 Original contributions

6.1.1 Understanding the evolution of communication

The work presented in this thesis has illustrated how co-evolution between sig-
nalers and receivers can lead to the organization of stable communication sys-
tems. It has shown that for such systems to evolve, communicating individuals
do not require complex cognitive skills. Indeed, our robots were equipped with
very simple, feed-forward neural networks with no hidden layers and a total of
33 connection weights. These simple “brains” not only allowed robots to use
a range of signaling strategies with varying levels of reliability, and the corre-
sponding response strategies, but they also made it possible for robots to forage
efficiently in a noisy physical environment.

In the introductory chapter, we formulated the hypothesis that both related-
ness within groups of robots, and the level at which robots are selected (group
or individual) would influence the evolution of their communication strategies.
In chapter 2 we have shown that this is in fact the case. Groups in which robots
were clones evolved signaling strategies which reliably indicated the location of
the food source, while the robots simultaneously evolved to respond appropri-
ately to these signals. Communication was thus an adaptive behavior that in-
creased the performance of these highly related robots. These findings confirm
predictions (Keller and Surette, 2006; Diggle et al., 2007a) that communicating
individuals that share identical genes by descent would evolve to produce reli-
able signals, because this allows them to achieve higher inclusive fitness, thus
making them more likely to be selected for subsequent generations. Additional
experiments presented in chapter 4 confirmed this finding by directly measuring
signal reliability and showing that reliability increases gradually with increasing
within-group relatedness.

Similar adaptive communication strategies were observed in the experiments
presented in chapter 2 where robots were selected at the level of the group.
This is because selection at the level of the group reduces competition within
the group, since the likelihood of survival depends not only on one’s own per-
formance, but also on the performance of other group members (Frank, 1998;
Rainey and Rainey, 2003; Griffin et al., 2004).

These initial experiments in chapter 2 also revealed that having neither of
these two mechanisms (high relatedness or group-level selection) to allow for
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honest communication led to the evolution of communication strategies that
decreased the performance of the robots compared to a situation in which no
communication was possible. A detailed analysis of this case was carried out in
chapter 3, revealing that through their foraging behavior, robots inadvertently
transmitted information on the location of the food and were thus selected to
reduce light emission by food and instead produce signals in other areas of the
arena. Essentially, this amounted to a suppression of the inadvertently produced
information, which made it more difficult for other robots to find the food.

This shows that deception is not the only outcome to be expected when in-
terests conflict (Dawkins and Krebs, 1978). Instead, simply suppressing infor-
mation that inadvertently provides cues to other individuals may be a way to
alter signaling strategies in the presence of competition. These strategies can be
likened to information suppression observed in groups of conspecifics that con-
ceal information from one another, for example, by not producing vocalizations
on finding a source of food (Hauser, 1992; Laidre, 2006). Similarly, many prey
are selected to provide as little information as possible to their predators regard-
ing their location, and thus evolve to blend into their environment (Stevens and
Merilaita, 2009). The work presented in chapter 3 thus constitutes a first study
of the role of inadvertent information in the evolution of communication. Al-
though such cues are common in natural communication systems (Giraldeau,
1997; Danchin et al., 2004; Bonnie and Earley, 2007), they may have been over-
looked in models of communication because these models rarely couple signal-
ing behaviors with other behaviors. Our study thus shows that the ensemble of
an individual’s behaviors may carry more information than signaling alone, and

must therefore be taken into account when analyzing communicative behavior.

Another interesting observation made in the study in chapter 3 was that
complete suppression of information was never achieved. Instead, the system
stabilized at an equilibrium where little information was transmitted and re-
sponse to the information was weak. This was surprising, since one would have
expected robots to evolve to completely eliminate any information on food lo-
cation. However, this “suboptimal” equilibrium was found to be a result of the
interplay between variation introduced through mutations and weak selection
pressure on information suppression and the response to signaling. Initially,
robots were selected to suppress the inadvertent information produced by their

random signals, which weakened selection on attraction to the signals. In turn,
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Figure 6.1: The interplay between variation and weak selection pressure on (A) informa-
tion suppression and response to signals leading to the equilibrium observed in chapter
3, may have parallels in (B) societies where cheaters are suppressed through policing.

this lowered the strength of selection on information suppression, because pro-
ducing information no longer had such dire consequences on a signaler’s per-
formance. The subsequent rise in information resulted in an increase in the
response to the signal, leading again to increased selection for information sup-
pression (Fig. 6.1A). The resulting equilibrium also led to high variation both
in signaling and response strategies. These findings may provide a possible ex-
planation to the long-standing question of high intra-population polymorphism
observed in signaling systems where interests between signalers and receivers
conflict (Poulton, 1890; Whiteley et al., 1997; Dewitt et al., 1999; Bond and Kamil,
2002; Bond, 2007). In addition, such equilibria may not be restricted to systems
in which information is suppressed, but may apply to other co-evolutionary sys-
tems in which interests conflict, such as systems in which cheaters are punished
through policing. If policing leads to a reduction in the amount of cheating, it is
expected to be subject to weak selection, resulting — similarly to the observations
made in chapter 3 — in an equilibrium where both policing and cheating are
maintained (Fig. 6.1B). In fact, the introduction of variation into a population of
agents through mutations has been shown to result in stable equilibria, in which
policing and cheating are maintained (Foster and Kokko, 2006; McNamara et al.,
2008).
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6.1.2 Modeling the evolution of communication

Many of the findings discussed in the previous section, which have contributed
to our understanding of the evolution of communication can be attributed to the
modeling approach used in this thesis.

In the introductory chapter, we argued that modeling evolutionary processes,
as opposed to simply calculating optimal strategies, could lead to important in-
sights. Throughout this thesis, we have found this to be the case. Firstly, in
chapter 2, two reliable signaling strategies evolved. In some experimental repli-
cates, robots evolved to signal by the food and to be attracted to blue light, thus
increasing overall performance. However, an alternative strategy was found in
other experimental replicates, where blue light was used to signal the presence of
poison, while robots were repulsed by blue light, thus allowing them to find the
food. Although this strategy was less efficient than the food signaling strategy,
once this poison strategy had evolved, the robots rarely switched to the more ef-
ficient food signaling strategy because switching entailed crossing a “valley” of
low performance. These findings may explain the existence of the large variety
of signaling strategies in nature, although they may not all be equally efficient
(Von Frisch, 1967). A second finding that depended on the stochasticity of our
evolutionary model, was the low-information equilibrium and high polymor-
phism discussed in chapter 3 and in the previous section. Simply optimizing the
strategy of signalers would have led to no signaling at all. Instead, mutations
allowed for the persistence of information and the observed equilibrium.

A second important feature of our approach is, of course, the use of robots.
Many of the contributions in this thesis would not have been made if we had
used a more abstract model. This is not because it is impossible to model the
important aspects of the robotic model mathematically or in software. In fact,
our results are based on software simulations of the physical robots. Rather, we
believe that many of the features of the simulation were included because we
were aiming to precisely model physical robots, and not because we expected
them to affect the evolving communication system. For example, the findings
of chapter 3 that the robots” behavior produced inadvertent information regard-
ing the location of food was simply a side-effect of the spatial features of the
arena, and of the visual systems of the robots. Importantly, these features are
not only specific to the robots, but are also common features of real communi-

cation systems (Danchin et al., 2004; Dall et al., 2005). Similarly, the measure
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of signal reliability introduced in chapter 4 would not have been necessary in a
simpler model. It would have perhaps been sufficient to study signal frequen-
cies, as is done in many other models (Searcy and Nowicki, 2005). Our model
has thus revealed that in order to integrate the effects of individual behavior
into a measure of signal reliability, reliability must be measured from the per-
spective of the receiver (Rowe, 1999). This realization has indeed been taken
into account in some early studies characterizing communication systems (Hal-
dane and Spurway, 1954; Wilson, 1962; Conant and Steinberg, 1973; Fuchs, 1976;
Lenoir, 1982), but has been neglected in studies on signal reliability (Searcy and
Nowicki, 2005).

Our experiments have thus revealed that evolutionary processes, spatial prop-
erties of the environment, and perceptual effects of using vision were all impor-
tant in our model and in the obtained results. These results echo what we have
found through the literature review presented in chapter 5, where we concluded
that robots are useful when addressing questions in which mechanistic proper-
ties of the individuals and their interactions with the environment are expected

to influence the resulting social behavior and its evolutionary dynamics.

6.2 Outlook and future directions

The experiments presented in this thesis were not designed to reflect any specific
communication system in nature. The decision to use visual communication, for
example, was based on the capabilities of the robots” hardware, rather than a
desire to specifically study visual communication systems. However, it would be
interesting to see whether changes in the communication channel, for example
to using chemical communication, would influence the evolutionary outcome of
the system. This might be expected because in chemical communication systems,
individuals perceive their own signals, which is not necessarily the case in visual
communication. Pheromones can thus be used as a form of memory to mark
one’s own path, or to remain where the food was found, and not only to the
benefit of other individuals. Changing evaporation rates could then be used as
a means to regulate the strength of this effect.

Another possibility would be to study the effect of increasing the number
of food patches in the arena. This would change the dynamics of the forag-
ing behavior, because robots would then no longer be attracted to areas with
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the highest concentration of robots, but rather with intermediate concentrations,
indicating that the location of a food source that is not yet overcrowded. It is
unclear how these changes would influence the dynamics of the communication
system. The effects of food distribution would be interesting to explore because
they have been known to play an important role in shaping natural foraging
strategies (MacArthur and Pianka, 1966; Giraldeau and Caraco, 2000).

A third direction would be to explore the role of signal cost on signal evolu-
tion. As discussed in chapter 1, cost has been an important factor in signaling
theory, and is expected to play an important role in many natural communica-
tion systems (Maynard Smith and Harper, 2003; Searcy and Nowicki, 2005). In
addition, it would be easy to integrate into our current model by simply sub-
tracting performance points from robots that produce signals.

In addition to exploring the dimensions of the model further, this thesis has
provided a number of hypotheses that can be tested empirically. For example,
it would be interesting to explore whether the stable equilibrium observed in
chapter 3 is in fact mirrored in natural systems, both in communication and in
other co-evolutionary systems where interests conflict (Fig. 6.1), such as policing,
or sanctioning in mutualistic interactions (Foster and Kokko, 2006; McNamara
et al., 2008). Our results predict that in all these systems, an equilibrium of low
levels of the “suppression” and “cheating” behaviors are expected, with high
variation in both. Another testable prediction is that signal reliability increases
with relatedness, as observed in chapter 4. It would be interesting to apply the
measure of reliability outlined in chapter 4 to a natural communication system
and to study whether changes in kin structures will show qualitatively similar
changes in the level of signal reliability as we have found in this work.

As the quote by Carl Zimmer at the beginning of this chapter suggests, com-
munication is a fundamental ingredient to any social behavior. It is thus es-
sential to understand communication in order to fully grasp the mechanisms
driving the evolution of social systems. With the experimental work presented
in this thesis, we have taken some small steps toward this goal. Moreover, we
hope to have convinced the reader that there is much potential in using mech-
anistic models to explore questions regarding social evolution, and that such
approaches will play their role in completing the big picture of communication
and social behavior.
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Data Analysis

In this appendix, we outline the way in which performance, signaling strategies,
response strategies and selection pressure are computed in the experiments dis-
cussed in chapters 2, 3 and 4. We also outline the statistical methods used for

comparisons between experimental treatments in these chapters.

A.1 Performance

Performance was calculated for each robot as the average performance over 10
trials. In each trial, performance was calculated as the number of time-steps ¢
the robots spent by the food f minus the number of time-steps ¢, spent by the
poison p, normalized by the total number of time-steps in a trial T. Performance
could thus vary between -1 and 1.

A.2 Signaling

The total frequency of light emission S was computed as the mean number of
time-steps L robots spent emitting light divided by the mean number of time-
steps in a trial T. This measure is used in chapter 4 (Fig. 4.4A).

The frequency of light emission s, when in the vicinity of object o, where
0 € O = {f,p,n} (f stands for food, p for poison, and n for elsewhere in the
arena) was computed as the mean number of time-steps [, robots spent emitting
light in the vicinity of object o divided by the mean number of time-steps t, they
spent in the vicinity of o:

Sog = — (A1)
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A robot was considered in the vicinity of food or poison if touching the paper
disc placed under the food or poison. Otherwise, the robot was counted as being
elsewhere in the foraging arena. This measure is used in chapters 3 and 4 (Fig.
3.3A, 3.4A and 4.3).

The signaling strategy s used in chapter 2 (Fig. 2.7) was quantified for each
robot by estimating the average frequency of signaling near food f and poison
p. This was quantified by:

S=5f—Sp (A.2)

The value of s can therefore vary from —1 to 1, with a value of —1 indicating
that robots signaled only when near the poison and a value of 1 that signaling
occurred only when near the food. A value of 0 would indicate that robots were
not more likely to signal near food or poison.

Finally, in chapter 3, we refer to the concentration of blue light 3, in the three

areas o of the arena, which was computed as:

-1
A ly li

ico 4
where 4, is the proportion of the space of the arena occupied by object 0 (af =
ap = 0.024,a, = 0.953).

A.3 Response

The level of response to blue light b was measured by placing each robot at a
distance of x = 35cm and y = 35cm from a second stationary robot emitting
blue light, and recording the position of the moving robot relative to its original
position after 10 cycles. A decrease in both dimensions (x < 35 and y < 35) was
considered to be attraction, an increase in both dimensions (x > 35 and y > 35)
as repulsion, whereas other outcomes were not considered (see Fig. A.1). This
test was performed N times for each robot, and the response b to blue light was

calculated as:

_i-j
b= (A.4)

where i is the number of attractions and j the number of repulsions.

Four tests per robot (N = 4) were used to generate the data in chapter 2 (Fig.
2.7), ten tests (N = 10) to generate the data in Fig. 3.2B, and 100 tests (N = 100)
for the data in Fig. 3.4B and 3.5.
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Figure A.1: The response of the white robot to the robot producing blue light was recorded
as attraction if the robot moved in the light gray box and as repulsion if it moved in the
dark gray box (nothing was recorded if the robot moved in the white space after the 10
cycles). This test was repeated N times for each robot.

A4 Selection pressure

Selection pressure was computed separately for each of the 20 experimental
replicates in chapter 3 (Fig. 3.3). It was equal to Spearman’s rank correlation
coefficient between signaling frequency by the food sy and performance p of the

1000 individuals in the population of robots in each replicate at each generation.

A.5 Statistical analysis

In all experiments presented in this thesis, 20 replicates were conducted for each
experimental treatment.

To compare various measurements (e.g., performance, light emission fre-
quencies, response to blue light, etc.) between treatments over many genera-
tions, we calculated average values of all individuals in the population (1000 in
chapters 2 and 3 and 800 in chapter 4) for each of the 20 replicates per treat-
ment at each generation. The resulting 20 values per treatment, per generation
were used to describe data (mean + standard deviation or standard error) and
were compared with non-parametric (Kruskal-Wallis and Mann-Whitney) tests
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as some of the data did not follow a normal distribution (Kolmogorov-Smirnov
test).

When analyses were carried out at the end-point of the evolutionary exper-
iments, population average values were again averaged over the last ¢ genera-
tions for each of the 20 replicates per treatment (¢ = 50 in chapter 2, ¢ = 10 in
chapter 3 and g = 20 in chapter 4), resulting in 20 values per treatment. These
values were again compared using non-parametric tests.

Within-population variance was computed for each of the 20 replicates by
taking the average of the standard deviations in the population in each of the last
g generations (¢ = 10 in chapter 3, where variance was used). Non-parametric
(Mann-Whitney) tests were used to compare the resulting 20 values across ex-

periments.



Information, Reliability and
Relatedness

In this appendix, we provide details on the methods used to compute measures
of information, reliability and within-group relatedness. These measures are
used in chapters 3 and 4.

B.1 Information

To quantify the information content transmitted by blue light, we analyzed the
inputs of each robot’s omni-directional visual system to establish whether robots
perceived more blue light in the direction of the food. This was done by (i)
ranking the four quadrants of the robot’s visual system by the amount of light
perceived at each time-step until the robot reached the food (i.e., the quadrant
with the largest amount of blue light was assigned rank g = 1, etc., where
7 € Q= {1,2,3,4}) and (ii) computing the ratios pj,; of time-steps where the
food was located in each of the four quadrant ranks q (Fig. B.1, white bars).
The amount of information on food location provided by blue light emission
was then calculated using the Shannon entropy (Shannon, 1948) (uncertainty) of
the frequency distribution X; = {pn, pr2, p13, p1a} using the following equation:

H(X1) = = ) piglogpig (B.1)
q€Q

This entropy value H ranges from H,,;, = H(X,;;,) = 0, when there is no un-
certainty on food location (e.g., blue light is perceived only in the direction of
the food, X,y = {1,0,0,0}) to Hyax = H(Xmax) = 1.39, when uncertainty on
the location of food is maximal, (i.e., there is no association between blue light
intensity and food location, X, = {0.25,0.25,0.25,0.25}). Accordingly, the in-
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1 T
[ 1 Information freq. distribution
[ 1 Reliability freq. distribution

Frequency of food in quadrant
o
(&)

1 2 3 4
Quadrants ranked by intensity of blue light

Figure B.1: Association between the intensity of blue light perception and food location
given as the proportion of time steps where the food was located in the quarter of the
360° camera image with greatest, second greatest, third greatest and lowest intensity of
blue light. The bars represent means and the error bars standard deviations of the 20
independent replicates from generations 491 to 500 for the frequency distribution used
to compute information I (white, I = 0.16 £ 0.09) and reliability R (gray, R = 0.36 £ 0.17)
for the experiments presented in chapter 4 when relatedness was 1 and robots were not
blind to blue light. The horizontal dashed line gives the expected value when there is no
association between intensity of blue light in the quadrants and food location (i.e., I = 0
and R = 0). Maximum information and reliability (I = 1 and R = 1) would be achieved if
one of the 4 columns would be at frequency 1 and the other three at frequency 0.
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formation content I is defined as the difference between the maximum entropy
Hyax and entropy H(X|), normalized by Hy,qx, thus yielding values of I between
0 (when the intensity of blue light provides no information of the location of the
food source) and 1 (when the intensity of blue light perceived provides perfect
information on the location of the food source at all time-steps):

. Hmax —H (XI )

1(X) = == (B.2)

B.2 Reliability

To measure signal reliability R, we followed a similar procedure as with infor-
mation, except that instances in which a robot could perceive no blue light were
excluded in the computation of the probability distribution. Instead, to compute
reliability, we (i) ranked the four quadrants of the robot’s visual system by the
amount of light perceived at each time-step in which the robot could perceive light
until the robot reached the food and (ii) computed the ratios pg, of time-steps
where the food was located in each of the four quadrant ranks g (Fig. B.1, gray
bars).

The level of signal reliability was then calculated using the Shannon entropy
of the frequency distribution Xg = {pr1, Pr2, PR3, Pra } using the following equa-
tion:

H(Xg) = = }_ prelogpry, (B.3)
q€Q
calculating the difference between the maximum entropy Hy.x and H(Xg), and
normalizing it by H,y to obtain values of R between 0 (when all perceived
signals were equally distributed in all four directions with respect to the food)
and 1 (when all perceived signals were in the same direction with respect to the
food):
o Hmax —H (XR)

R(Xg) = = . (B.4)

B.3 Relatedness

To create a group of size n with a level of relatedness r, we composed the group
of k different types of clones, with k < n. The frequency x; of each type of clone i
could vary between 1/n and 1, such that the sum of x; for all valuesof i =1, ..,k
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r |k x;,i=1.k
BEE2323222
0253|332
054 3|83 4
075 2| %%
1 |18

Table B.1: Number k and proportions x; of clones used to compose groups of 5 different
levels of relatedness r used in chapter 4.

was equal to 1. For each type of clone i, we computed the probability that a
signal emitted by an individual of type i would be perceived by its clone:
nx; — 1
— . B.
p="1 (B5)

By averaging P; over all types of clones in a group, we obtain relatedness 7:

k
r = Z Xi - Pi- (B6)
i=1

The numbers of different types of clones k and their frequencies x; are given
in table B.1 for the relatedness values used in chapter 4 (0, 0.25, 0.54, 0.75 and
1). Note that a group size of 8 was chosen for these experiments (instead of
10 in chapters 2 and 3) because it made it possible to construct colonies with
relatedness levels that were evenly distributed between 0 and 1. A relatedness
level of 0.54 was used because it was the nearest value to 0.5 that was achievable

with this approach and a group size of 8.



Glossary

Much of the terminology used in this thesis has previously been defined in the
literature. This glossary is provided to clarify which definitions we subscribe
to. We also define a number of terms that are either rarely explicitly defined, or
have a definition that is specific to this thesis.

Altruism. “A behavior which is costly to the actor and beneficial to a recipient;
[..] cost and benefit are defined on the basis of the lifetime direct fitness

consequences of a behavior” (West et al., 2007b).

Altruistic communication. A behavior or phenotype that alters the behavior
of another organism or other organisms that is costly to the actor, and
beneficial to the receiver(s), and which has evolved because of its beneficial

effect on the receiver(s).

Communication. A behavior or phenotype that alters the behavior of another
organism or other organisms, which has evolved because it is beneficial to

either one or both of the participants (Wilson, 1975).

Cooperation. “A behavior which provides a benefit to a recipient, and which
is selected for because of its beneficial effect on the recipient” (West et al.,
2007b).

Cue. A behavior or phenotype that alters the behavior of another organism or
other organisms, which is beneficial to the receiver(s), but has not evolved
because of that effect (Keller and Surette, 2006; Scott-Phillips, 2008).

Deceptive signal. A signal, which has evolved because of its negative effect
on the receiver(s) compared to other individuals that do not receive the
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signal. Deceptive signaling is also commonly referred to as “coercion”
(Diggle et al., 2007a; Scott-Phillips, 2008).

Fitness. “The ability of organisms [..] to survive and reproduce in the envi-
ronment in which they find themselves” (Orr, 2009). In the context of this

thesis, it is equivalent to performance.
Game-theoretical model. See game theory.

Game theory. “A mathematical formalism used to [..] find the optimal strategy
for one player to use when [its] opponent also plays optimally” (Flake,
2000).

Honest signal. A signal, which has evolved because of its positive effect on the

receiver(s) compared to other individuals that do not receive the signal.

Inclusive fitness. Fitness from personal survival and reproduction plus fitness
component received from effects on the survival and reproduction of rela-
tives (Foster et al., 2006).

Individual-based model. Models that describe individuals as discrete, auto-

nomous entities (Huston et al., 1988).

Information. Generally defined as “a reduction in uncertainty” (Scott-Phillips,
2008). For the mathematical definition used in this thesis, see Appendix
B.1.

Kin selection. “Process by which traits are favoured because of their beneficial
effects on the fitness of relatives” (West et al., 2007b).

Mixed model. Study in which a robot or multiple robots are made to interact

with a living organism or organisms.

Performance. In the context of this thesis, it refers to the efficiency of an indi-

vidual at accomplishing a task or a number of tasks during its lifetime.

Relatedness. Generally defined as the “genetic correlation among individual
loci or organisms” (Foster et al., 2006). In the context of this thesis, it
denotes the probability of a signal receiver being the signaler’s clone, see
Appendix B.3.
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Reliability. In the context of this thesis, probability that a received signal will
have a positive effect on the receiver(s) compared to other individuals that
receive a cue. For the mathematical definition used in this thesis, see Ap-
pendix B.2.

Response. A behavior that evolved because of the effect of a signal.

Signal. A behavior or phenotype that alters the behavior of another organism
or other organisms, which evolved because of that effect, and that is effec-
tive because the receiver’s response has also evolved. (Keller and Surette,
2006; Scott-Phillips, 2008). Note that signals can be honest or deceptive, but
differ from cues.

Signal cost. Reduction in fitness as a result of signal production.
Signal reliability. See reliability.

Situatedness. The extent to which individuals are embedded in an environ-
ment that can be sensed and modified by those individuals (Varela et al.,
1991; Clark, 1996)

Social behavior. Any interaction that involves two or more individuals from

the same or different species.

Unreliable signal. A signal, which has evolved because of its negative effect on

the receiver(s) compared to other individuals that receive a cue.
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