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Abstract

The depth and geometry of the bedrock/regolith interface influence many near-surface pro-

cesses. Geophysics offer means to image them non-invasively since they correspond to

discontinuities in physical properties. For instance, refraction seismic applications can

leverage the strong correlation between seismic velocity and porosity, while DC resistiv-

ity measurements with their sensitivity to electrical conductivity are indirectly sensitive to

porosity and clay content. Combining these two data types is beneficial since their spa-

tial resolution patterns and sensitivities to relevant target properties differ. Here, we pro-

pose a probabilistic joint inversion framework that uses DC resistivity and first-arrival

seismic travel times to infer a common interface geometry separating two heterogeneous

sub-domains. A synthetic test case demonstrates that the method is more accurate in sam-

pling the target interface than inversion results obtained using single datasets. We then ap-

plied the joint inversion method to field data from the Calhoun Critical Zone Observatory

in South Carolina, where it resolves apparent contradictions in the individual inversion re-

sults. It produces a bedrock topography that mirrors surface topography and offers clear

indications of a more fractured bedrock below the surface topography lows.

keywords Inverse theory, joint inversion, Bayesian inversion, bedrock interface,

electrical resistivity tomography (ERT), refraction seismics

1 Introduction

The depth to the bedrock and its topography influence many surface and near-surface

processes [Rempe & Dietrich, 2014] such as water runoff to channels [Onda et al., 2004]

and water chemistry [Anderson et al., 2002]. Furthermore, the bedrock/regolith interface

is a key boundary when studying erosion rates and certain atmospheric processes related

to plant water uptake and transpiration [Jones & Graham, 1993]. Its characteristics are

crucial for modeling soil thickness, which depends on the balance between production at

depth (i.e., where weathering of bedrock takes place) and erosion at the surface [Heimsa-

thet et al., 1997]; an interplay which ultimately determines the critical zone (CZ) thickness

[Brantley et al., 2007]. Moreover, this boundary is a key controlling factor for landscape

evolution and landslide investigations [Lanni et al., 2013; Reneau & Dietrich, 1987]. For

these reasons, its imaging is beneficial for a wide range of applications. Geophysical in-

vestigations have become a common tool in geomorphological research [Schrott et al.,
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2003], because they allow for non-invasive and relatively fast surveys that are sensitive

to discontinuities in physical properties [Sass, 2007]. Moreover, geophysical measurements

provide complementary information about subsurface heterogeneities that is complemen-

tary to those offered by remote sensing, geomorphological or geological mapping [Olona

et al., 2010; Tye et al., 2011; Hirsch et al., 2007].

One geophysical technique that is commonly used to infer interface geometries is the

seismic refraction method, which uses the first-arrival travel times of critically refracted

body waves to reconstruct P-wave velocity models of the subsurface [Zhuo, 2014]. Given

the strong correlation between seismic velocity variations and contrasts in density and

porosity, the seismic refraction method is well suited to detect and image subsurface in-

terfaces; for instance, the thickness of weathered layers or fractured zones [Lee & Freitas,

1990]. Another geophysical method that is widely used in this respect is electrical resis-

tivity tomography (ERT; Chambers et al., 2012; Hsu et al., 2010). ERT provides compar-

atively high-resolution images of the shallow subsurface (down to depths of tens to a few

hundreds of meters) with changes in electrical resistivity being strongly related to changes

in water and clay content [Dahlin, 1996]. Their difference in spatial resolution and sensi-

tivity to target properties (e.g., water content) has motivated the combined use of seismic

refraction and ERT in numerous studies [Berge et al., 2000; Linder et al., 2010; Hellman

et al., 2017; Juhojuntti & Kamm, 2015]. It is well established that joint inversions aiming

at inferring the two physical fields (electrical resistivity and P-wave velocity) can improve

resolution and decrease interpretation ambiguity compared to individual inversions [Gal-

lardo & Meju, 2004].

In this paper, we focus on the seismic refraction and DC resistivity datasets that

were used by St. Clair et al. [2015] to infer the geometry of the interface between the crit-

ical zone (CZ) and the intact bedrock at the Calhoun Critical Zone Observatory in South

Carolina. In their work, the underlying motivation was to better understand the influence

of surface topography on bedrock weathering. To do so, St. Clair et al. [2015] inverted

the two datasets separately before interpreting them qualitatively. Here, we jointly invert

the two datasets by using structural constrains that impose a common interface geometry

of the two physical property fields [Kozlovskaza et al., 2007; Linde & Doetsch, 2016]. To

achieve this, we adapt a probabilistic inversion framework for single-method data aiming

at inferring an interface separating two heterogeneous sub-domains [de Pasquale et al.,

2019] to two data types with model coupling offered by a common interface. We investi-
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gate the added value offered by the joint inversion results compared to those obtained by

individual inversions. Based on these results, we seek to complement the findings and in-

terpretations by St. Clair et al. [2015], in which ERT and seismic refraction surveys were

used to investigate the influence of surface topography on bedrock geometry and proper-

ties.

2 Methodology

2.1 Geophysical methods and settings

DC resistivity is a geophysical method that is used to image the subsurface soil and

rock resistivity by observations made with electrodes at the Earth’s surface or in boreholes

[Binley & Kemna, 2005]. We use the Boundless Electrical Resistivity Tomography (BERT)

library [Rücker et al., 2006; Günther et al., 2006] to simulate the DC resistivity forward

response. Using BERT, we can compute the 2.5D forward response by relying on a finite

element scheme implemented on unstructured meshes [Si, 2015]. Unstructured meshes

allow for efficient local refinement and are suitable to account for surface topography and

internal boundaries. Given that we consider examples with a significant topography, we

rely on geometric factors that are calculated numerically by forward modeling.

Seismic refraction tomography relies on first-arrival travel times corresponding to

direct and critically-refracted seismic waves to reconstruct seismic P-wave (i.e., compres-

sional wave) velocity models. The time at which these waves arrive at receiver positions

(i.e., first-arrival travel times) are the main observations used in seismic refraction sur-

veys. Besides the density of the rock matrix (related to mineralogical composition and

texture), seismic velocities are affected by porosity and pore-fluids, as well as confining

stress, pressure and temperature [Schmitt, 2015]. In order to simulate the first-arrival travel

times, we use the physics refraction class of pyGIMLI (Geophysical Inversion and Mod-

elling Library in Python; Rücker et al., 2017). Specifically, the forward operator used is

based on the calculation of the fastest paths from sources to receivers along the elements

in the unstructured mesh [Moser, 1991; Dijkstra, 1959]. This algorithm by Dijkstra is very

popular, but also imperfect, since the traveled distance is always overestimated given that

rays can only move along the discretized elements. It is used herein because of its speed,

but we will see later that the related modeling errors have adverse effects on the joint in-

version results.
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The field-based case-study considers the datasets that were collected at the Calhoun

Critical Zone Observatory in South Carolina and interpreted by St. Clair et al. [2015].

Here, DC resistivity and seismic refraction surveys were used to investigate the influence

of surface topography on bedrock geometry. The DC resistivity survey was acquired using

56 electrodes spaced 5 m apart with a dipole-dipole electrode configuration. The 400 m

long profile was obtained by using one roll-along in which 50% of the electrodes stayed in

place, which resulted in a total of 84 different electrode positions. When using the orig-

inal data set, de Pasquale et al. [2019] report that a very fine model parameterization is

needed to explain the fine-scale details close to the surface. Since our interest is in the

deeper CZ structure, we could save computational time, without significantly affecting the

results in the area of interest, by only considering every second electrode position and re-

moving configurations with a maximal electrode separation of 30 m. This resulted in 42

electrodes and 645 measurements being used. For the seismic refraction survey, 96 geo-

phones were used with a spacing of 2.5 m and the shots spaced 10 m apart. This configu-

ration of 237.5 m in length was repeated once after moving the set-up and complemented

with off-line shots to link the two acquisitions, resulting in 192 geophone positions. We

manually picked the first arrival travel times on each trace after processing the data with

a zero-phase Butterworth filter (15 Hz 8dB/octave low cut and 150 Hz 24 dB/octave high

cut) to improve the signal-to-noise ratio. Particularly, the signal was weak at far offsets

and it was particularly noisy at the end of the profile. Travel time curves were plotted

for quality control purposes, whereby erroneous picks were ascertained and deleted from

the data through comparison with neighboring travel-time curves. This process resulted

in 3896 travel times that were kept for inversion. For the ERT dataset, we used a noise

description based on an uncorrelated relative Gaussian error of 3.7 %, while for the re-

fraction seismic observations we considered an absolute error of 3 milliseconds and used

these noise levels as target data fits for all individual (deterministic and probabilistic) and

joint probabilistic inversions.. These choices were made to obtain similar data misfits as

for the inversion results presented by St. Clair et al. [2015], thereby, facilitating compar-

isons. All inversion results presented herein, have near-identical data fits.

To demonstrate the proposed inversion methodology, we first consider a synthetic

test case in which DC resistivity and seismic refraction surveys are simulated for a test

model with the same measurement configurations and surface topography as for the real

dataset. The resulting data are noise-contaminated according to the data error assumed for
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the field data and subsequently used to jointly invert for the interface between regolith and

intact bedrock.

2.2 Probabilistic joint inversion with interface constraints

de Pasquale et al. [2019] presented a probabilistic formulation and solution to the

inverse problem of using one geophysical data type to infer the location and geometric

shape of an interface separating two heterogeneous sub-domains. In this empirical-Bayes-

within-Gibbs algorithm, the interface geometry and physical property field updates are

performed alternately within a Markov chain Monte Carlo (MCMC) scheme [Sambridge

& Mosegaard, 2002]. Furthermore, the interface geometry and the physical properties of

the sub-domains are constrained to favor smooth spatial transitions and pre-defined prop-

erty bounds. The algorithm by de Pasquale et al. [2019] is here adapted to joint inversion

in which the interface is considered common for two physical property fields. The joint

probabilistic inversion is summarized below in four steps for the problem of delineating

the CZ, while a more detailed treatment of algorithmic details is provided by [de Pasquale

et al., 2019].

(1) Chain initialization: the initial model realizations of seismic P-wave velocity (mv
0)

and electrical resistivity (mr
0) are obtained from the initial property fields of both

the CZ (mrCZ
0 , mvCZ

0 ) and bedrock (mrB
0 , mvB

0 ) domains that are defined over the

whole model domain (Figs. 1a and b) and the initial interface (I0, Fig. 1c). We

initialize the physical properties on a 58 × 10 grid with cell size of 8 × 8 meters,

by randomly drawing values from uncorrelated log-uniform distributions. These

fields are linearly interpolated on the unstructured mesh used for the forward com-

putations (Figs. 1a and b). In this way we contain the dimension and geometric-

complexity of the inversion parameters. The interface is sampled as a set of con-

nected nodes within the unstructured mesh and determines the field that is to be

used for forward simulations (i.e., CZ above and bedrock below the sampled in-

terface as shown in Figs. 1d and e). Note that the ERT forward simulation mesh

is expanded to the sides and with depth to avoid boundary effects. Once mv
0 and

mr
0 are built, we evaluate their likelihoods [Tarantola, 2005]: L(mv

0 , I0 |dRS) and

L(mr
0 , I0 |dERT), where dRS and dERT are the first-arrival travel times and apparent

resistivities, respectively. Following de Pasquale et al. [2019], we evaluate corre-
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sponding constraint functions that are used to quantify model parameter variability,

c(Sv,r
0 ), and interface roughness, c(R0). Their values are used in the inversion to

penalize model structure with weights that are inferred using the empirical Bayes

approach as described by Rosas-Carbajal et al. [2014]. For both constrain types, we

rely on a total variation measure.

(2) Interface update proposals: after updating the interface, following a principle of

minimum change, both the physical parameter fields (seismic velocity and electri-

cal resistivity) are re-mapped accordingly to the proposed interface. The resulting

proposal is accepted with probability:

αI = min

[
1,

L(mv
curr , Iprop |dRS)L(mr

curr , Iprop |dERT)c(Rprop)

L(mv
curr , Icurr |dRS)L(mr

curr , Icurr |dERT)c(Rcurr)

]
, (1)

where the subscripts prop and curr refer to the proposed and current state of the

Markov chain.

(3) Physical property update proposals: both physical property fields are perturbed

for each sub-domain using a symmetric Gaussian proposal distribution and mapped

according to the interface obtained in step (2). The resulting resistivity and velocity

field proposals are accepted or rejected independently from each other, with proba-

bilities:

αERT = min

[
1,

L(mr
prop , Icurr |dERT)c(Sr

prop)

L(mr
curr , Icurr |dERT)c(Sr

curr)

]
, (2)

αRS = min

[
1,

L(mv
prop , Icurr |dRS)c(Sv

prop)

L(mv
curr , Icurr |dRS)c(Sv

curr)

]
. (3)

The procedure is then repeated starting from step 2.

(4) Chain finalization: after “burn-in" (i.e., the number of iterations needed to start

sampling proportionally to the posterior distribution; Meyn & Tweedie , 1993) and

when the stationary part of the chain has reached the desired length, the iteration

loop over steps 2 and 3 terminates and the MCMC realizations after burn-in repre-

sent our estimate of the posterior distribution of the investigated subsurface.

A schematic flowchart of the algorithm is presented in Fig. 2.
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2.3 Petrophysical relationships

In most rocks and soils, electrical current is due to electrolytic conduction of ions.

As a consequence, the main factors affecting subsurface resistivity are water content, salin-

ity, porosity and the connectivity of the water phase [Lesmes & Friedman, 2005]. Another

important factor affecting electrical resistivity is clay type and content through its contri-

bution to enhanced conduction within the electrical double layer at the mineral-water in-

terface. Among many petrophysical relationships, we consider below the relationship pro-

posed by Linde et al. [2006], which is based on volume-averaging in the high-salinity limit

(the pore contribution to overall conduction is much larger than the surface contribution),

to highlight how electrical conductivity (the inverse of electrical resistivity) is affected by

properties and state variables of interest:

σe f f =
1
F

[
Sn
wσw + (F − 1)σs

]
. (4)

Here, σe f f (S/m) is the effective conductivity of the matrix-water-air system at the scale

of a Representative Elementary Volume (REV), σs the surface conductivity, σw the pore

water conductivity, F = φ−m the electrical formation factor which depends on the porosity,

φ, and on the cementation exponent m, Sw is the water saturation and n is the saturation

exponent, which is related to the tortuosity of the water phase.

To quantitatively interpret seismic properties in fractured rock it is common to rely

on an equivalent medium representation. Here, the multiphase (minerals, water, air) prop-

erties and their connectivities are replaced locally (at the scale of a REV) by an upscaled

homogeneous medium with the same macroscopic properties [Liu & Martinez, 2012]. In

this field of rock physics [Mavko et al. , 2009], there are many formulations with different

underlying assumptions. They range from macroscopic models of heterogeneous rocks that

do not account for microscopic heterogeneities (i.e., pore shape, connectivity and fluid dis-

tribution) [Biot, 1956; Gassmann, 1951], to inclusion-based models which upscale micro-

scopic features to describe the macroscopic elastic behavior of the rock [Xu, 1998; Hud-

son, 1981; Chapman, 2003]. A rough indication of the impact of porosity in saturated

rocks is given by Wyllie’s mixing law [Wyllie et al., 1956, 1958]:

1
Ve f f

=
φ

Vf
+

1 − φ
Vm

, (5)

where Ve f f , Vf and Vm are the P-wave velocities of the saturated rock, the pore fluids

and the rock matrix (mineral matrix). All common rock physics models and observa-

tions agree that seismic velocities in fractured rocks are lower than in intact rocks, with
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the contrast depending on fracture porosity, connectivity and filling material. For instance,

the P-wave velocity in water is five times greater than in air, therefore, water saturated

porous/fractured rocks presents a higher elastic wave velocity than unsaturated rocks [Bar-

ton, 2009; Nur & Simons, 1969].

3 Results

3.1 Synthetic test case

In the synthetic test case, we consider identical survey layouts and the same surface

topography as for the subsequent case-study at the Calhoun CZO. Moreover, the phys-

ical properties are assumed to have a log-uniform prior of resistivity in Ωm and veloc-

ity in
m
s

with the same prior ranges as later used for the Calhoun case-study. The prior

ranges for the physical property fields are mr
CZ ∈ [log10(80), log10(10000)], mv

CZ
∈

[log10(300), log10(4000)] for the CZ sub-domain and mr
b
∈ [log10(2000), log10(30000)],

mv
b
∈ [log10(4000), log10(6000)] for the bedrock. Furthermore, we place the true interface

at a similar depth range as for the real case (i.e., between the surface and 20 m depth).

Fig. 3(a) represents the electrode positions and the resistivity model used to generate

the synthetic ERT datasets, while Fig. 3(c) shows the interpolation (through the nearest

neighbor method) of the input resistivity model on the mesh used for the forward com-

putations. Fig. 3(b) displays the shot positions and the P-wave velocity model, while Fig.

3(d) represents its interpolation on the mesh used for the forward computation. For both

velocity and resistivity fields, the two heterogeneous sub-domains are obtained by station-

ary multivariate Gaussian process generations through circulant embedding of the covari-

ance matrix [Dietrich & Newsam, 1997]. Fig. 3(e) shows the ERT inversion model re-

sult obtained by a l1-norm mimicking smoothness-constrained deterministic inversion that

do not penalize sharp spatial variations stronger than gradual variations, while Fig. 3(f)

shows the corresponding deterministic inversion model result for the refraction seismic ob-

servations. In Figs. 3(e) and (f) we indicate the interface obtained by using the maximum

vertical gradient method on the deterministic inversion results (following the procedure

described by Chambers et al., 2012). Moreover, the deterministic inversion model results

are depicted with a transparency that is inversely proportional to the cumulative sensitiv-

ity. This highlights that the sensitivity of the seismic refraction measurements deteriorates

significantly after 400 m. Therefore, for the analysis and interpretation of the inversion re-
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sults, we focus only on the results obtained in the first 400 m. Finally, in Figs. 3(g-h) we

show a measure of discrepancy between the target model and the inversion results:

wr = mr
true −mr, (6)

wv = mv
true −mv,

where mr
true and mv

true are the vectors of the log10 resistivity and velocity values of the

true model (Fig. 3c for the resistivity and Fig. 3d for the velocity); while mr and mv are

the vectors of the log10 resistivity and velocity deterministic inversion results, respectively.

The mean absolute value of the model discrepancy is 0.28 for the resistivity and 0.12 for

the velocity inversion model results.

In both deterministic inversions, the data were fitted to the same error levels as those

used in the subsequent probabilistic inversions of the synthetic data. These correspond

to inflating the assumed data errors by a factor of 1.1 with respect to the standard devi-

ation used to contaminate the DC resistivity observations, thereby, yielding a standard

deviation of 4.1% and by a factor of 1.7 for the seismic refraction observations, thereby,

yielding a standard deviation of 5.1 milliseconds. In an attempt to partly avoid commit-

ting an "inverse crime", we used a different unstructured mesh when generating the data

compared with the one used for the inversions. This implies that the best model that we

can recover for the synthetic example is the ones reproduced by Figs. 3c-d and not the

true data-generating model in Figs. 3a-b. The factors mentioned above were determined

by comparing the residuals between these two types of models. The addition of this model

error would not have been needed if the data generating mesh would have been the same

as in the subsequent inversion.

To assess the added value of the proposed probabilistic joint inversion algorithm, we

also run the empirical-Bayes-within-Gibbs algorithm by de Pasquale et al. [2019] consider-

ing the DC resistivity and refraction seismic datasets individually. For each case (i.e., two

individual and one joint inversion), to sample the posterior space, we run three indepen-

dent MCMC chains for 5 × 105 iterations with each iteration taking ≈ 0.4 seconds when

inverting the seismic dataset, ≈ 1.7 seconds when inverting the DC resistivity dataset and

≈ 2 seconds for the joint inversion. We start all nine MCMC chains with random uncor-

related initial models and use Geweke analysis [Geweke, 1992] to asses the burn-in pe-

riod of the chain. This method proceeds by testing if the mean of the log-likelihood of the

first part (20 % in our implementation) of the supposedly stationary section of the MCMC
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chain can be assumed to be the same as the later part (last 50 % in our implementation).

By incrementally increasing the initial part of the chain that is discarded from the analy-

sis, it is possible to estimate the burn-in period. The convergence statistics for the different

inversion schemes are summarized in Table 1. Considering the conservative choice of us-

ing the last 2 × 105 iterations for which the burn-in has reached by all inversions with a

considerable margin, the potential scale reduction factor (R̂; Gelman & Rubin, 1992) is

found to be below 1.2 for the majority of the model parameters of the velocity fields for

both the bedrock (100 % of the parameters for individual and 98 % for joint inversion )

and the CZ sub-domains (69 % for seismic refraction and 61 % for joint inversion). The

resistivity field parameters have R̂ < 1.2 for the majority of the bedrock parameters (70

% for individual and 68 % for joint inversion) but not for the CZ sub-domains (20 % for

individual and 24 % for joint inversion). Since this threshold value is typically used to as-

sess if the MCMC chains have sampled the posterior sufficiently, we find that we did not

sufficiently sample the posterior pdf, in particular, the CZ resistivity fields. This implies

that each individual chain has not sufficiently sampled the posterior pdf. Consequently, the

spread of the parameters is likely larger than those inferred in each chain. Nevertheless,

combining the three chains for each inversion case increases the standard deviation of the

model parameters. For the velocity fields, the parameters of the bedrock sub-domain have

a slight augmentation in standard deviation (average of 1% for individual and 7% for joint

inversion), while for the CZ sub-domain this increase is more significant (average of 26%

for individual and 32% for joint inversion). In general the resistivity parameters show a

larger increase of standard deviation for both the bedrock (average of 22% for individual

and 21% for joint inversion) and CZ sub-domains (average of 86% for individual and 83%

for joint inversion). Note that these results are consistent with the values of R̂; when they

are small (e.g., seismic properties of the bedrock), then the variance within a given chain

is similar to the variance of all chain.

In Fig. 4 we display the last posterior model realization for each of the nine MCMC

chains, while in Fig. 5 we plot the corresponding vertical resistivity and velocity profiles

at 50 m, 200 m and 350 m along the profile length, together with target model values. For

each inversion case, the three individual MCMC chains show similar posterior model re-

alizations and vertical profiles. Here, the consistency in the inferred interface locations

is manifested by similar depths and magnitudes of the jumps in resistivity and/or veloc-

ity. Fig. 6 shows the mean, normalized standard deviation, probability maps of the in-
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ferred interface location and model discrepancies (eq. 4.6). These results indicate that the

probabilistic inversion of a single dataset is able to sample interfaces that are overall in

good agreement with the target one. In the case of individual inversion of the DC resis-

tivity dataset (Fig. 6a), the chains are found to sample the underlying interface well in

the central area of the investigated domain (i.e., between 100 m and 300 m) but not on

the sides (i.e., where there is less coverage). The probabilistic inversion of the seismic

refraction dataset (Fig. 6i) samples the proper bedrock topography, but it places the inter-

face slightly deeper than the true one. Finally the joint inversion model results (Figs. 6d

and g) combine the resolution ability of the two data types and obtain an interface that is

more consistent in terms of shape and depth. This is also seen by studying the discrep-

ancies between the target models and the mean of the posterior realizations. In case of

individual inversion of ERT data, Fig. 6(n) shows a thick area of over-estimated resistivity

(hence the negative relative error) on the left and right side of the domain, reflecting the

too shallow interface that was sampled by the MCMC chains. The mean absolute value of

model discrepancy is in this case 0.24. For the individual refraction seismic inversion, Fig.

6(p) shows a layer of underestimated velocity (hence the positive relative error) along the

whole profile, mimicking the target interface shape and expressing a deeper interface than

the target one. This discrepancy leads to a mean absolute model discrepancy of 0.074.

Finally, for both resistivity and velocity, the probabilistic joint inversion mitigates these

issues. The improvement is particularly evident in the resistivity model discrepancy (Fig.

6o), where the area of over-estimation of the inferred field is significantly reduced. An im-

provement is also seen at 80 m and 300 m along the profile length (i.e., the valleys) for

which the velocity model discrepancy (Fig. 6q) reduces significantly. The resulting mean

absolute model discrepancies are 0.17 for resistivity and 0.066 for velocity. Finally, the

probability maps show that the joint inversion results also increase the uncertainty on the

interface location (shadow area in Fig. 6f), if compared with the individual ERT (Fig. 6c)

or refraction seismic (Fig. 6m) inversion results.

Fig. 7 shows vertical profiles of the velocity and resistivity fields obtained for the

different probabilistic and deterministic inversion approaches plotted together with the

true model parameter values. Both the individual and joint probabilistic inversions present

jumps in the physical property values at locations that are mostly in agreement with the

target interface location. In case of deterministic inversion results, the physical property
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values smoothly increase with depth. This results in significant underestimation of the

bedrock properties.

To quantify the ability of the different inversion approaches to infer the target inter-

face (Itarget ), we compute the average distance between Itarget and the sampled (in case

of probabilistic approaches) or inferred one (in case of deterministic inversion results):

D̄ =

∫ xmax

xmin
|Itarget − Isampled/in f erred |

xmax − xmin
, (7)

where xmin and xmax are the horizontal limits of the model domain considered for the

analysis of the inversion results, accordingly to the cumulative sensitivities of the methods.

For the deterministic inversion, this distance is D̄ = 9.0 m when considering the DC re-

sistivity data and D̄ = 6.0 m when considering the seismic refraction data. The empirical-

Bayes-within-Gibbs chains infer interfaces with D̄ = 7.8 ± 0.7 m when considering the DC

resistivity and D̄ = 6.2 ± 0.6 m when considering the seismic refraction data individually.

Our proposed probabilistic joint inversion with interface constraint yields a distance of 4.1

± 0.3 m, which is a significant improvement compared to the other inversion results.

3.2 Calhoun CZO

We now turn our attention to the results obtained when considering the field data

from the Calhoun CZO. In Fig. 8, we show the (a) DC resistivity and (b) seismic refrac-

tion data together with the resulting (c-d) l1-norm mimicking smoothness-constrained de-

terministic inversion results and the corresponding interface obtained using the maximum

vertical gradient method. The deterministic inversion model results are plotted with trans-

parency that is inversely proportional to the cumulative sensitivity, which shows the inabil-

ity of the seismic refraction dataset to resolve subsurface properties after 400 m along the

profile. For this reason, the model results shown hereafter are cut at 400 m.

For each individual or joint inversion approach, we run three independent MCMC

chains for 5×105 iterations for which the burn-in has been reached by all inversion results.

The initial models are again randomly sampled from log-uniform uncorrelated property

fields. The convergence statistics of the different probabilistic inversion schemes are sum-

marized in Table 2. Using the last 105 MCMC iterations, we find that the potential scale

reduction factor is below 1.2 for most model parameters describing the velocity field of

the bedrock sub-domain (99% of the parameters for both individual and joint inversions).

However, the CZ velocity fields have only 39% (individual inversion) and 40% (joint in-
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version) of the parameters with R̂ < 1.2. For the resistivity fields, only 11-12% of the CZ

and 36-37% of the bedrock parameters have R̂ < 1.2 regardless if a joint or individual in-

version is carried out. This implies that only an incomplete sampling of the posterior dis-

tributions were achieved for most of the model parameters considered. This suggests that

model uncertainty is underestimated when using the results of one MCMC chain only.

However, as for the synthetic case, this problem is partly mitigated by merging the results

obtained by the three MCMC chains. For the velocity fields, the parameters included in

the bedrock sub-domain have a slight augmentation in standard deviation (average of 1 %

for individual and 3 % for joint inversion), while for the CZ sub-domain such increase is

more significant (average of 37 % for individual and 42 % for joint inversion). In general

the resistivity parameters have a larger increase of standard deviation for both bedrock (av-

erage of 46 % for individual and 47 % for joint inversion) and CZ sub-domains (average

of 114 % for individual and 106 % for joint inversion).

Figure 9 presents the last posterior realization obtained for each chain and inversion

case, while in Fig. 10 we show the corresponding vertical resistivity and velocity profiles

at 50 m, 200 m and 350 m along the profile. The posterior model realizations obtained

by inverting the DC resistivity dataset alone were already presented in de Pasquale et al.

[2019], who stressed the similarity between the model results in terms of both posterior

realizations and vertical profiles. This is similarly seen in the posterior velocity realiza-

tions obtained by inversion of the refraction seismic data alone (Figs. 9g,i,m) and in the

vertical profiles (Figs. 10l-n), where the inferred interface location is manifested by ve-

locity jumps that appear at very similar positions. Particularly, all the three chains sug-

gest an interface that mirrors the topography, with bedrock rising almost to the surface at

locations where the surface topography creates valleys at around 80 m and 350 m. The

posterior models obtained by joint inversion are represented in terms of both resistivity

(Figs. 9b,d,f) and velocity (Figs. 9h,i,n) fields. As for the single-dataset inversion results,

the upper part of the domain is well defined for both property fields (i.e., upper 40 m).

Moreover, comparing the joint inversion results with the individual inversion results (Figs.

9b,d,f with Figs. 9a,c,e and Figs. 9h,l,n with Figs. 9g,i,m), we see that the bedrock topog-

raphy is mainly constrained by the seismic refraction observations. The DC resistivity data

has the strongest sensitivity to heterogeneity within the bedrock layer. This is seen in the

well-defined low resistivity zone of the bedrock around 300 m while the velocity fields of

the bedrock are more homogeneous. Finally, around 80 m along the profile, all the poste-
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rior velocity models obtained by joint inversion show a slightly deeper bedrock interface

than the ones inferred from the inversion of the seismic observations alone.

In Fig. 11 we show the inversion results in terms of mean (Figs. 11a, d, g and i),

normalized standard deviation (Figs. 11b, e, h and l) and probability maps of the inter-

face locations (Figs. 11 c, f and m) for the three MCMC chains used for the individual

datasets and joint inversion. The probability maps of the joint inversion results shows an

increase in the uncertainty on the interface location concerning the edge of the domain,

whereas at the center of the domain such uncertainty is reduced (shadow area in Fig. 11f),

if compared with the individual ERT (Fig. 11c) or refraction seismic (Fig. 11m) inversion

results. Finally, in Fig. 12, we plot the vertical resistivity and velocity profiles obtained

from l1-norm mimicking smoothness-constrained deterministic inversion, as well as the in-

dividual and joint inversions with interface constraints. As seen for the synthetic test case,

for the probabilistic inversion results (individual ERT, seismic or joint inversion) the lo-

cation of the interface is characterized by jumps in the physical property values, while in

case of deterministic inversion results, the physical property values smoothly increase with

depth.

4 Discussion

As an extension of the empirical-Bayes-within-Gibbs algorithm by de Pasquale et al.

[2019], we have introduced a probabilistic joint inversion method to infer an interface sep-

arating two heterogeneous sub-domains. Our synthetic example demonstrates that the joint

inversion provides more accurate interface estimates than those based on DC resistivity

or seismic refraction data alone. Furthermore, a general improvement is obtained with

respect to deterministic inversion results in terms of the inferred interface geometry and

physical property fields, particularly with respect to bedrock properties. This is seen by

studying the model discrepancies with respect to the true model for the deterministic (Fig.

3g) and probabilistic (Fig. 6n) inversions of the DC resistivity data from which it is ev-

ident that the deterministic inversion severely underestimates bedrock resistivity. For the

seismic data, the deterministic inversion (Fig. 3h) over-estimates the velocity in the cen-

tral area of the bedrock sub-domain (between 100 and 300 meters along the profile) while

the errors for the probabilistic case (Fig. 6p) are the largest in the vicinity of the inferred

interface. The improved ability to locate the interface was quantified by a measure of the

distance between the target and the inferred interface (eq. 7). For the joint inversion re-
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sults, this distance is at least 30 % smaller than those obtained by individual deterministic

or probabilistic inversions, thereby, highlighting the added value of jointly inverting the

two types of geophysical data. Despite this progress, we acknowledge that the main inher-

ent limitation discussed at length by de Pasquale et al. [2019] remains. That is, in poorly

resolved areas there is a significant risk that the inferred range of interface locations do

not always include the true interface. This is a consequence of the stabilizing penalties

that are given to the interface and the physical property variations. In short, the MCMC

inversion will inherently favor smoothly varying fields, which will not necessarily include

true and more variable property fields if the data are not sufficiently constraining. In the

present work, we see that these problems are strongly decreased by the joint inversion.

We can also not exclude that some of the sampling problems are related to the inherent

poor mixing of basic Metropolis algorithms. As surveyed by Robert et al. [2018], there

is a strong need to test and develop alternative methods that better explore the posterior

landscape for a limited computational budget. For completeness, we highlight that our al-

gorithm converges to the true interface when considering homogeneous physical properties

even for the case of individual inversion of ERT data de Pasquale et al. [2019].

As mentioned in section 2.1, when inverting the synthetic datasets it was neces-

sary to inflate the assumed standard deviations of the data errors from 3.7% to 10% for

the ERT data and from 3 milliseconds to 5.1 milliseconds for the seismic data. This was

needed to account for discrepancies in the forward model results when using different un-

structured meshes in the data generation procedure (Figs. 3a and b) and in the joint in-

version (Figs. 3c and d). This error inflation was calculated by computing the root mean

squared errors between the datasets and the model predictions obtained from the models

depicted in Figs. 3(c) and (d). Indeed, different meshes have different possible interface

geometries that the MCMC chains can sample, as they are bound to follow the pre-defined

node connections. The true model has a rather smooth interface and the mesh conforms

to this surface, while the target interface defined by the mesh used in the MCMC forward

simulations is more irregular. The travel time path calculations used are restricted to ray-

paths that follow the elements connecting the nodes in the network. This introduces errors

in the ray geometry and it will overestimate the traveltimes [Moser, 1991]. We verified

that such an error is not significantly reduced with the use of a refined mesh for the first

arrival travel times computations. The forward algorithm used is in fact said to be in-

consistent with the problem it seeks to approximate since it uses a network solution for
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a continuous problem [Sethian, 1999]. An alternative that could improve the accuracy of

the forward computation (and reduce the modeling error) is, for instance, to use the fast

marching approach which directly approximates the solution of the underlying partial dif-

ferential equation [Sethian, 1996; Fomel, 2000]. Fig. 13 shows posterior model realiza-

tions whose model predictions fit the synthetic datasets to the added data errors (i.e., with-

out inflation to account for model errors). We see that the effects of underestimating the

noise levels (ignoring the modeling error related to the different unstructured meshes) on

the inversion model results are negligible for the individual probabilistic inversions of DC

resistivity (Fig. 13a) and seismic (Fig. 13b) data. However, large interface artifacts appear

when jointly inverting the data without this error inflation (Figs. 13c and d). The indi-

vidual inversions are robust as small changes in the interface and physical properties can

manifestly accommodate this model error. However, the necessary changes in the inter-

face that accommodate this unaccounted model error are not the same for the seismic and

ERT data. Indeed, a much more complex interface (i.e., with higher structure) is needed

to explain both data sets when ignoring the model errors. We expect that a more detailed

quantification and inclusion of model errors [Hansen et al., 2014] would further improve

our results. We leave this topic for future research. This problem does not appear as acute

for the Calhoun CZO inversions, probably because of the rather conservative choice of the

data error models (i.e., the noise level considered for both the datasets is rather large).

The results obtained by jointly inverting the Calhoun datasets (Figs. 11d,f,g and 12)

indicate sharp interfaces at locations that agree well with the more gradual transitions pre-

sented by St. Clair et al. [2015]. In agreement with St. Clair et al. [2015], the transition

between the CZ and bedrock has a shape that mirrors surface topography, with bedrock

rising almost to the surface below the valleys. Moreover, all the inversion results clearly

indicate two regions of lower resistivities within the bedrock domain that are located be-

low the topographic depressions (i.e., around 80 m and 350 m along the profile; Figs. 8c,

9a-f, 10c and f, 11a and d, 12c). Extensive testing (not shown) indicates that it is impossi-

ble to fit the ERT data without introducing such lower-resistivity regions. We also note

that corresponding features are also visible in Fig. 4a in St. Clair et al. [2015]. These

lower-resistivity zones are likely to be caused by a higher fracture intensity. In Fig. 14,

we display the resistivity and velocity values corresponding to the bedrock at the inferred

interface between bedrock and regolith. The resistivity values drop below the topographic

depressions, while the seismic velocities slightly increase. We attribute the higher seismic
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velocity to model errors (as explained above) that is likely to lead to over-estimated veloc-

ities that compensate for ray-paths that are too long. Since there is no seismic evidence

of mechanical weakening in the bedrock below the valleys, we expect that the decrease in

resistivity is caused by a small increase in fracture porosity and that these fractures may

be clay-filled. Induced polarization data or a borehole would shed more light about the

presence of clay-filled fractures and lead to more conclusive findings.

5 Conclusions

The geometry and depth to the regolith-bedrock interface impact many surface and

near-surface processes. de Pasquale et al. [2019] presented a probabilistic inversion frame-

work to infer the posterior distribution of an interface separating two heterogeneous sub-

domains. We have extended this framework to joint inversion of DC resistivity and seis-

mic refraction datasets in presence of a common interface with unknown geometry. The

synthetic example demonstrates that the interface inferred by joint inversion is more ac-

curate than those obtained by individual deterministic or probabilistic inversions of either

DC resistivity or seismic refraction data. When applied to field-data from the Calhoun

CZO in South Carolina, we find in agreement with St. Clair et al. [2015] that the bedrock

mirrors the surface topography. Furthermore, the sampled posterior resistivity fields sug-

gests that bedrock below the valleys in surface topography has an enhanced fracture poros-

ity. Since there is no evidence of a coincident mechanically-weak zone in seismic P-wave

velocity, we suggest that the fractures are clay-filled. Our methodology can be imple-

mented to case studies where other geophysical measurements are used and extended to

the inversion of three or more datasets.
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7 Tables and Figures

Figure 1. Proposed model setting for joint inversion of DC resistivity and refraction seismic datasets in the

presence of an unknown interface (I), which divides the investigated subsurface into two sub-domains. (a)

Electrical resistivity fields of the CZ and bedrock. (b) Seismic P-wave velocity fields of the CZ and bedrock.

(c) The interface, defined by connected nodes in the forward computation mesh, is used to assign (d) the

electrical resistivity (mr ) and (e) P-wave velocity (mv) used for forward calculations.
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Figure 2. Schematic flow chart of the proposed probabilistic joint inversion algorithm with a common

interface. First, we initialize the electrical resistivity (mr
0) and seismic P-wave velocity (mv

0 ) models (as de-

scribed in Fig. 1), evaluate their likelihoods (L) and the corresponding structural constraint functions. We

then sequentially evaluate proposed interface and physical property updates in an iterative scheme until the

chosen length of the chain is reached. Here, u ∼ U(0, 1) represents a randomly drawn number with uniform

probability between 0 and 1, while the acceptance probabilities αI , αERT and αRS are described in eqs. 1, 2

and 3, respectively. For more details, please refer to de Pasquale et al. [2019].
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Figure 3. (a) Resistivity model and electrode positions (black dots) used to generate the synthetic DC

resistivity dataset and (c) interpolation of (a) on the unstructured mesh used for ERT forward modeling. (b)

Velocity model and shot positions (blue dots) used to generate the synthetic refraction seismic dataset and (d)

interpolation of (b) on the unstructured mesh used for the refraction seismic forward modeling. Deterministic

inversion results based on the (e) DC resistivity and (f) seismic refraction observations. In (e) and (f) the

transparency is inversely proportional to the cumulative sensitivity, the black line represents the interface

obtained by the maximum vertical gradient method and the purple line is the interface we aim to infer. Model

discrepancies for deterministic inversion of the (g) DC resistivitiy and (h) seismic refraction observations.
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Figure 4. Last posterior model realizations from probabilistic inversion of synthetic datasets. (a), (c) and

(e) represent resistivity model realizations from each MCMC chain for individual ERT inversion, while (b),

(d) and (f) show such realizations in case of joint inversion. (g), (i) and (m) are P-velocity model realiza-

tions from each MCMC chain for individual refraction seismic inversion, while (h), (l) and (n) show such

realizations in case of joint inversion. The inferred interface of each realization is represented with a black

line.
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Figure 5. Vertical resistivity and P-wave velocity profiles obtained by probabilistic inversion of the syn-

thetic datasets. Blue, red and green indicate the mean model of each chain (solid lines) with the inferred

posterior ranges (shadow areas) and the black dashed lines represent the target model. (a)-(c) Inferred resis-

tivity values from inversion of DC resistivity data. (d)-(f) Inferred resistivity and (g)-(i) velocity values from

joint inversion. (l)-(n) Inferred velocity values from inversion of individual seismic refraction data.
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Figure 6. Summary of posterior realizations for the three MCMC chains used for each synthetic inversion

case. Mean of the posterior model realizations for (a) individual DC resistivity and (i) seismic refraction in-

versions; (d) and (g) for joint inversion. The mean inferred interfaces are represented with a black line, while

the interface we aim to infer is shown in blue. Standard deviation of the resistivities, divided by the corre-

sponding mean values of (b) individual DC resistivity inversion and (e) joint inversion. Standard deviation of

the velocities, divided by the corresponding mean values for probabilistic inversion of (h) individual refraction

seismic data and (l) joint inversion. Probability for each cell of the forward mesh to be part of the bedrock

in case of probabilistic inversion of individual (c) DC resistivity (m) and refraction seismic data and in case

of (f) joint inversion. Model discrepancies for the resistivity fields inferred from probabilistic inversion of

(n) individual ERT data and (o) joint inversion. Relative model errors for the velocity fields inferred from

probabilistic inversion of (p) individual seismic refraction data and (q) joint inversion.
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Figure 7. Vertical resistivity and P-wave velocity profiles from inversion of the synthetic datasets. Red

solid lines represent the mean of the probabilistic joint inversion results and the red shadow areas the inferred

posterior ranges, the green solid lines with the green shadow areas represent individual dataset probabilistic

inversion results, the blue dotted lines are obtained from deterministic inversion and the black dashed lines are

the target profiles. (a)-(c) Inferred resistivity values and (d)-(f) inferred velocity values.

Figure 8. (a) ERT observations and (b) refraction seismic first-arrival travel times from the Calhoun CZO

field site. Deterministic inversion results based on (c) DC resistivity and (d) seismic refraction observations.

In (c) and (d) the models transparency is inversely proportional to the cumulative sensitivity and the black line

represents the interface obtained by the maximum vertical gradient method.
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Figure 9. Last posterior model realizations from probabilistic inversion of the Calhoun datasets. (a), (c)

and (e) represent resistivity model realizations from each of the MCMC chains for individual DC resistivity

inversion, while (b), (d) and (f) show such realizations in case of joint inversion. (g), (i) and (m) are P-velocity

model realizations from each of the MCMC chains for individual refraction seismic inversion, while (h), (l)

and (n) show such realizations in case of joint inversion. The inferred interface of each realization is repre-

sented with a black line.
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Figure 10. Vertical resistivity and P-wave velocity profiles from probabilistic inversion of the Calhoun

datasets. Blue, red and green indicate the mean model of each chain (solid lines) with the inferred posterior

ranges (shadow areas). (a)-(c) Inferred resistivity values from inversion of DC resistivity data alone. (d)-

(f) Inferred resistivity and (g)-(i) velocity values from joint inversion. (l)-(n) Inferred velocity values from

inversion of the refraction seismic dataset alone.
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Figure 11. Summary of posterior realizations for the three MCMC chains used for the inversion of the

Calhoun datasets. Mean of the posterior model realizations when inverting for individual (a) DC resistivity

and (i) refraction seismic dataset; (d) and (g) when jointly inverting the two datasets. The mean inferred

interfaces are represented with a black line. Standard deviation of the resistivities, divided by the correspond-

ing mean values for probabilistic inversion of (b) individual DC resistivity data and (e) for joint inversion.

Standard deviation of the velocities, divided by the corresponding mean values for probabilistic inversion of

the (h) individual refraction seismic dataset and (l) for joint inversion of DC resistivity data and refraction

seismic dataset. Probability for each cell of the forward mesh to be part of the bedrock in case of probabilistic

inversion of individual (c) DC resistivity, (m) refraction seismic data (m) and (f) joint inversion.
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Figure 12. Vertical resistivity and P-wave velocity profiles obtained by inversion of the Calhoun datasets.

Red solid lines are used to represent the mean of probabilistic joint inversion results and the red shadow areas

the inferred posterior ranges, the green solid lines with the green shadow areas represent individual dataset

probabilistic inversion results and the blue dotted lines are obtained from deterministic inversion. (a)-(c)

Inferred resistivity values and (d)-(f) Inferred velocity values.

Figure 13. Posterior model realizations from probabilistic inversion of synthetic datasets when the model

errors are not taken into account. (a) Resistivity model realization inferred from inversion of individual DC

resistivity data and (b) velocity model realizations inferred from inversion of individual refraction seismic

data. (c) Resistivity and (d) velocity model realizations inferred from joint inversion. The inferred interface of

each realization is represented with a black line and the target interface with a purple line.
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Figure 14. Inferred mean values and ranges of (a) resistivity and (b) velocity at the interface location as

obtained from probabilistic joint inversion of the Calhoun datasets. In both plots, the black line represents

surface topography.
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Table 1. Convergence statistics for the probabilistic inversion of synthetic datasets. ERT stands for prob-

abilistic inversion of DC resistivity data with the empirical-Bayes-within-Gibbs approach, RS refers to

empirical-Bayes-within-Gibbs inversion of the seismic refraction data and Joint refers to the probabilistic joint

inversion of the two datasets with interface constraints. The sub-scripts (1,2,3) indicate the three different

chains used for each inversion routine. AR stands for the averaged acceptance rate of the chains after burn-in

and the sub-scripts I, v and r refer respectively to the interface, velocity and resistivity fields. Finally the

burn-in columns enumerate the number of iterations needed for each chain to converge to the target posterior

distribution [Geweke, 1992].

Chain ARI [%] ARv [%] ARr [%] Burn-inv [n°of iterations] Burn-inr [n°of iterations]

ERT1 7.9 - 18.3 - 2.0 × 105

ERT2 10.3 - 18.2 - 2.2 × 105

ERT3 7.9 - 18.3 - 2.1 × 105

RS1 4.9 20.7 - 0.9 × 105 -

RS2 5.1 20.7 - 1.0 × 105 -

RS3 5.6 21.0 - 0.8 × 105 -

Joint1 6.6 20.5 18.6 1.1 × 105 2.4 × 105

Joint2 5.2 20.5 18.8 1.0 × 105 2.5 × 105

Joint3 7.2 20.6 18.5 1.2 × 105 2.3 × 105
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Table 2. Convergence statistics for the probabilistic inversion of the Calhoun CZO data. ERT stands for

probabilistic inversion of DC resistivity data with the empirical-Bayes-within-Gibbs approach, RS refers to

empirical-Bayes-within-Gibbs inversion of the seismic refraction observations and Joint refers to the proba-

bilistic joint inversion of the two datasets with interface constraints. The sub-scripts (1,2,3) indicate the three

different chains used for each inversion routine. AR stands for the averaged acceptance rate of the chains

after the burn-in and the sub-scripts I, v and r refer respectively to the interface, velocity and resistivity fields.

Finally the burn-in columns enumerate the number of iterations needed for each chain to converge to the target

posterior distribution [Geweke, 1992].

Chain ARI [%] ARv [%] ARr [%] Burn-inv [n°of iterations] Burn-inr [n°of iterations]

ERT1 6.3 - 16.4 - 3.0 × 105

ERT2 6.1 - 16.7 - 3.4 × 105

ERT3 7.2 - 16.6 - 3.5 × 105

RS1 9.1 16.6 - 1.5 × 105 -

RS2 9.4 16.8 - 1.7 × 105 -

RS3 9.0 16.9 - 1.9 × 105 -

Joint1 4.8 15.1 16.9 1.9 × 105 3.8 × 105

Joint2 5.2 15.5 16.8 2.0 × 105 3.5 × 105

Joint3 4.6 15.1 16.7 2.1 × 105 4.0 × 105

–37–


