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Abstract13

Hydrogeological field studies rely often on a single conceptual representation of the sub-14

surface. This is problematic since the impact of a poorly chosen conceptual model on pre-15

dictions might be significantly larger than the one caused by parameter uncertainty. Fur-16

thermore, conceptual models often need to incorporate geological concepts and patterns17

in order to provide meaningful uncertainty quantification and predictions. Consequently,18

several geologically-realistic conceptual models should ideally be considered and evalu-19

ated in terms of their relative merits. Here, we propose a full Bayesian methodology based20

on Markov chain Monte Carlo (MCMC) to enable model selection among 2D conceptual21

models that are sampled using training images and concepts from multiple-point statistics22

(MPS). More precisely, power posteriors for the different conceptual subsurface models23

are sampled using sequential geostatistical resampling and Graph Cuts. To demonstrate24

the methodology, we compare and rank five alternative conceptual geological models that25

have been proposed in the literature to describe aquifer heterogeneity at the MAcroDisper-26

sion Experiment (MADE) site in Mississippi, USA. We consider a small-scale tracer test27

(MADE-5) for which the spatial distribution of hydraulic conductivity impacts multilevel28

solute concentration data observed along a 2D transect. The thermodynamic integration29

and the stepping-stone sampling methods were used to compute the evidence and associ-30

ated Bayes factors using the computed power posteriors. We find that both methods are31

compatible with MPS-based inversions and provide a consistent ranking of the competing32

conceptual models considered.33

1 Introduction34

The geological structure of the subsurface is a key controlling factor on groundwa-35

ter flow and solute transport in aquifers [Maliva, 2016; Renard and Allard, 2013; Zheng36

and Gorelick, 2003] and, therefore, it needs to be properly represented and accounted for37

in modelling studies. The needs for quantitative and reliable subsurface modelling and38

management [Refsgaard and Henriksen, 2004; Scheidt et al., 2018] are driving hydroge-39

ologists to consider conceptual models with increasing geological realism and complex-40

ity (e.g., see reviews by Linde et al. [2015a]; Hu and Chugunova [2008]). Traditionally,41

(hydro)geological subsurface heterogeneity has often been described in terms of mean42

values and covariances of the relevant physical properties (e.g., through the widely used43

multi-Gaussian models). However, such conceptualisations may be too simplistic in cer-44
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tain subsurface systems and, therefore, insufficient to accurately reproduce and predict45

flow and transport processes [Gómez-Hernández and Wen, 1998; Zinn and Harvey, 2003;46

Journel and Zhang, 2006; Kerrou et al., 2008]. Multiple-point statistics (MPS) [Guardiano47

and Srivastava, 1993; Strebelle, 2002; Hu and Chugunova, 2008; Mariethoz and Caers,48

2014] offers a means to effectively reproduce complex geological structures such as curvi-49

linear features. By using a training image, MPS enables geostatistical simulations that50

honour point data and the higher-order spatial statistics that are captured in the training51

image. The training image is a conceptual representation summarising prior geological52

understanding about the system under study. It can be constructed from sketches drawn53

by hand, digitalised outcrops or generated by, for example, process-imitating, structure-54

imitating, or descriptive simulation methods [Koltermann and Gorelick, 1996; De Marsily55

et al., 2005].56

In many real world applications, generally because of the sparsity of direct observa-57

tions, several alternative conceptualisations of subsurface heterogeneity (e.g., describing58

the spatial distribution of hydraulic conductivity) might be plausible and proposed by one59

or several experts. Unfortunately, uncertainty pertaining to the choice of the conceptual60

model is often ignored in modelling studies, even if it might be a dominant source of un-61

certainty [Bond et al., 2007; Rojas et al., 2008; Refsgaard et al., 2012; Lark et al., 2014;62

Scheidt et al., 2018; Randle et al., 2018]. Indeed, geostatistical model realisations gener-63

ated from one training image might lead to a vastly different range of predictions than64

those generated from another training image, as shown, for example, by Pirot et al. [2015].65

Conceptual uncertainty should, therefore, be integrated in modelling and inversion stud-66

ies. Ideally, this should be achieved by using formal methods to test and rank alternative67

conceptual geological models based on available hydrogeological and geophysical data68

[Linde, 2014; Linde et al., 2015a; Schöniger et al., 2014; Dettmer et al., 2010]. Bayesian69

model selection [Jeffreys, 1935, 1939; Kass and Raftery, 1995] offers a quantitative ap-70

proach to perform such comparisons by computing the so called evidence (i.e., the de-71

nominator in Bayes’ theorem) which allows to identify the conceptual model, in a chosen72

set, that is the most supported by the data. However, a complication arises when perform-73

ing Bayesian model selection with complex spatial priors that are represented by training74

images. Most MPS-based inversions are non-parametric which implies that they rely on75

samples being drawn proportionally to the prior distribution, while it is generally not pos-76

sible within a MPS framework to evaluate the prior probability of a given model proposal.77
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Hence, MPS-based inversions cannot build on many state-of-the-art concepts to enhance78

the performance of the MCMC (e.g., Laloy and Vrugt [2012]) and associated approaches79

for calculating the evidence [Volpi et al., 2017; Brunetti et al., 2017]. Similarly, it is not80

possible within a MPS-framework to calculate approximate evidence estimates using the81

Laplace-Metropolis method [Lewis and Raftery, 1997].82

It is only recently that MPS-based inversions have been proposed (see review by83

Linde et al. [2015a]). Markov chain Monte Carlo (MCMC) inversions with MPS (e.g., Ma-84

riethoz et al. [2010a]; Hansen et al. [2012]) generally rely on model proposals obtained85

by sequential geostatistical resampling of the prior (Gibbs sampling) that are used within86

the extended Metropolis algorithm to accept model proposals based on the likelihood ra-87

tio [Mosegaard and Tarantola, 1995]. Sequential geostatistical resampling generates model88

proposals of the spatially-distributed parameters of interest by conditional resimulations of89

a random fraction of the current field proportionally to the prior as defined by the training90

image. There exist several MPS methods to sample complex spatial priors with sequen-91

tial Gibbs sampling. Examples include the versatile direct sampling method [Mariethoz92

et al., 2010b] or the recent Graph Cuts approach [Zahner et al., 2016; Li et al., 2016] that93

enables speed-ups by one to two orders of magnitude. Since high-dimensional MCMC94

inversions necessitate many evaluations of model proposals by forward modelling, it is95

essential that the geostatistical model proposal process is fast compared to the forward96

simulation time while ensuring model realisations of high quality that honour geological97

patterns in the training image. Various advances have been made to enhance MPS-based98

inversions both in a non-parametric MCMC framework (e.g., parallel tempering by Laloy99

et al. [2016]) and in a parametric framework using, for example, spatial generative adver-100

sarial neural networks [Laloy et al., 2018]. Also, ensemble-based exploration schemes have101

been explored [Jäggli et al., 2017].102

State-of-the-art evidence estimators that are compatible with non-parametric spa-103

tial priors include thermodynamic integration [Gelman and Meng, 1998; Friel and Pettitt,104

2008a], stepping-stone [Xie et al., 2011] and nested sampling [Skilling, 2004, 2006]. The105

thermodynamic integration method takes the name from its original application, which106

was to compute the difference in a thermodynamic property (usually free energy) of a sys-107

tem at two given states. Thermodynamic integration and the stepping-stone method sam-108

ple from a sequence of so-called power posterior distributions that connect the prior to the109

posterior distribution. The nested sampling method is based on a constrained local sam-110
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pling procedure in which the prior distribution is sampled under the constraint of a lower111

bound on the log-likelihood function that increases with time. Thermodynamic integra-112

tion and nested sampling transform the evidence, that is, a multi-dimensional integral over113

the parameter space, into a one-dimensional integral over unit range in the log-likelihood114

space. The stepping-stone sampling estimator approximates the evidence by importance115

sampling using the power posteriors as importance distributions. To the best of our knowl-116

edge, thermodynamic integration and stepping-stone sampling have never been used to117

estimate the evidence of subsurface models built with MPS in the context of Bayesian118

model selection, while this is the case for nested sampling [Elsheikh et al., 2015]. Recent119

studies in hydrology suggest that nested sampling is less accurate and stable than thermo-120

dynamic integration [Liu et al., 2016; Zeng et al., 2018] and that it is strongly dependent121

on the efficiency of the constrained local sampling procedure. Unfortunately, MPS-based122

inversions cannot benefit from recent improvements in constrained local sampling ap-123

proaches as they require parametric (analytical) forms of the prior [Schöniger et al., 2014;124

Liu et al., 2016; Zeng et al., 2018; Cao et al., 2018]. Even if thermodynamic integration125

and stepping-stone sampling are computationally expensive, they are easily parallelised126

such that the computational time is equivalent to the time needed to run a single MCMC127

chain. Moreover, these two methods are easy to implement and flexible in the sense that128

any suitable MCMC method can, provided minimal changes, be used to explore the power129

posterior distributions. The classical brute force Monte Carlo (MC) method [Hammersley130

and Handscomb, 1964] can also be used to estimate the evidence when considering non-131

parametric spatial priors. However, Brunetti et al. [2017] show that MC often requires a132

prohibitive computational time to obtain reliable evidence estimates even for very simple133

subsurface conceptualizations (e.g., layered models) when considering as few as seven un-134

knowns. This limits its application to realistic high-dimensional MPS-based conceptual135

models.136

One way to circumvent the challenges of non-parametric priors in Bayesian model137

selection is to reduce the model parameter space, for example, by cluster-based polynomial138

chaos expansion [Bazargan and Christie, 2017] or by truncated discrete cosine transform139

combined with summary metrics from training images [Lochbühler et al., 2015]. Bayesian140

inference and model selection is then applied on the reduced dimension space whose prior141

distribution is parametric (e.g., multivariate Gaussian distribution). The main drawback142
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of such approaches is that truncation may smoothen sharp interfaces found in the training143

images.144

In this study, we propose the first full Bayesian method that enables Bayesian model145

selection among geologically-realistic conceptual subsurface models. To do so, we com-146

bine sequential geostatistical resampling based on Graph Cuts, the extended Metropolis147

acceptance criterion and evidence estimation by power posteriors using either thermody-148

namic integration or stepping-stone sampling. The advantages and the drawbacks of this149

new methodology are assessed using a challenging application. In this study, we com-150

pare and rank five alternative conceptual geological models that have been proposed in151

the literature to characterise the spatial heterogeneity of the aquifer at the Macrodisper-152

sion Experiment (MADE) site in Mississippi, USA [Zheng et al., 2011]. Among this set153

of five conceptual models of hydraulic conductivity spatial distribution, we aim to identify154

the one that is in the best agreement with multilevel concentration data acquired during155

a small-scale dipole tracer test (MADE-5) [Bianchi et al., 2011a]. The case-study at the156

MADE site is used to demonstrate the ability of our Bayesian model selection method157

to deal with widely different conceptual hydrogeological models. We stress that the 2D158

modeling framework used herein limits our ability to generalize the findings to actual 3D159

field conditions. Extensions to 3D is methodologically straightforward, but computation-160

ally very challenging.161

2 Theory162

2.1 Bayesian inference and model selection163

Bayesian inference approaches express the posterior pdf, p(θ|Ỹ), of a set of un-164

known model parameters, θ = {θ1, . . . , θd}, given n measurements, Ỹ = { ỹ1, . . . , ỹn},165

via Bayes’ theorem166

p(θ|Ỹ) =
p(θ)p(Ỹ|θ)

p(Ỹ)
. (1)

The prior pdf, p(θ), quantifies all the information that is available about the model param-167

eters before considering the observed data. Typically, p(θ) is represented by multivariate168

analytical functions (e.g., Gaussian, uniform, exponential) describing marginal distribu-169

tions of each parameter and their spatial correlation. With the advent of MPS methods,170

higher-order spatial statistics of θ can be incorporated in inversions by means of training171

images. In this case, the description of prior knowledge is typically non-parametric and172
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sequential geostatistical resampling techniques are used to sample p(θ). The likelihood173

function, p(Ỹ|θ), summarises in a single scalar value the probability that the observed174

data has been generated by a proposed set of model parameters. We consider a Gaussian175

likelihood characterised by uncorrelated and normally distributed measurement errors with176

constant standard deviation, σỸ,177

p(Ỹ|θ) =
(√

2πσ2
Ỹ

)−n
exp

[
−

1
2

n∑
h=1

(
ỹh − Fh(θ)

σỸ

)2
]
. (2)

As the residuals between the observed data, ỹh , and the simulated forward responses,178

Fh(θ), tends toward 0, the likelihood increases and, in particular, p(Ỹ|θ) →
(√

2πσ2
Ỹ

)−n
.179

The denominator in Bayes’ theorem is the evidence (or marginal likelihood), p(Ỹ), and180

it is the cornerstone quantity in most Bayesian model selection problems. It should be181

noted, however, that the explicit computation of the evidence can be avoided by using re-182

versible jump (trans-dimensional) MCMC methods [Green, 1995]. The conceptual model183

with the highest evidence [Jeffreys, 1935, 1939] is the one that is the most supported by184

the data. A noteworthy feature of the evidence is that it implicitly accounts for the trade-185

off between goodness of fit and model complexity [Gull, 1988; Jeffreys, 1939; Jefferys and186

Berger, 1992; MacKay, 1992]. More precisely, the evidence quantifies how likely it is that187

a given conceptual model, η ∈ N, with model parameters, θ, and prior distribution, p(θ|η),188

has generated the data Ỹ,189

p(Ỹ|η) =
∫

p(Ỹ|θ, η)p(θ|η)dθ. (3)

The evidence is used to calculate Bayes factors [Kass and Raftery, 1995], that is, evidence190

ratios of one conceptual model with respect to an other. For instance, the Bayes factor of191

η1 with respect to η2, or B(η1,η2), is defined as192

B(η1,η2) =
p(Ỹ|η1)

p(Ỹ|η2)
. (4)

Conceptual models with large Bayes factors are preferred statistically and the conceptual193

model with the largest evidence is the one that best honours the data on average over its194

prior. However, the evidence computation is analytically intractable for most problems of195

interest and the multi-dimensional integral in Eq. 3 must be approximated by numerical196

means. In this work, the different conceptual models represent alternative spatial represen-197

tations of hydraulic conductivity in the subsurface.198
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2.2 Evidence estimation by power posteriors199

Thermodynamic integration, also called path sampling [Gelman and Meng, 1998],200

and stepping-stone sampling [Xie et al., 2011] are two methods to estimate the evidence201

(Eq. 3) numerically. The key idea behind both methods is to sample from a sequence of202

so-called power posterior distributions, pβ(θ|Ỹ), in order to create a path in the proba-203

bility density space that connects the prior to the posterior distribution [Friel and Pettitt,204

2008a]. The power posterior distribution is proportional to the prior pdf multiplied by the205

likelihood function raised to the power of β ∈ [0, 1]:206

pβ(θ|Ỹ) ∝ p(θ)p(Ỹ|θ)β . (5)

Decreasing β has the effect of flattening the likelihood function. For β = 1, the posterior207

distribution is sampled, p1(θ|Ỹ) ∝ p(θ)p(Ỹ|θ); for β = 0, the prior distribution is sam-208

pled, p0(θ|Ỹ) ∝ p(θ). In thermodynamic integration and stepping-stone sampling, the pri-209

ors are assumed to be proper and a sequence of β-values needs to be defined (see Section210

2.2.3). For each β value, one (or more) MCMC runs are used to draw N samples from211

the corresponding power posterior distribution and the corresponding likelihood values are212

recorded. The Markov chains for the different β-values can be run independently in paral-213

lel or sequentially from β = 0 to β = 1 (serial MCMC) as described in Friel and Pettitt214

[2008a]. Thermodynamic integration and stepping-stone sampling have several attractive215

characteristics: (1) the total computing time is equivalent to a normal MCMC inversion216

provided that all MCMC runs are carried out in parallel, (2) they can be applied for any217

MCMC inversion method with only minimal intervention (it is only necessary to add the218

exponent β to the likelihood function) and (3) the only information needed is the series219

of likelihoods obtained from MCMC simulations with different β-values. Once the power220

posterior distributions have been sampled, the thermodynamic integration and stepping-221

stone sampling methods use the recorded likelihood values in two different ways to esti-222

mate the evidence (Sections 2.2.1-2.2.2).223

2.2.1 Thermodynamic integration224

Thermodynamic integration reduces the multi-dimensional integral of Eq. 3 into a225

one-dimensional integral of the expectation of the log-likelihood, log p(Ỹ|θ, η), as:226

log p(Ỹ|η) =
∫ 1

0
Eθ |Ỹ,β

[
log p(Ỹ|θ, η)

]
dβ. (6)
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For the derivation of Eq. 6, we refer to Friel and Pettitt [2008a] and Lartillot and Philippe227

[2006]. The integral in Eq. 6 is estimated by a quadrature approximation over a discrete228

set of β-values, 0=β1 < · · · < βj < · · · < βJ=1. To simplify the notation, we define the229

expectations of the log-likelihood functions as `j ≡ Eθ |Ỹ,β j

[
log p(Ỹ|θ, η)

]
and their cor-230

responding variances as σ2
j ≡ Vθ |Ỹ,β j

[
log p(Ỹ|θ, η)

]
. In this work, we use the corrected231

composite trapezoidal rule:232

log p(Ỹ|η) ≈
J∑
j=2

(βj − βj−1)

2
(`j + `j−1) −

J∑
j=2

(βj − βj−1)
2

12
(σ2

j − σ
2
j−1), (7)

which provides more accurate estimates compared with the classical composite trapezoidal233

rule (first term in Eq. 7) as it also considers the second-order correction term (second234

term in Eq. 7). This corrected composite trapezoidal rule was originally employed by235

Friel et al. [2014] and later used by other authors including Oates et al. [2016] and Grze-236

gorczyk et al. [2017].237

The accuracy of the resulting evidence estimates depends on how the β-values are238

discretised, the number of β-values used, J, (details provided in Section 2.2.3), the num-239

ber, N , and the degree of correlation of the power posterior samples obtained by MCMC.240

The uncertainties associated with the evidence estimation by thermodynamic integration241

are often summarised by two error types: the sampling error, es , and the discretisation er-242

ror, ed [Lartillot and Philippe, 2006; Calderhead and Girolami, 2009]. The sampling error243

is related to the standard errors of the MCMC posterior expectations of the log-likelihoods244

obtained for each βj . To avoid underestimation of these errors, the autocorrelation in the245

MCMC samples should be accounted for in order to calculate the effective sample size,246

Neff , (i.e., number of independent samples within each MCMC chain) as suggested by247

Kass et al. [1998]. The effective sample size is defined as:248

Neff, j =
Nj

1 + 2
∑∞

z=1 ρj(z)
, (8)

where ρj(z) is the autocorrelation at lag z. Applying the rules for uncertainty propagation249

to the first leading term in Eq. 7 and assuming the errors of `j to be independent of those250

associated to `j−1, the sampling error is:251

σ2
s =

J∑
j=2

(βj − βj−1)
2

4

(
σ2
j

Neff, j
+

σ2
j−1

Neff, j−1

)
. (9)

Discretisation errors arise as the continuous integral of Eq. 6 is estimated using a finite252

number of evaluation points (Eq. 7). Following Lartillot and Philippe [2006], Baele et al.253

[2013] and Friel et al. [2014], we define ed as the worst-case discretisation error that254
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arises from the approximation of Eq. 6 with a rectangular rule. Hence, ed is half the dif-255

ference of the areas between the upper and lower step functions and it can be interpreted256

as the variance of the trapezoidal rule:257

σ2
d =

J∑
j=2

(βj − βj−1)
2

4
(`j − `j−1)

2. (10)

As a consequence, the variance on the evidence estimates can be summarised as V̂ar log p(Ỹ|η) =258

σ2
d
+ σ2

s .259

2.2.2 Stepping-stone sampling260

Stepping-stone sampling [Xie et al., 2011] computes the evidence by combining261

power posteriors with importance sampling. The key underlying idea is to write the evi-262

dence as the ratio, r , of the normalising factors in Bayes’ theorem for β=1 (posterior sam-263

pling) and β=0 (prior sampling):264

r =
p(Ỹ|η, β = 1)
p(Ỹ|η, β = 0)

. (11)

Since the prior integrates to one, the evidence is equivalent to r as p(Ỹ|η, β = 0) equals 1.265

The ratio can be expressed as a product of J ratios, rj :266

r =
J∏
j=2

rj−1 =

J∏
j=2

p(Ỹ|η, βj)
p(Ỹ|η, βj−1)

. (12)

Then, importance sampling is applied to the numerator and denominator of Eq. 12 using267

the power posterior pβ j−1 (θ|Ỹ) as the importance distribution:268

rj−1 =
1
N

N∑
i=1

p(Ỹ|θj−1,i)
β j−β j−1 (13)

and, finally, the log-evidence is computed as:269

log p(Ỹ|η) =
J∑
j=2

log rj−1 =

J∑
j=2

log

{
1
N

N∑
i=1

exp
[
(βj − βj−1) · log p(Ỹ|θj−1,i)

]}
. (14)

In contrast to thermodynamic integration, the evidence estimated by stepping-stone sam-270

pling does not suffer from discretisation errors. The sampling error can be evaluated as:271

V̂ar log p(Ỹ|η) =
J∑
j=2

1
Neff, j−1 · N

N∑
i=1

(
p(Ỹ|θj−1,i)

β j−β j−1

rj−1
− 1

)2

. (15)

The derivation of Eq. 14 and 15 appears in Xie et al. [2011]; Fan et al. [2011], and inter-272

ested readers are referred to this publication for further details. The only difference in our273

Eq. 15 is that we consider the effective sample size as defined in Eq. 8. Note that Eq. 13274

is only valid for the specific choice of pβ j−1 (θ|Ỹ) as the importance distribution.275
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2.2.3 Discretisation scheme for β-values276

For small increases of β close to 0, lj increases dramatically and the correspond-277

ing power posteriors quickly turn from being similar to the prior to being similar to the278

posterior distribution (e.g, Friel et al. [2014]; Oates et al. [2016]; Liu et al. [2016]). As a279

consequence, the accuracy of the evidence estimates increases when placing most of the280

β-values close to 0 (e.g., Friel and Pettitt [2008b]; Liu et al. [2016]; Grzegorczyk et al.281

[2017]). This is especially true for the thermodynamic integration method that estimates282

the evidence as the area below the curve of the expectation of the log-likelihood, lj , as a283

function of βj (Eq. 6). Starting from an initial set of sampling points, Liu et al. [2016]284

use an empirical method that places additional β-values based on a qualitative search for285

locations where lj changes strongly in order to target additional β-values to use. However,286

this method is subjective and it increases the computing time when using parallel compu-287

tations as the β-values are not defined at the outset. Friel and Pettitt [2008a] are the first288

to employ a discretisation scheme of β-values that follows a power law spacing as:289

βj =

(
j − 1
J − 1

)c
with j = 1, 2 . . . , J . (16)

Calderhead and Girolami [2009] demonstrate that this scheme significantly improve the290

accuracy of the evidence estimates with respect to the uniform spacing used by Lartillot291

and Philippe [2006].292

3 Method293

3.1 General framework294

It is common to sample the unnormalised posterior pdf of Eq. 1 with MCMC simu-295

lations. This is here achieved by combining the extended Metropolis acceptance criterion296

[Mosegaard and Tarantola, 1995] with a sequential geostatistical resampling technique297

(e.g., Graph Cuts) that provides conditional model proposals at each iteration featuring298

similar geological patterns as those found in the corresponding training image. For each299

proposed model, θprop, we calculate the forward response and compare it with the ob-300

served data and, according to the extended Metropolis algorithm, accept θprop with proba-301

bility:302

α = min

{
1,

p(Ỹ|θprop)

p(Ỹ|θcur)

}
. (17)

To sample the power posteriors, we simply modify the extended Metropolis acceptance303

criteria by raising the likelihoods in Eq. 17 with the corresponding βk-values. We report304
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below the overall algorithm (Algorithm 1), in which we combine model proposals based305

on MPS with the extended Metropolis acceptance criteria followed by evidence estimation306

using power posteriors.307

3.2 Graph Cuts model proposals308

In this work, to sample spatially correlated parameters, we rely on model propos-309

als based on the Graph Cuts algorithm introduced by Zahner et al. [2016] with some of310

the improvements proposed by Pirot et al. [2017a,b]. The main steps in the Graph Cuts311

algorithm are depicted in Figure 1. Basically, a section of the same size as the model do-312

main, θnew (Figure 1b), is randomly drawn from the training image and the absolute dif-313

ference between θnew and the current model realisation, θcur (Figure 1a), is computed and314

raised to the power of the cost power, δcp , [Pirot et al., 2017b] to obtain the cost image, δ315

= |θcur-θnew|δcp (Figure 1d). Two distinct regions of high cost, similar size and containing316

at least p pixels are randomly selected (Figure 1e). To choose these terminals, Pirot et al.317

[2017a] introduce the cutting threshold, δth ∈ [0, 100], defined as a percentile of max(δ),318

which limits the possible terminals to those regions where δ > δth · max(δ). A patch is319

defined as the region enclosed by a minimum cost line separating the two terminals us-320

ing the min-cut/max-flow algorithm by Boykov and Kolmogorov [2004] (Figure 1f) and the321

new model proposal, θprop (Figure 1c), is built by cutting the patch from θnew and replac-322

ing the corresponding area in θcur.323

We manually tune three algorithmic parameters to obtain model proposals that pre-331

serve the patterns found in the training image: the minimum number, p, of pixels in each332

of the two terminals, the cutting threshold, δth , and the cost power, δcp . We have set the333

cost power to 1 or 2 depending on the type of conceptual model considered. The main334

reason for using graph-cut proposals in this work is its computational speed relatively to335

other MPS algorithms (see comparisons by Zahner et al. [2016]). However, slower pixel-336

based geostatistical resimulation strategies that implement sequential Gibbs sampling, such337

as, those presented by Mariethoz et al. [2010b] or Hansen et al. [2012] could also be used.338

3.3 Field site and available data339

The MADE site is characterised by an unconsolidated shallow alluvial aquifer com-340

posed by a mixture of gravel, sand, and finer sediments. The high heterogeneity at the341
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Figure 1. Illustration of how model proposals are obtained using the Graph Cuts algorithm. (a) Current

model realisation, θcur, (b) section drawn randomly from the training image, θnew, and (c) the resulting

model proposal, θprop. This model proposal is obtained as follows: (d) the cost image, δ, is defined as the

absolute difference raised to the cost power, δcp , that is δ = |θcur-θnew|δcp , (e) two disconnected regions of

high differences (light blue and orange areas) of similar size are randomly selected and (f) the cut of minimum

cost that separates the two regions is calculated and the resulting dark red region is cut from (b) θnew and

pasted into (a) θcur to create (c) θprop.
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325

326

327

328

329

330

MADE site got the attention of the hydrogeological community in the mid-1980s and nu-342

merous studies have been carried out since then (see Zheng et al. [2011] for a review).343

Previous interpretations of two large-scale tracer tests suggest that the structure is consis-344

tent with a network of highly permeable sediments embedded in a less permeable matrix345

[Harvey and Gorelick, 2000; Feehley et al., 2000; Bianchi and Zheng, 2016]. The case-346

study considered herein focuses on determining the most appropriate conceptual model347

of hydraulic conductivity in a reduced set given the multilevel solute concentration data348

collected during the MADE-5 tracer experiment [Bianchi et al., 2011a]. The test was per-349

formed in an array of four aligned boreholes with a maximum separation of 6 metres. The350

concentration data used in this work was collected in the two inner multi-level sampler351

(MLS) wells between the outer injection and abstraction wells, which were screened over352

the entire aquifer thickness. Before tracer injection, a steady-state dipole flow field was353

established by injecting clean water. Then, a known volume of bromide solution was in-354

jected along the entire vertical profile of the aquifer for 366 min followed by continuous355
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injection of clean water for 32 days. The flow rates at both the injection and extraction356

wells were kept practically constant during all the steps of the test. Bromide concentra-357

tions in the MLS wells were recorded at 19 different times and at seven depth levels (sam-358

pling ports) in each of the two MLS wells resulting in 266 concentration measurements.359

Full technical details about the experiment can be found in Bianchi et al. [2011a]. Given360

the particular design of the borehole array, groundwater flow and bromide tracer trans-361

port could be simulated only along the 2D transect intercepting the four wells (the forward362

model used is described in Appendix A). This was necessary to reduce the computational363

demands in this application of the proposed Bayesian model selection method. In prac-364

tice, the 2D model assumes that the concentrations measured at the inner MLS wells are365

mainly the result of transport along straight flow paths between the injection and the ab-366

straction wells. To enable such 2D modeling, we performed a simple 3D-to-2D transfor-367

mation of the data as described in Appendix A.368

3.3.1 Conceptual models at the MADE site and corresponding training images369

We consider five training images that may represent spatially distributed hydraulic370

conductivity fields at the MADE site (Figure 2). The multi-Gaussian training image in371

Figure 2a was created as a 2D unconditional realisation obtained with the Sequential Gaus-372

sian SIMulation (SGSIM) algorithm of the Stanford Geostatistical Modeling Software373

(SGeMS) [Remy et al., 2009]. The corresponding variogram parameters (Table 1) were374

calculated by Bianchi et al. [2011a] from the analysis of more than 1000 hydraulic con-375

ductivity values estimated by means of borehole flowmeter tests [Rehfeldt et al., 1992].376

According to Bianchi et al. [2011a], the mean and variance in log10(cm/s) is set equal to377

-2.37 and 1.95, respectively.378

The training images in Figure 2b-d were generated following Linde et al. [2015b].389

The highly conductive and connected channels in an homogeneous matrix (Figure 2b)390

is built from the original training image of Strebelle [2002] modified according to the391

channel properties proposed by Ronayne et al. [2010] for the MADE site. The channel392

hydraulic conductivity is equal to -0.54 in log10(cm/s), the channel thickness is 0.2 m and393

the channel fraction is 3.25 %. The training image in Figure 2c is based on hydrogeo-394

logical facies and their hydraulic conductivity values correspond to those of an outcrop395

located near the MADE site [Rehfeldt et al., 1992] and reported in Table 2.396
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The training image in Figure 2d is chosen solely on the knowledge that the aquifer399

at the MADE site is constituted by alluvial deposits [Boggs et al., 1992]. Linde et al. [2015b]400

and Lochbühler et al. [2014] used the training image of Figure 2d as derived from a de-401

tailed mapping study at the Herten site in Germany [Bayer et al., 2011; Comunian et al.,402

2011] featuring representative alluvial deposit structures and adapted it to the hydrogeo-403

logical facies observed at the MADE site (Table 2).404

The training image of Figure 2e is built based on five hydrogeological facies iden-405

tified from lithological borehole data at the MADE site [Bianchi and Zheng, 2016] and406

reported in Table 3. This training image is a stochastic unconditional realisation that was407

generated following Bianchi and Zheng [2016].408

Training images should be stationary and approach ergodicity [Caers and Zhang,411

2004]. This implies that the type of patterns found should not change over the domain412

covered by the training image (stationarity). Moreover, the size of the training image should413

be sufficiently large (at least the double) compared to the largest pattern to enable ade-414

quate simulations (ergodicity). Small training images lead to large ergodic fluctuations that415

deteriorates pattern reproduction [Renard et al., 2005]. Note that the smallest training im-416

age considered herein (Figure 2b) is four times wider than the size of the model domain417

in the horizontal direction.418

In this work, we compare the five conceptual models of hydraulic conductivity that,419

in the following, we refer to as (1) multi-Gaussian as built from the training image in Fig-420

ure 2a; (2) hybrid that consists of the highly conductive channels of Figure 2b overlaid421

on the multi-Gaussian background of Figure 2a; (3) outcrop-based built from the train-422

ing image in Figure 2c; (4) analog-based built from the training image in Figure 2d; (5)423

lithofacies-based built from the training image in Figure 2e. This selection of conceptual424

models allows us to compare very different parameterisations of the spatial heterogene-425

ity at the MADE site. Note that a full assessment of all conceptual models that has been426

published for the MADE site is outside the scope of this study. Since computational lim-427

itations prohibit full 3D simulations, we acknowledge that our findings in terms of the428

suitability of different conceptual models at the MADE site should be treated with some429

caution. Instead, the focus is on a new versatile methodology that enables comparison of430

widely different conceptual models.431
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3.4 Evidence estimation in practice432

We discretise the power coefficients β using the commonly used power law of Eq.433

16 [Grzegorczyk et al., 2017; Höhna et al., 2017; Baele and Lemey, 2013; Xie et al., 2011;434

Calderhead and Girolami, 2009; Friel and Pettitt, 2008a]. According to these studies, the435

parameter c should be set equal to 3 or 5 and J as large as possible with the common436

choice of 20 ≤ J ≤ 100. In this study, we chose c = 5 and J = 40. For each β value, we437

run one MCMC chain of 105 iterations. These choices are dictated by computational con-438

straints. The most challenging power posterior to sample is for β=1, for which we run 3439

chains to better explore the posterior distribution. Consequently, we run 42 MCMC chains440

for each conceptual model. Given that the log-likelihoods obtained from the MCMC sim-441

ulations are the basis for evidence estimations by power posteriors, we define the burn-in442

period (i.e., number of MCMC iterations required before reaching the target distribution)443

by considering the evolution of the log-likelihoods. To assess when the log-likelihood444

values start to oscillate around a constant value, we apply the Geweke method [Geweke,445

1992] on the log-likelihoods of each chain. This diagnostic compares the mean computed446

on the last half of the considered chain length against the one derived from a smaller in-447

terval in the beginning of the chain (in our case, 20% of the chain length). At first, the448

Geweke’s method is applied to the whole chain (no burn-in), and if its statistics is out-449

side the 95% confidence interval of the standard normal distribution, we apply it again450

after discarding the first 1%, 2%, ...,95% of the total chain length. The burn-in is deter-451

mined in this way for β=1, as this is the most challenging case for which burn-in takes the452

longest time to achieve. The evidence estimates are computed using the thermodynamic453

integration method based on both the corrected trapezoidal rule (Eq. 7), as well as with454

the stepping-stone sampling method (Eq. 14). In order to correctly estimate the uncer-455

tainty of the evidence estimates, the effective sample size (Eq. 8) in each chain needs to456

be assessed. When evaluating Eq. 8, we truncate the sum in the denominator at the lag457

at which ρj(z) is within 95% confidence interval of the normal distribution with standard458

deviation equal to the standard error of the sample autocorrelation. The evidence estimates459

are updated continuously after burn-in to visualise their evolution with the number of460

MCMC iterations. The uncertainty associated with the evidence estimates are summarised461

by standard errors, SE =
√
V̂ar log p(Ỹ|η) with corresponding 95% confidence intervals.462

The variances V̂ar log p(Ỹ|η) are computed using Eqs. 9-10 for the thermodynamic inte-463

gration and using Eq. 15 for the stepping-stone sampling method.464

–16–



Confidential manuscript submitted to Water Resources Research

4 Results for the MADE-5 case study465

4.1 Bayesian inference466

For each of the conceptual models considered, we first show prior MPS-realisations467

(i.e., β = 0) of hydraulic conductivity fields that are generated with the Graph Cuts method468

(Figure 3). Each set of prior realisations shows considerable spatial variability and is in469

broad agreement with the original training image (Figure 2). This is valid for both contin-470

uous (Figure 3b), categorical (Figures 3c-e) and hybrid conceptual models (Figure 3a).471

The posterior distributions (i.e., β = 1) are obtained by assuming that the standard475

deviation of the measurement errors, σỸ [mg/L], follows a log-uniform prior distribution476

in the range [1,10] mg/L (last column of Table 4). The lowest mean of the inferred σỸ is477

obtained for the hybrid conceptual model (5.8 mg/L) suggesting that this model enables478

the best match with the data. The highest σỸ is found for the outcrop-based model (9.4479

mg/L). The acceptance rates are lower (second column in Table 4) than the ideal range480

between 15% and 40% proposed by Gelman et al. [1996], which suggests a slow conver-481

gence of the Markov chains. The burn-in time for each chain is obtained by the Geweke482

method (Table 4) as described in Section 3.4.483

The different conceptual models provide quite different posterior distributions of the489

hydraulic conductivity field (Figure 4), even if certain commonalities are observed. For490

instance, all the posterior models have a high-conductive zone at a depth of 7 m that ex-491

tends to a depth of 8 m on the right hand-side of the model domain. These features are492

visible in both the posterior mean and the maximum a-posteriori fields (first and second493

column of Figure 4). The analog- and outcrop-based conceptual models exhibit more vari-494

ability in the inferred hydraulic conductivity values (Figures 4c and 4e) with respect to the495

others and the lithofacies-based conceptual model is characterised by the smallest posterior496

standard deviations (Figure 4d). The Gelman-Rubin statistic [Gelman and Rubin, 1992] is497

commonly used to assess if the MCMC chains has adequately sampled the posterior dis-498

tribution, which is generally considered to be the case if this statistic is below 1.2. We see499

in the last column of Figure 4 that this is not the case for all pixel values, especially in the500

high-conductivity region, and that a larger number of iterations is required for a full con-501

vergence. However, we note that the evidence estimates are valid as long as the MCMC502

chains reach burn-in, while enhanced sampling decreases the estimation error.503
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In Figure 5, we show some of the simulated and observed breakthrough curves.509

We have chosen the ones at a depth of 7 m in the monitoring wells MLS-1 (Figure 5a)510

and MLS-2 (Figure 5b) because they correspond to a region of high conductivity (high511

concentrations) and the ones at a depth of 11 m that correspond to low concentrations in512

MLS-1 (Figure 5c) and MLS-2 (Figure 5d). Note that the range of measured concentration513

values spans two orders of magnitude (Figure 5). In general, the outcrop-based concep-514

tual model is the worst in reproducing the observed breakthrough curves while the hybrid515

model is the best performing one; this is particularly clear in Figure 5d. Corresponding516

plots at all measurement locations are found in the Supporting Information. The Pearson517

correlation coefficients between the simulated posterior mean concentrations and the ob-518

served ones are 0.96 for the hybrid model, 0.94 for the multi-Gaussian and analog-based519

models, 0.91 for the lithofacies- and outcrop-based models.520

4.2 Bayesian model selection525

In this section, we present the estimated evidence values for each conceptual model526

considered. Overall, the evidence values obtained using stepping-stone sampling and ther-527

modynamic integration based on the corrected trapezoidal rule are in good agreement528

with each other considering their 95% confidence intervals (Figure 6). Moreover, except529

for some fluctuations at the early stage after burn-in, the evidence estimates evolve only530

slowly as a function of the number of MCMC iterations after burn-in (Figure 6). We find531

that stepping-stone sampling provides evidence values that are always lower than the ones532

estimated with the thermodynamic integration. This behaviour is somewhat surprising as533

the stepping-stone sampling technique is not based on a discretisation, while this is the534

case for thermodynamic integration leading to an expected underestimation of the evi-535

dence. The uncertainty associated with the stepping-stone evidence estimator decreases at536

a sustained pace when increasing the number of MCMC iterations and it is lower than the537

one associated with thermodynamic integration (Figure 6 and Table 5). Thermodynamic538

integration is more affected by discretisation errors, an error source that is independent of539

the number of MCMC iterations, than by sampling errors (Figure 8). For this reason, the540

width of the confidence intervals obtained by thermodynamic integration does not reduce541

significantly with increasing numbers of MCMC iterations (Figure 6).542

Both evidence estimators lead to the same ranking of the conceptual models with550

the hybrid conceptual model having the largest evidence and the outcrop-based conceptual551
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model having the lowest one (Table 5). The multi-Gaussian and the analog-based concep-552

tual models have very similar evidence estimates and they are the second-best performing553

conceptual models (Table 5).554

For each conceptual model, the means of the log-likelihood functions, `, increase558

with increasing β as we move from sampling the prior distribution (β = 0) to sampling559

the posterior distribution (β = 1) (Figure 7). From β = 0 to β = 0.1, the `-estimates560

span three orders of magnitude. At very small values of β (i.e., < 10−6), the outcrop-based561

conceptual model (green line in Figure 7) has mean log-likelihoods that are almost one562

order of magnitude higher than the other models. With increasing β, the outcrop-based563

model shows a much less steep increase of ` and at β = 10−3, they start to be lower than564

the log-likelihood means of the other models. At higher power posteriors (β > 0.1), the565

`-estimates for the hybrid conceptual model are the highest (red line in Figure 7), which566

explains why the highest evidence value is found for the hybrid conceptual model. We567

also note that the mean log-likelihood is not increasing continuously when β is close to568

one, which we attribute to random fluctuations of the MCMC chains (Figure 7).569

The percentage ratio of independent MCMC samples after burn-in is never above572

10% and it decreases to values as low as 0.01% for β = 1 (Figure 8). This is a con-573

sequence of the slow mixing of the MCMC chains and it explains the increase of the574

sampling errors with increasing β for both thermodynamic integration (Figure 8c) and575

stepping-stone sampling (Figure 8d). The sampling errors of the stepping-stone sampling576

method are always at least two orders of magnitude higher than the ones related to the577

thermodynamic method, but this method is devoid of discretisation errors, which consti-578

tutes the dominant error type for thermodynamic integration. As mentioned before, using579

a power law to distribute β-values (Eq. 16) ensures that the discretisation errors for small580

β are relatively small (i.e., between 10−10 and 10−3, Figure 8b). The pronounced fluctua-581

tions of the discretisation errors especially for β > 0.1 (Figure 8b) are related to the fact582

that the mean of the log-likelihoods does not increase monotonically for high β-values.583

We now compute the Bayes factors for the best conceptual model (hybrid) with589

respect to each of the other competing conceptual models. In particular, we follow the590

guideline proposed by Kass and Raftery [1995] and we present twice the natural logarithm591

of the Bayes factors (Figures 9a-b). The Bayes factors of the hybrid conceptual model592

are on the order of 1015 and 1016 relative to the second best models (multi-Gaussian and593
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analog-based) and 1058 relative to the worst model (outcrop-based) for both thermody-594

namic integration and stepping-stone sampling. Note that the measure of twice the natural595

logarithms of the Bayes factors are all larger than 50 (Figures 9a-b). According to the in-596

terpretation of Kass and Raftery [1995], we can safely claim that the hybrid model shows597

very strong evidence of being superior to the other considered conceptual models. The598

Bayes factors computed with the stepping-stone sampling method have smaller uncertain-599

ties (Figure 9b) than the ones based on thermodynamic integration (Figure 9a). We note600

that the relative rankings of the competing models obtained with the thermodynamic inte-601

gration and the stepping-stone sampling methods are consistent and stable as long as the602

MCMC chains has reached burn-in. Practically, this suggests that we can perform and ob-603

tain reliable Bayesian model selection results at less computational cost and, again, that604

formal convergence of the MCMC chains are not necessary.605

5 Discussion611

We have proposed a new methodology targeted at Bayesian model selection among612

geologically-realistic conceptual models that are represented by training images. For MCMC613

inversions, we use sequential geostatistical resampling through Graph Cuts that is two or-614

ders of magnitude faster than the forward simulation time (i.e., 0.08 versus 8.35 sec). In615

addition to being fast, the model realisations based on Graph Cuts are of high quality and616

honour the geological patterns in the training images. This is true for the five different617

types of conceptual models considered (Figures 3-4). Moreover, the Graph Cuts algorithm618

can include point conditioning [Li et al., 2016] even if this is not considered herein. In619

our 2D analysis, we find that the hybrid conceptual model allows for the best fit of the ob-620

served breakthrough curves (Figure 5). The inclusion of highly conductive channels in a621

multi-Gaussian background enables enhanced simulations of the maximal concentrations622

and it is in general agreement with the expected subsurface structure at the MADE site623

(i.e., highly permeable network of sediments embedded in a less permeable matrix [Har-624

vey and Gorelick, 2000; Zheng and Gorelick, 2003; Liu et al., 2010; Ronayne et al., 2010;625

Bianchi et al., 2011a,b]). We find that the outcrop model has not enough degrees of free-626

dom to properly fit the solute concentration data (Figure 5). Furthermore, we expect that627

an improved data fit would have been possible if we additionally would have inferred cer-628

tain model parameter values (e.g., hydraulic conductivity for each facies and for the geo-629

statistical parameters of the multi-Gaussian field).630
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In the light of the MADE-5 solute concentration data considered, the best fitting631

model (hybrid) is also the one that has the highest evidence, while the outcrop-based con-632

ceptual model has a Bayes factor of 10−58 with respect to the hybrid one, the lowest evi-633

dence and the lowest data fit (Table 4, Figure 6, Table 5). Linde et al. [2015b] rank differ-634

ent conceptual models (only the analog- and outcrop-based models are exactly the same as635

in the present work) of the region between the MLS-1 and MLS-2 wells using the maxi-636

mum likelihood estimate based on geophysical data (cross-hole ground-penetrating radar637

data). In agreement with our results, Linde et al. [2015b] find that the analog-based con-638

ceptual model explains the data much better than the outcrop-based conceptual model and639

that the latter is the worst performing one in the considered set.640

Our results suggest that when comparing complex conceptual models represented by641

training images in data-rich environments, it may sometimes be possible to simply rank642

the performance of the competing conceptual models based on the inferred standard devi-643

ation of the measurement errors, σỸ (Table 4), or the maximum likelihood estimate. Sim-644

ilar results for more traditional spatial priors were also found in other studies [Schöniger645

et al., 2014; Brunetti et al., 2017]. However, note that maximum likelihood-based model646

ranking will sometimes fail miserably as Bayesian model selection considers the trade-647

off between parsimony and goodness of fit. For instance, we expect that if we would have648

considered an uncorrelated hydraulic conductivity field, it would have produced the best649

fitting model but not the highest evidence. Moreover, it is also clear from these results650

that simply sampling the prior (β = 0) and then ranking the competing conceptual models651

based on the mean of the sampled likelihoods may provide misleading results. Indeed, the652

outcrop-based model has mean likelihoods of the prior model that are almost one order of653

magnitude higher than the ones of the other models (Figure 7) and, therefore, such a rank-654

ing would suggest that the outcrop-based conceptual model is the best one in describing655

the data while it is actually the worst one.656

We find that stepping-stone sampling almost always provides slightly lower evi-657

dence estimates than thermodynamic integration (Table 5). This is in disagreement with658

the theory and with results by Xie et al. [2011] and Friel et al. [2014]. We attribute these659

unexpected results to the facts that (1) the MCMC chains for β close to 1 do not reach660

full convergence and the stepping-stone sampling is sensitive to poor convergence [Friel661

et al., 2014] and (2) most of the contribution to the total evidence estimate comes from662

the terms of Eq. 7 computed for β > 0.1, a region where the mean log-likelihood does663
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not increase monotonically due to random fluctuations of the MCMC chains (Figure 7).664

We also highlight that the comparison between the uncertainty estimates of the evidence665

values provided by thermodynamic integration and stepping-stone sampling (Figure 6) is666

not completely fair since the discretisation errors affecting thermodynamic integration are667

based on a worst-case scenario that arises from the approximation of Eq. 6 with a rectan-668

gular rule.669

We stress again that our main intent is to present and demonstrate the proposed670

methodology targeted at Bayesian model selection among geologically-realistic conceptual671

models. Computational constrains made it infeasible to perform model selection in 3D.672

Instead, given the particular design of the tracer experiment ( i.e., array of four aligned673

boreholes), we used a 2D flow and transport model and the data were corrected using674

a 3D-to-2D transformation that account for differences in flowpaths for a homogeneous675

subsurface (Appendix A). Since 3D heterogeneity is important at the MADE site, our 2D676

model ranking should only be considered approximate.677

Future work should better account for model errors caused by the 3D-to-2D flow678

and transport approximation described in Appendix A. This would enhance the ability679

to make more definite statements about aquifer heterogeneity at the MADE site. How to680

properly account and represent model errors is a challenging task especially in problems681

involving many data, high-dimensional parameter spaces and non-linear forward models682

(e.g., Linde et al. [2017]). Another interesting topic that could be explored is to apply par-683

allel tempering and use the resulting chains for computing the evidence with thermody-684

namic integration or stepping-stone sampling [Vlugt and Smit, 2001; Bailer-Jones, 2015;685

Earl and Deem, 2005]. Parallel tempering allows swapping between chains and, thereby,686

improving sampling efficiency. This may contribute to more robust results, faster conver-687

gence and, thereby, increase the number of effective samples (Figure 8a).688

6 Conclusions689

Inversions with geologically-realistic priors can be performed using training images690

and model proposals that honour their multiple-point statistics. Unfortunately, such inver-691

sions cannot rely on many state-of-the-art inversion methods and associated approaches for692

calculating the evidence needed when performing Bayesian model selection. In this work,693

we introduce a new full Bayesian methodology to enable Bayesian model selection among694

–22–



Confidential manuscript submitted to Water Resources Research

complex geological priors. To demonstrate this methodology, we have evaluated its per-695

formance in the context of determining, in a reduced set, the conceptual model that best696

explains the concentration data for the case study considered (MADE-5). Our methodol-697

ogy is applicable to both continuous and categorical conceptual models (e.g., a geologic698

facies image) and it could be used at other sites, scales and for different data types. Ther-699

modynamic integration and stepping-stone sampling methods are used for evidence com-700

putation using a series of power posteriors obtained from MPS-based inversions. They701

provide a consistent ranking of the competing conceptual models regardless of the number702

of MCMC iterations after burn-in. This suggests that one can perform and obtain reliable703

Bayesian model selection results with MCMC chains that have only achieved limited sam-704

pling after burn-in. Both thermodynamic integration and stepping stone sampling are suit-705

able evidence estimators. However, we recommend the stepping-stone sampling method706

because it is not affected by discretisation errors and its uncertainty (sampling errors) is707

significantly decreased with increasing numbers of MCMC iterations. This is not the case708

for the thermodynamic integration because it is affected by discretisation errors that dom-709

inate over the sampling errors. From the power posteriors derived from the test case, we710

find that (1) ranking the conceptual models based on prior sampling only (β = 0) favours711

the conceptual model with the lowest evidence and (2) model ranking based on the max-712

imum posterior likelihood estimates (β = 1) provides, for this specific example, the same713

results as the formal Bayesian model selection methods considered herein. For improved714

sampling, we suggest that future work should investigate the use of parallel tempering re-715

sults for evidence computations. Moreover, a full 3D analysis or a more formal treatment716

of model errors due to the considered 3D-to-2D approximation would enhance the confi-717

dence in statements about the suitability of alternative conceptual models at highly hetero-718

geneous field sites.719

A: Forward model: from 3D to 2D720

The forward model used by Bianchi et al. [2011a] to simulate the bromide concen-721

trations during the MADE-5 experiment is a 3D block-centred finite-difference model722

based on MODFLOW (3D flow simulator) [Harbaugh, 2005] and MT3DMS (3D trans-723

port simulator) [Zheng, 2010]. We initially consider a fine spatial discretisation of 0.1 m724

in the area around the wells (Figure A.1a-b). However, running such a 3D model is com-725

putationally prohibitive for evidence computations (i.e., 15 minutes of computing time to726
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get one forward response and we need 105 forward evaluations for each MCMC chain and727

power posterior considered). To reduce the computing time, we perform a simple 3D to728

2D correction of the data followed by 2D flow and transport simulations using the finite-729

volume algorithm MaFloT [Künze and Lunati, 2012]. Moreover, we restrict the simulations730

to the best fitting cross section (red segment in Figures A.1a-b) between the positions of731

the injection, extraction and the two MLS wells, which results in an area of 6.3 m × 8.1732

m (Figure A.1c). For the transport equation, we set Dirichlet boundary conditions with the733

normalised concentration to the given fluxes on the left side of the model domain (Fig-734

ure A.1c) corresponding to the injection well location. For the pressure equation, we set735

Dirichlet boundary conditions at the west and east sides (i.e., pressure difference), and736

Neumann boundary conditions at the north and south sides of the model domain (Figure737

A.1c).738

Formal approaches to account for model errors in MCMC inversions exist (e.g., Cui746

et al. [2011]), but they are outside the scope of the present contribution. In the following,747

we introduce a simple error model that allows us to correct for the leading effects of the748

3D to 2D transformation. These modelling errors stem primarily from the 2D linear ap-749

proximation of the 3D radial distribution of the hydraulic heads, which results in a time750

shift in the breakthrough curves at the MLS wells. To estimate the correction factors, we751

consider a uniform hydraulic conductivity model with the geometric mean hydraulic con-752

ductivity at the MADE site (i.e., 4.3·10−5 m/s [Rehfeldt et al., 1992]). For this model, we753

perform 3D and 2D simulations of the MADE-5 experiment with MODFLOW/MT3DMS754

and MaFloT, respectively. As expected, the 3D simulated hydraulic heads between the755

injection and extraction wells does not change linearly as for the 2D simulation (Figure756

A.2). We tune the injection rate in the MODFLOW simulations to achieve simulated hy-757

draulic heads that are as close as possible to the measured ones. We then perform MaFloT758

simulations using the MODFLOW simulated hydraulic heads at the injection and extrac-759

tion wells as boundary conditions and we compute correction factors at the MLS wells.760

These multiplicative correction factors are those that maximise the correlation between761

the concentrations simulated with MT3DMS and MaFloT. The mean correction factors762

over the seven sampling ports in each of the two MLS wells are 1.09 and 1.92. Once the763

correction factors have been applied, the earlier time shifts (Figures A.2b-c) are removed764

(Figures A.2d-e). These correction factors are used in all subsequent simulations. Note765

that no attempt is made to correct for tracer movement due to 3D heterogeneity; the cor-766
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rection is a simple geometrical correction to account for the transformation of a uniform767

3D to 2D flow field. We acknowledge that this is a crude approximation, but we deem it768

sufficient for the purposes of the present paper.769
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Algorithm 1: MCMC inversion workflow based on MPS and the extended Metropolis

algorithm to enable evidence estimation using power posteriors.
Input: T , maximum number of MCMC iterations; J, number of power coefficients β

distributed according to Eq. 16; a training image

Output: Λj , matrices containing power posteriors and log-likelihoods; log p(Ỹ|η),

evidence

Set t = 1;

Draw θ1 from the training image;

Solve the forward problem;

Compute likelihood (e.g., Eq. 2);

for j = 1,..., J do

for t = 2,..., T do

Set θcur = θt−1;

Draw θprop based on MPS (e.g., using Graph Cuts proposals);

Solve the forward problem;

Compute likelihood (e.g., Eq. 2);

Accept θprop with probability, α = min
{
1, p(Ỹ |θprop)

β j

p(Ỹ |θcur)
β j

}
;

if θprop accepted then

Set θt=θprop;

else

Set θt=θcur;

end

Store θt and the corresponding log-likelihood in matrix Λj ;

Set t=t+1;

end

end

Compute log p(Ỹ|η) (Eqs. 7 and 14) and corresponding variances (Eqs. 9-10 and 15)

using the information stored in Λj after the removal of the burn-in period.
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Figure 2. Training images used in the MPS-based inversion to represent spatial hydraulic conductivity of

the MADE site: (a) multi-Gaussian field [Bianchi et al., 2011a], (b) highly conductive channels in an homoge-

neous matrix [Strebelle, 2002; Ronayne et al., 2010; Linde et al., 2015b], (c) model based on a mapping study

of a MADE outcrop [Rehfeldt et al., 1992; Linde et al., 2015b], (d) model based on a mapping study at the

Herten site in Germany [Bayer et al., 2011; Comunian et al., 2011; Linde et al., 2015b] featuring representa-

tive alluvial deposit structures and (e) model based on lithological borehole data collected at the MADE site

[Bianchi and Zheng, 2016].
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Table 1. Geostatistical parameters of the multi-Gaussian training image (Figure 2a) proposed by Bianchi

et al. [2011a] for the MADE site. The actual variogram model was a linear combination of a spherical and an

exponential model.

386

387

388

Variogram model

Variogram parameters Spherical Exponential

Maximum range [m] 76 21

Minimum range [m] 4.6 5

Nugget 0.2 -

Sill 1.75 3.0

Table 2. Hydrogeological facies and their hydraulic conductivity values [Rehfeldt et al., 1992] observed at

the MADE site outcrop and used for the training images in Figure 2c-d.

397

398

Facies log10 K [cm/s]

Open framework gravel -6.83·10−4

Sand -2.00

Undifferentiated sandy gravel -3.00

Sandy, clayey gravel -5.00

Table 3. Hydrogeological facies and their hydraulic conductivity values based on lithological data from the

MADE site [Bianchi and Zheng, 2016] and used for the training image in Figure 2e.

409

410

Facies log10 K [cm/s]

Highly conductive gravel -0.45

Sand and gravel -2.05

Gravel with sand -2.11

Well-sorted sand -2.18

Sand gravel and fines -2.53
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Figure 3. Five prior realisations of hydraulic conductivity fields generated from the training images of Fig-

ure 2 with the Graph Cuts algorithm for the (a) hybrid, (b) multi-Gaussian, (c) analog-based, (d) lithofacies-

based and (e) outcrop-based conceptual model of the MADE site.
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Table 4. Summary of MCMC results using the MADE-5 tracer data for three MCMC chains of 105 steps

for each conceptual model with β = 1. First column, conceptual model considered; second column, average

acceptance rate (AR); third to fifth column, burn-in percentage based on the Geweke method for each of the

three chains (when no value is displayed, the chain failed to reach burn-in); last two columns, means and

standard deviations of the standard deviation of the measurement errors inferred with MCMC.

484

485

486

487

488

Burn-in [%] σỸ [mg/L]

Conceptual model AR [%] Chain 1 Chain 2 Chain 3 Mean Std

Hybrid 0.6 - 58 87 5.81 0.27

Multi-Gaussian 8.0 48 45 62 7.14 0.33

Analog 4.1 - 64 84 7.22 0.34

Lithofacies 1.2 55 38 74 8.92 0.60

Outcrop 5.5 76 97 - 9.36 0.35

Table 5. Estimates of the natural logarithm of the evidence, log p(Ỹ|η), with corresponding standard errors,

SE, for each conceptual model (first column) based on the stepping-stone sampling method (second and third

column) and on the thermodynamic integration method with the corrected trapezoidal rule (last two columns).

555

556

557

Stepping-stone Thermodynamic

sampling integration

Conceptual model log p(Ỹ|η) [-] SE [-] log p(Ỹ|η) [-] SE [-]

Hybrid -903.99 1.17 -902.68 4.02

Multi-Gaussian -939.43 0.64 -939.15 0.93

Analog -941.48 0.87 -941.40 1.30

Lithofacies -1009.01 1.18 -1008.76 3.90

Outcrop -1037.58 1.11 -1036.45 1.47
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Figure 4. Mean (first column), maximum a-posteriori (second column), and standard deviation (third

column) of the posterior hydraulic conductivity realisations for the (a) hybrid, (b) multi-Gaussian, (c) analog-

based, (d) lithofacies-based and (e) outcrop-based conceptual model at the MADE site. In the last column, the

Gelman-Rubin statistic for each pixel is reported. Dark-blue regions represent values equal or less than 1.2

and indicate that convergence has been reached for those pixels.
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Figure 5. Simulated (solid lines) and measured (black dots) bromide breakthrough curves from the MADE-

5 experiment in the two monitoring wells MLS-1 and MLS-2 at a depth of 7 m (a-b) and 11 m (c-d), respec-

tively. The simulated breakthrough curves are summarised by the mean of the posterior realisations (solid

lines) and their 95% confidence intervals (shaded areas).
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Figure 6. Natural logarithm of the evidence estimates, log p(Ỹ|η), as a function of the number of MCMC

iterations. Evidences are computed with the stepping-stone sampling method (red line) and the thermo-

dynamic integration method based on the corrected trapezoidal rule (black line) for the (a) hybrid, (b)

multi-Gaussian, (c) analog-based, (d) lithofacies-based and (e) outcrop-based model at the MADE site.

The evidence computation starts after a different number of MCMC iterations because each of the conceptual

models has a specific burn-in period. The shaded areas represent the 95% confidence interval of the evidence

estimates (pink for stepping-stone sampling and grey for thermodynamic integration).
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Figure 7. Mean (line) of the natural logarithm of the likelihood functions, `, computed for each β value and

the 95% confidence interval of the `-estimates (shaded areas). Note that the x- and y-axes are in log10 scale.
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Figure 8. (a) Percentage ratio between the effective and the total number of MCMC samples, (b) discreti-

sation errors in the thermodynamic integration method (square root of Eq. 10), (c) sampling errors in the

thermodynamic integration method (square root of Eq. 9) and (d) sampling errors in the stepping-stone sam-

pling method (square root of Eq. 15) as a function of β-values. Note that all the x- and y-axes are in log10

scale.
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Figure 9. Twice the natural logarithm of the Bayes factors of the "best model" (hybrid) with respect to the

outcrop-based (green line), lithofacies-based (blue line), analog-based (magenta line) and multi-Gaussian

(black line) conceptual model at the MADE site. Results are shown for (a) the thermodynamic integration

method based on the corrected trapezoidal rule and for the (b) stepping-stone sampling method. The shaded

areas represent the 95% confidence interval of the 2logBη1,η2 measures.
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Figure A.1. (a) Aerial view of the 3D grid used for simulations with MODFLOW/MT3DMS; (b) zoom

in the tracer test area, in which the grid size was refined to 0.1 m; (c) cross section used for simulations with

MaFloT. The width of the lines in (c) is representative of the diameter of the four wells.
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Figure A.2. (a) Hydraulic head profiles between the injection and extraction wells arising from 2D and 3D

flow simulations in a uniform hydraulic conductivity field. Simulated breakthrough curves at 7 m depth in (b)

MLS-1 and (c) MLS-2 without corrections. The shifts in the 2D simulations are removed when (d-e) applying

the correction factors.
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