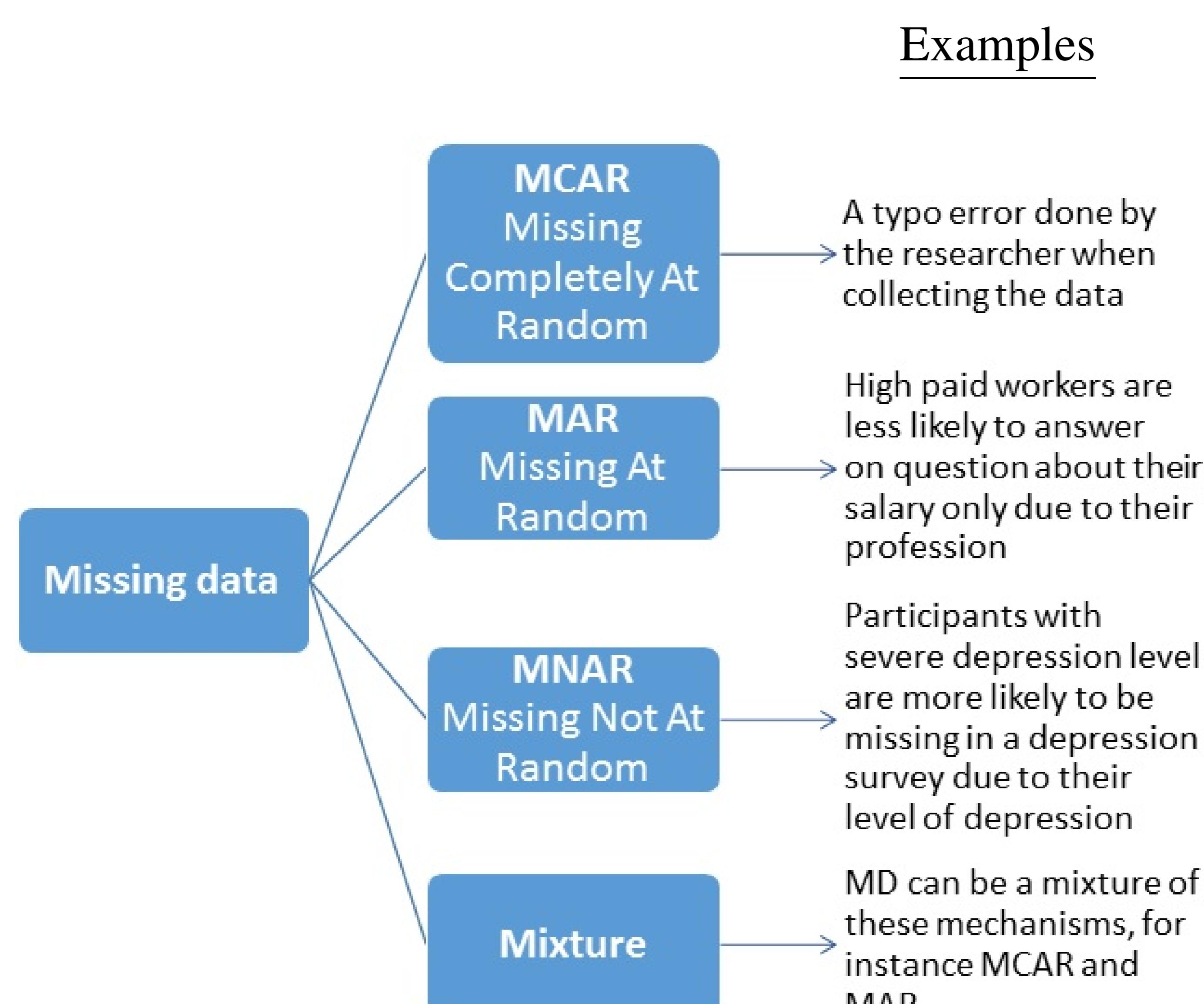


Test of missing data mechanisms

An alternative to the Little test based on regression

Serguei Rouzinov, supervisor: André Berchtold


NCCR LIVES - University of Lausanne, SSP

Serguei.Rouzinov@unil.ch

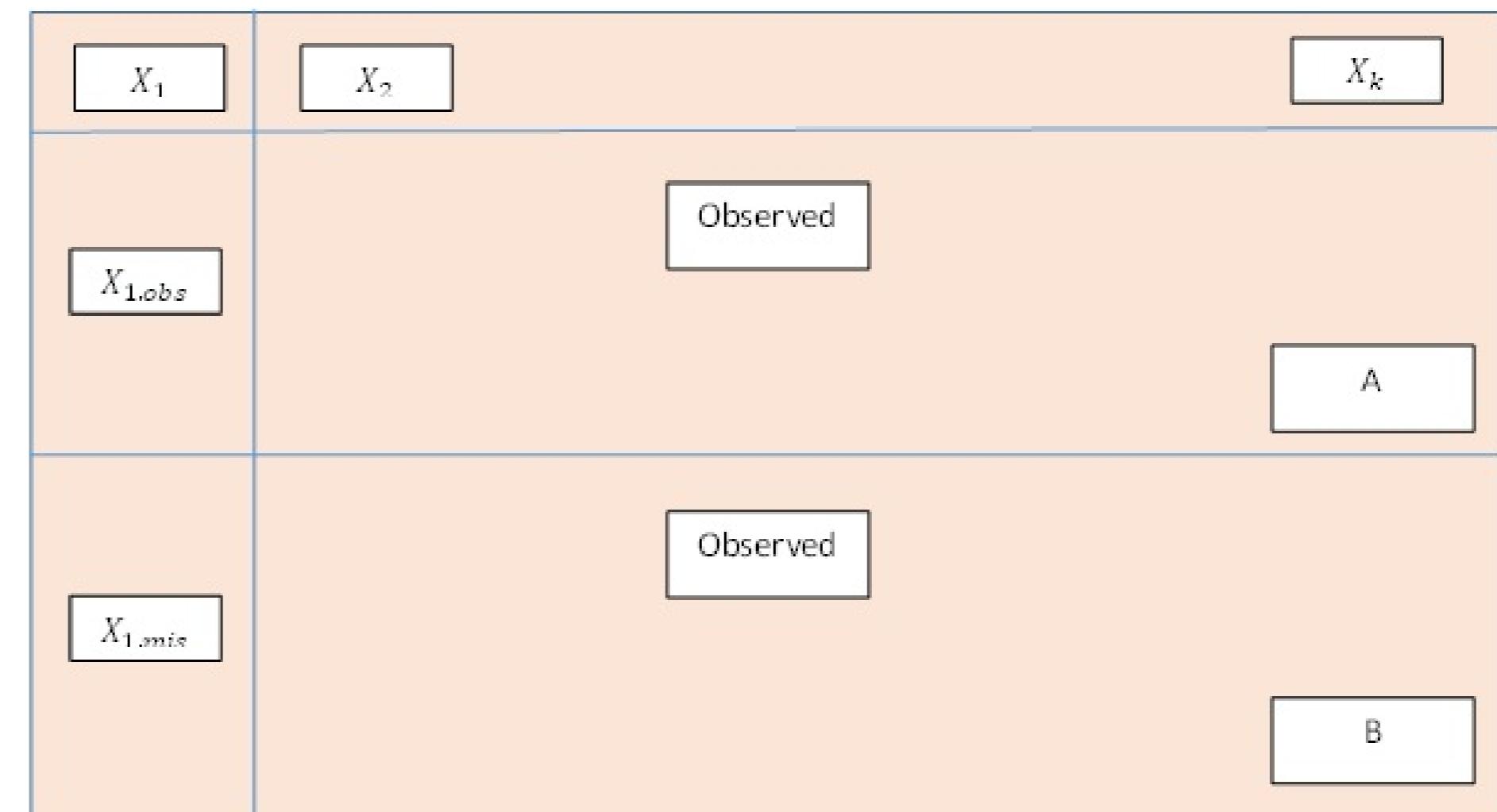
Introduction

- Missing Data (MD): Data whose collect was planned, but not realized \Rightarrow Biased and inconsistent estimators
- How to handle MD?
 1. Test the MD mechanism
 2. Apply a method for handling MD AFTER knowing the mechanism

Definition of MD mechanisms

Existing methods for testing MD mechanism

Observed and missing values are separated and a mean or distribution comparison test is conducted between the two groups. If they are significantly the same, then MD are MCAR. If not, MD are not MCAR [1], [2]:


$$\begin{cases} H_0 : \text{MCAR} \\ H_1 : \text{MCAR} \end{cases}$$

References

- [1] Joseph W Dixon. *BMDP Statistical Software Manual: To Accompany the... Software Release*. University of California Press, 1988.
- [2] Mortaza Jamshidian and Ke-Hai Yuan. Examining missing data mechanisms via homogeneity of parameters, homogeneity of distributions, and multivariate normality. *Wiley Interdisciplinary Reviews: Computational Statistics*, 6(1):56–73, 2014.
- [3] Roderick JA Little. A test of missing completely at random for multivariate data with missing values. *Journal of the American Statistical Association*, 83(404):1198–1202, 1988.

Alternative test of MD mechanisms

Database

1. Regression and prediction model

- $X_{1,obs} \sim f(X_2^A, X_3^A, \dots, X_k^A) + u$, $u \sim N(0, 1)$
- $\hat{\beta}_A$ and A to predict $X_{1,obs} \Rightarrow \widehat{X}_{1,obs}$; $\hat{\beta}_A$ and B to predict $X_{1,miss} \Rightarrow \widehat{X}_{1,miss}$

2. Testing process

- Distribution test between $\widehat{X}_{1,miss}$ and $\widehat{X}_{1,obs}$
- If $\widehat{X}_{1,miss} \stackrel{d}{\sim} \widehat{X}_{1,obs}$, then MD are MCAR

Simulation results of numerical data

- 10,000 \times 10 observations and 1,000 replications
- Big regression: all covariates are included in the model
- Small regression: only covariates which determine the MD mechanism are included in the model

Table 1. Single mechanisms, % of H_0 acceptance. L for Little [3] and A for Alternative approach

	MCAR		MAR1, Big		MAR1, Small	
	L	A	L	A	L	A
50%	96.4	92.5	0	3.1	0	0
10%	94.9	95.4	0	8.8	0	0
5%	95.5	95.1	0	13.9	0	0
4%	95.0	95.1	0	15.1	0	0
3%	94.3	95.3	0	16.7	0	0
2%	94.4	95.2	0	20.5	0	0
1%	95.1	95.2	0	28.1	0	0

Table 2. Mixed mechanisms (MAR2+MCAR), % of H_0 acceptance. L for Little and A for Alternative approach

	Big		Small	
	L	A	L	A
40% MAR2, 10% MCAR	0	4.6	0	0
10% MAR2, 40% MCAR	0	35.8	0	0.6
5% MAR2, 45% MCAR	0	62.1	0	15.0
3% MAR2, 47% MCAR	25.9	82.0	7.9	35.5
2% MAR2, 48% MCAR	67.3	89.7	39.3	63.7
1% MAR2, 49% MCAR	89.7	93.8	83.2	89.6