

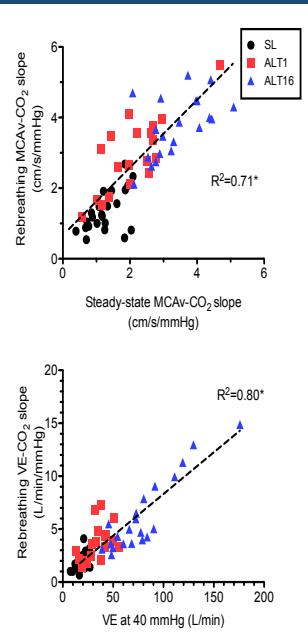
AltitudeOmics: Enhanced brain blood flow control with high altitude acclimatisation and re-exposure

Jui-Lin Fan^{1,2} Andrew W. Subudhi^{3,4}, Oghenoro Evero³, Nicolas Bourdillon¹, Bengt Kayser¹, Andrew T. Lovering⁵, Robert C. Roach³

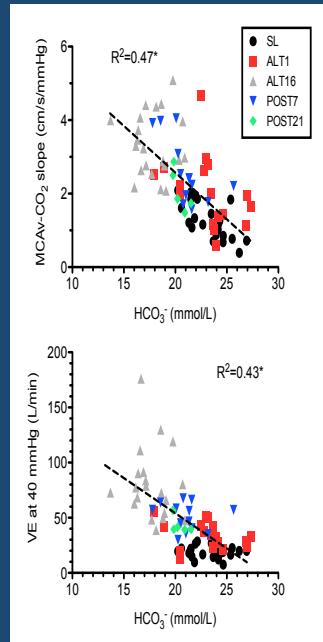
1 Institute of Sports Sciences, 2 Lemanic Doctoral School of Neuroscience, University of Lausanne, Switzerland, 3 University of Colorado Altitude Research Center, Anschutz Medical Campus, Aurora, Colorado, USA, 4 University of Colorado Colorado Springs, Department of Biology, Colorado Springs, Colorado, USA, 5 University of Oregon, Department of Human Physiology, Eugene, Oregon, USA.

Introduction

Maintaining cerebral blood flow (CBF) and oxygen transport is vital. CBF responsiveness to CO_2 , termed cerebrovascular CO_2 reactivity, provides a useful, non-invasive index of cerebrovascular function.


Few studies investigated acclimatisation effect to high altitude on cerebrovascular CO_2 reactivity. Interpretation of findings from these studies is difficult due to: timing of measurement at altitude; confounding effect of relative deacclimatisation from higher altitude; artificial normobaric hypoxia; method used to assess reactivity.

Aims:


- Assess effect of altitude acclimatisation and re-exposure on cerebrovascular CO_2 reactivity
- Compare steady-state and modified rebreathing methods.

Methods

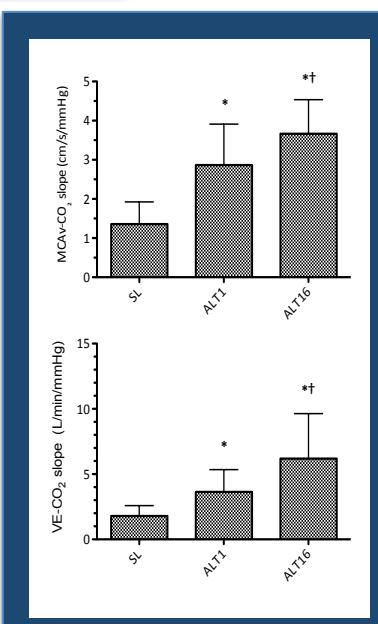
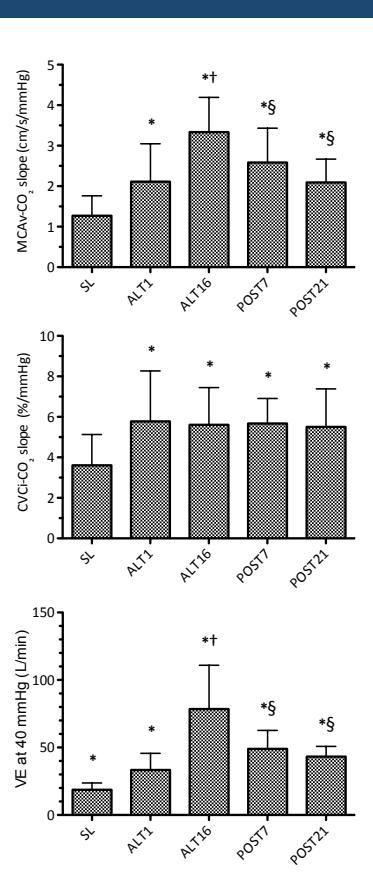


- 24 healthy non-smoking physically active subjects.
- We measured ventilation (VE), arterial blood pressure (ABP), middle cerebral artery velocity (MCAv), arterial PCO_2 (PaCO_2) and PO_2 (PaO_2), cerebrovascular conductance index (CVCi = MCAv/ABP) at:
 - sea level (SL)
 - acute exposure to 5,260 m (ALT1)
 - after 14 days at 5,260 m (ALT16)
 - upon re-exposure to 5,260 m following either 7 (POST7) or 21 (POST21) days at 1,500 m
- 3 step steady-state hypercapnia ($\text{PETCO}_2 = 20, 40$ and 50 mmHg) in background hyperoxia ($\text{PETO}_2 = 300 \text{ mmHg}$).
- Modified rebreathing ($\text{PETCO}_2 = 20$ to 50 mmHg , $\text{PETO}_2 > 300 \text{ mmHg}$).

Figure 3. Comparison of steady-state and rebreathing estimate of cerebrovascular and ventilatory responsiveness to CO_2 with acclimatisation to altitude. * significant correlations ($P<0.05$).

Figure 4. Relationship between arterial bicarbonate concentration and steady-state cerebrovascular and ventilatory responsiveness to CO_2 with acclimatisation and re-exposure to altitude. * significant correlations ($P<0.05$).

Figure 2. Changes in rebreathing cerebrovascular and ventilatory responsiveness to CO_2 with acclimatisation to 5,200 m. Values expressed as mean \pm SD. * different from SL ($P<0.05$), † different from ALT1 ($P<0.05$), § different from ALT16 ($P<0.05$).

Figure 1. Changes in steady-state cerebrovascular and ventilatory responsiveness to CO_2 with acclimatisation and re-exposure to 5,200 m. Values expressed as mean \pm SD. * different from SL ($P<0.05$), † different from ALT1 ($P<0.05$), § different from ALT16 ($P<0.05$).

Discussion

This study is the first to assess the effect of altitude acclimatisation and re-exposure on cerebrovascular and ventilatory responsiveness to CO_2 using both the steady-state and modified rebreathing methods.

We demonstrate that:

- Cerebrovascular CO_2 reactivity is further elevated following 16 days at 5,260m compared to the initial increase found upon arrival, regardless of the method of assessment.
- The cerebrovascular and ventilatory responsiveness to CO_2 remained elevated upon re-exposure to altitude despite deacclimatisation period of 7 and 21 days at a lower altitude.
- This increase in cerebrovascular CO_2 reactivity with acclimatisation coincided with an elevated ventilatory responsiveness to CO_2 (mainly reflecting the central chemoreflex), both of which correlated with the changes in resting arterial $[\text{HCO}_3^-]$.

Our data indicate that these increases in cerebrovascular and ventilatory responsiveness to CO_2 might be accounted for, by the changes acid-base balance associated with high altitude exposure. We found the effect of acclimatisation on these physiological parameters is partly retained despite a deacclimatisation period of 7 and 21 days. We speculate that an enhanced cerebrovascular CO_2 reactivity could help maintain cerebral O_2 delivery during perturbations in breathing stability at high altitude.

