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Abstract

Water is the most important resource on earth as it is necessary to every living sys-
tem. A lot of populated areas are near rivers and human activities are strongly
linked to rivers. River discharge is a key value for water management and water
monitoring. However, their values are not known in many parts of the world due
to rare, non-existent or proprietary river gauge measurements (Gleason and Smith,
2014). Remotely sensed information offer an important alternative to obtaining
river discharges, as they are accessible and provide a better temporal and spatial
overview. Different methods exist but they often depend on in-situ measurements
and apply on very large rivers. In this study, a new approach is developed. It com-
bines knowledge from three different disciplines. An image analysis is done to esti-
mate the river width. Then, relations from open-channel hydraulics are used with a
probabilistic inversion. Probabilistic inversion is a method widely used for example
in Geophysics. It has been proved that it is a very efficient way to analyze highly
nonlinear problems with complex a priori information and data with an arbitrary noise
distribution (Mosegaard and Tarantola, 1995). The method is tested on the Nyong
River located in Cameroon which is a relatively small river comparing to usual case
studies in the field of interest. Width is obtained from WorldView-3 and Landsat
7 images and the method is implemented in Matlab. The results obtained are very
promising which prove that probabilistic inversion is a powerful tool to estimate
river discharge using remotely sensed information. It should be the object of fur-
ther research and interesting developments.



Acknowledgements

Comme toutes les personnes remerciées sont francophones, cette partie fait plus de
sens dans cette langue.

Tout dabord, je voudrais remercier mon superviseur, le professeur Grégoire Mariéthoz,
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eu l’opportunité de travailler sur un sujet passionnant et découvrir de nouvelles dis-
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remercier les services du BVET dont j’ai utilisé les données pour ce travail.
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Chapter 1 Introduction

Water is the most important resource on earth as it is necessary to every living sys-
tem. Rivers are one source of freshwater. A lot of populated areas are near rivers
and human activities are strongly linked to rivers.

One of the most important hydraulic observation is the temporal and spatial varia-
tion in river discharge (Alsdorf et al., 2003). Indeed, river discharge is a key value
in numerous application.
First, it could be used to study the watershed function. This aspect is necessary
for example when predicting inundations patterns. Discharge values are also often
used in numerical models to estimate extreme values. It is also useful for fisheries
and wildlife habitat monitoring (Smith, 1997). In addition, knowing how the wa-
tershed works is a useful tool to study how a pollutant could be transported inside
a watershed.
Second, river discharge is used to implement and monitor various human activities
such as irrigation, navigation or hydro-energy production. It is a useful value for
evaluating environmental strategies (USGS, 2017) or development and rehabilita-
tion project around rivers. It is also a good indicator when studying the impact of
urbanization on a river.
Finally, on a larger scale, river discharge is a useful data that could help evaluate
climate variations (Cazenave et al., 2016), (Negrel et al., 2011).

Nowadays, river discharge is mainly measured with in-situ gauging stations or with
estimation using rainfall-runoff models. But those methods are not optimal. Indeed
for the rainfall-runoff models is a simplification on how the watershed and its dif-
ferent compartments work and are linked. Moreover, a lot of observation stations
have been interrupted or discontinued (Sichangi et al., 2016), (Alsdorf et al., 2003),
(Cazenave et al., 2016), (Pan and Nichols, 2013). Remotely sensed information
constitute therefore an important alternative to obtain river discharges. It offers
many advantages.
First, they offer a better temporal and spatial overview.It provides information over
large areas (Bjerklie et al., 2005), with data that are contiguous and political boundary-
free (Vörösmarty et al., 2005). Data are over an area and not single points and they
are standardized. This is particularly useful for example for time series analysis.
Information is measured since the 1990’, so it could be used to study temporal evo-
lution. Moreover, there are more than one information on an image, water as well
as urban or agricultural objects could be studied from a single image.
Second, it offers a greater accessibility. On one hand, for the financial aspect, as im-
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ages are free or can be bought individually for a particular time and place (compare
to install and manage many gauging stations). On the other hand, for the physical
aspect, as sometimes for geographic or politic reasons, it is difficult to access an area
of interest.
Finally, the number of tools to obtain and analyze this kind of information increase
each year. Satellite and acquisition devices like radar are more and more power-
ful and precise. Software and platforms like Google Earth Engine or Matlab’s and
Python’s specific toolbox offer a lot of options to process the data as well as sophis-
ticated algorithm (Tang et al., 2009). In the future years, it should easier to produce
useful analytics from this source of information.

Estimating hydraulic parameters and river discharge using remotely sensed infor-
mation is a subject of interest for a long time.
In 1997, a review of existing methods is presented by Laurence Smith (Smith, 1997).
It explains how remotely sensed information is useful for the estimation of inun-
dated areas and flood extent. It also presents some studies that use altimetry to
estimate river stage and discharge. In 2005, a study (Bjerklie et al., 2005) try to es-
timate discharge using exclusively remotely sensed data. In 2007, swath-altimetry
is explored to estimate river discharge and depth (Andreadis et al., 2007). A project
published in 2012 (Pan and Nichols, 2013), presents a method using the cross-
sectional inundation area-river stage relationship (IARSR). In 2011, a paper (Negrel
et al., 2011) explores how river flow equations could be modified in order to ob-
tain simpler relations between hydraulic parameters and use only some of them to
compute discharge. A very promising method is presented by Gleason and Smith
in 2013 (Gleason and Smith, 2014), using at-many-stations hydraulic geometry. Fi-
nally, the work published in 2016 (Sichangi et al., 2016) gives good results. In this
paper, a state-of-the-art of the field of study is presented in a Table that could be
found in Appendix A. They also propose that studies realized can be divided into
four categories:

• Methods using altimetry data to obtain water stage and in-situ measured dis-
charge, and then using rating curve to estimate river discharge.

• Methods using satellite to obtain water surface area and in-situ measured dis-
charge, and then using water area-discharge rating curve.

• Methods using hydraulic equations and estimation of their associated param-
eters by remotely sensed information.

• Methods using width and law of the at-many-stations hydraulic geometry.
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In the present master thesis, we have used a mixed approach that combines satellite
images analysis, hydraulic equations and probabilistic inversion. Probabilistic in-
version is a method widely used for example in Geophysics. It has been proved that
it is very efficient to analyze highly nonlinear problems with complex a priori informa-
tion and data with an arbitrary noise distribution (Mosegaard and Tarantola, 1995). So
there are two main objectives in this work. First, to create this method and explore
its capacity. Second, all these studies presented before have been realized on very
large rivers (Amazon, Mississippi, etc), and we would like to explore method on a
smaller river which is why the Nyong river in Cameroon is the study case.

The method explored in this project is described in Figure 1.1. It regroups tech-
niques from three disciplines. All aspects will be explained in details in next chap-
ters. First (1), an image analysis (Chapter 3), is done in order to obtain widths along
the river. The analysis was done using Matlab and Google Earth Engine on two
kinds of images: WorldView-3 (high resolution) and Landsat 7 (lower resolution).
Then,(2), knowledge from hydraulics (Chapter4) were used. The link between the
width and the discharge is found using Manning’s Equation. The definition of hy-
draulics parameters relatives to our case study constitute the a priori information
that will be then used in the inversion. The parameters found were also used to
create synthetic data (3) in order to test and assess the quality of the probabilistic
inversion. The probabilistic inversion (4), (see Chapter 5), consists of a Metropolis-
Hastings algorithm, which allows us to obtain information about a system (dis-
charge) using observational data (width computed at step (1)), prior information
(bounded hydraulic parameters specific to the case study) and theoretical relation-
ships (Manning’s equation). At the end of the method, we obtain an estimation of
the river discharge (5). Details of the case study are presented in Chapter 2.
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Image Analysis
- Identification of the river

- Compute Widths
(1)

Hydraulic
-Manning’s Equation

- Prior on hydraulic parameters
(2)

Probabilistic Inversion
Metropolis-Hastings algorithm

(4)

River Discharge Estimation
Distribution of Q

(5)

Synthetic data
(3)

Test and Validate

Figure 1.1: Scheme of the Method Explored in the project
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Chapter 2 Case Study: TheNyong river

2.1 Generalities

Our case study is on the Nyong river, located in Cameroon, as shown in Figure 2.1.

Figure 2.1: Nyong River (http://bvet.obs-mip.fr/fr)

The Nyong is the second river of the country in length (690km) (Olivry, 1986) but
it has a catchment area of 27 800 km2 which is relatively small. It originates at
the east of Abong Mbang in the rainforest. It could be divided into three different
morphological regions (Viers et al., 2000). First, a swamp zone of 2-3km width
(Viers et al., 2000) and a lot of vegetation in the river bed. Around 250km after
the Nyong source, the swamp zone decreases and is replaced by a more defined
channel with a width around 100m. Then, approximately 230km further, the Nyong
River leaves the South Cameroonian Plateau (losing 470m altitude) what leads to
a succession of rapids and waterfalls. Finally, it reaches the coastal plain and its
mouth is in Petit Batanga in the Guinea Gulf.
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The Nyong river presents various advantages regarding our study.

First, a lot of studies, as explained in Introduction, are focused on very large rivers.
It is interesting to investigate the method on smaller rivers. Indeed, large rivers
are often monitored with on-site stations for many years. Smaller rivers represent
a great challenge and are consistent with the aim of our study. The method will
provide locals with an easy tool that give an estimation of discharge, useful for
example in water management. The community concerned is often smaller than
the one on large rivers, as are their financial resources.

Second, the Nyong river is monitored since the fifties. This is necessary because, as
said in the introduction, the method created has to be consistent with real settings
and we need information to define the prior in the inversion part.

Since the beginning of the fifties, hydrologists from ORSTOM (today IRD - Insti-
tut de Recherche pour le Développement) have monitored the river in 8 stations
(Olivry, 1986). The first set of data are from Monographie du Nyong et des fleuves
cotiers(Olivry, 1979) where discharge and water height from 1947 to 1964 are avail-
able.

In 1993, the OS-BVET (Observatory for Research in Environment-Experimental Trop-
ical Watersheds) have begun to study the Nyong River basin. This program reunites
different French institutions and organizations. It is a monitoring tool that aims to
increase our knowledge regarding the continental water and biogeochemical cycles and
the dynamics of weathering processes in tropical environments. It is also dedicated to the
study of anthropogenic impacts on the natural environment. These goals are achieved by
the combined use of hydrological, geophysical, mineralogical, geochemical methods and
modeling(INSU, 2017). This program has collected a lot of hydrological and geo-
chemical data (INSU 2017). In our case, we use water discharge measurements. All
the data used will be explained later in this chapter.
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2.2 Area of interest

In order to create and test the methodology, we have to choose an area along the
Nyong river. Several elements have to be taken into account. First, the Nyong has
to be visible on satellite images and distinct from the rest of environment. Then, it
should present variations of width along its path. Moreover, measured data of the
area should be available. The last constraint is imposed by Digital Globe, which is a
provider of one set of images, and concern the size of the area. It has to be 100 km2

that could fit in a kind of rectangular shape. The area selected is between Mbalmayo
and Olama stations. It is situated in the green rectangle in Figure 2.1 and a zoom is
presented in Figure 2.2. It presents variations in width and shape (with meanders).
The two measurement stations exist since the fifties and all the data are available.
Moreover, the So’o affluent is also visible.

Figure 2.2: Area of interest (Google Earth Pro)

Several parameters that will be useful for the project are known in this area. We
have water discharge, slope, a relation between the two stations during the low-
water period and stage-discharge curves. For example, on Figure 2.3, the stage-
discharge curve at station Olama using measurements between 1964 and 1976 is
presented. A lot of other parameters such as geochemical data are also available but
we will not use them in our study.
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Figure 2.3: Stage-discharge curve in Olama Station (Olivry, 1979)

2.3 Climate and Hydrology

As explained in the introduction, in order to have a good and consistent model, it
is important to rely on real data. It will help us to select our images and afterward
define the prior.

The climate in the studied area is equatorial with four seasons. It includes two wet
seasons, the small one between March and May and the big one between Septem-
ber and November. The big dry season is between December and February, and
the small one goes from June to August (Olivry, 1986). Using the data provided
by BVET program, the alternation of seasons is visible through variations of river
discharge as shown in Figure 2.4 for the Mbalmayo station and in Figure 2.5 for the
Olama station.
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Figure 2.4: Discharge at the Mbalmayo station between 1998 and 2013

Figure 2.5: Discharge at the Olama station between 1998 and 2013

River discharges at Olama station are generally greater than in Mbalmayo due to
the So’o tributary. An example of the relation between the two stations is shown in
Figure 2.6. The WorldView set of images was acquired during February 2017. The
river discharge measurement for this period are presented in Figure 2.7.
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Figure 2.6: Discharge at Mbalmayo and Olama station for year 1999

Figure 2.7: Discharge at Mbalmayo and Olama station for 2017 dry season
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Chapter 3 Images analysis

In this chapter, the dataset and methodology used to compute the width are de-
tailed. The idea is to obtain a width using images containing a river independently
of the satellite used or river’s morphology. A satellite image is a collection of bands
that contain different spectral information. The two kinds of products used in this
project offer Multispectral (MS) imagery and Panchromatic (PAN) imagery. This
means that for each image, several spectral bands are available. Depending on the
subject of the research, different bands or combination of bands are used. For ex-
ample, a well-known combination of Near Infrared (NIR) and Red (R) bands, is
the NDVI (Normalized Difference Vegetation Index) which highlight the presence
of vegetation in images. For our project, we have used the NIR Band which cor-
respond to Band 4 in most products. The specific wavelength range (0.77 - 0.90
micrometers) emphasizes boundaries between vegetation and water (USGS, 2017).

3.1 Dataset

In this project, two kinds of images were used. One is a set of nine images acquired
with the satellite WorldView-3 (WV3) and the others are Landsat 7 products found
on Google Earth Engine.

3.1.1 WorldView-3

WorldView-3 is a satellite owned by Digital Globe company. It provides panchro-
matic imagery of 0.31cm resolution and multi-spectral (MS) imagery at 1.24m res-
olution. The data were captured on the 18th of February 2017, at 09:56. The set of
images used is presented in Figure 3.1.
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Figure 3.1: Set of WV-3 images, NIR Band

3.1.2 Landsat

Google Earth Engine was used to obtain the Landsat images. It has to be consistent
with the WV-3 images in order to compare the results afterward. As the region is
very cloudy, it is difficult to find a raw product that works for the analysis. Google
Earth Engine provides processing methods that help to obtain a useful image. In
this paper, the Landsat TOA (top-of-atmosphere) reflectance percentile composites
were used. This method selects a subset of scenes at each location, converts to TOA
reflectance, applies the simple cloud score and takes the median of the least cloudy pix-
els(Google, 2017). Pixels closest to the 50th percentile were chosen to minimize
clouds and shadows. For a more detailed analysis, the choice of the upper and lower
percentiles can be estimated by taking cloud frequency and topographic conditions
into account (Donchyts et al., 2016). The technique creates an image composed of
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Landsat 7 images that cover a defined period of time. The period of interest, in this
project, is the low-water season for two reasons. First, the river bed is better defined
and also the WV-3 images were acquired during this season. As the resolution of
Landsat images is lower, we wanted to have particularly dry years. The driest years
were identified using the data described in Chapter 2. To obtain the TOA percentile
composites, three years in a row have been selected and a time range has to be de-
fined. The period goes from 01/02/2000 to 04/10/2003 between Day 30 (January
30th) to Day 100 (April 10th) of each year. We can see on Figure 3.2 that it cor-
responds to the driest years (lowest peaks) that are in a row. During those days,
discharge is below or equal to 75m3/s at Mbalmayo as you can see in Figure 3.3. To
explore this issue of low resolution we have also thought of pansharpening but due
to time constraints it was only tested on WV-3 images as explained in Appendix E.

Figure 3.2: Discharge between 1998 and 2013 at the Mbalmyo station (source:bvet)
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Figure 3.3: Discharge from dry years in Mbalmayo station

Only the NIR band of the composite image was exported and in order to explore
various options, two export resolutions were chosen. The first one is 30m which is
the real resolution of Landsat 7 images and the second one is 10m. Google Earth
Engine use the scale specified by the output to determinate the appropriate level of the
image pyramid to use as input (Google, 2017). The detail of methods used for smooth-
ing and sub-sampling is not detailed on the API so the distortion induced by those
techniques are not known. But as the aim of this work is to estimate river discharge
using only satellite images, it is a good lead to follow and see if the difference of res-
olution induces high variation in the calculated width or not and if those variations
impact the estimation of discharge. The images obtained are presented in Figure
3.4.

3.2 Methodology

To compute the width, some steps are required. First, the river has to be isolated
from the other component of images using image processing tools and after that, a
method has been created to compute the width. All those steps are explained below
in details.

3.2.1 Isolation of the river

The river have to be highlighted and isolated from other components (water, trees,
lands) on the image. We have used four steps and implemented them in Matlab
to achieve this part. First, we have selected and extracted the NIR band which
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Figure 3.4: Nyong River, Landsat TOA percentile for dry years, NIR Band

is useful for delineating water bodies (Lillesand et al., 2015). For the Landsat 7
product, it was done just by selecting the chosen band on Google Earth Engine. For
the WV-3 product, we imported images on Matlab and use the function imread and
then select the Band 4. At the end of this step, images are defined by a matrix where
each cell is a pixel with a location address and an intensity value. An example in
shown in Figure 3.6 (a). For each image, size of the matrix is huge which means high
computing time for the rest of the analysis. As the river is not everywhere on the
dataset and the aim is not to compute all widths in the case study’s area, we have
selected only two areas with a cropping. They correspond to parts of Area 1 and
Area 8 (identified in Figure 3.1), which are relevant for two reasons. First, they are
near gauging stations and also they have structures easily identified that we could
use as a landmark to compare WV-3 and Landsat 7 sets.

Then, the water must be selected from other components of the image. The prin-
ciple behind this step is that water has a different spectral signature than tree or
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land, therefore its intensity value is different. We fix a threshold using the visual
inspection of the image that takes only the water. For instance, in the Figure 3.4
the river is clearly identified by values below 40 (deep blue). The threshold needs
to be found for each kind of image. The visual inspection is sufficient to complete
this step. It is an important step because if the threshold is not good, the computing
time for the next steps explodes. Exploratory data analysis using data presentation
as in Figure 3.4 is a good way to reduce the range of possible values. Moreover, some
methods to automatize the threshold selection process exist (Gonzalez et al., 2009)
but they were not used in this project due to time constraints as they are not easy to
implement. An example of the result obtained is shown in 3.6, (b).
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As the region contains a lot of trees and there are wetlands, some residues are still
present as in the Figure 3.6 (b). To overcome this issue, a connected component
analysis is done. This technique identifies objects that are connected and the specify
one can be selected (Gonzalez et al., 2009). As the river after the threshold treatment
will be the biggest of all water objects, its search can be automatized and the river
as a unique object is the output of this step. In Figure 3.6 (c), we clearly see that the
river is the only element left in the image.

The last step is the definition of the river banks. Our first idea was to use an
edge detection analysis. It is an approach for detecting meaningful discontinuities in
intensity values (Gonzalez et al., 2009). In Matlab, several methods can be used, in
this case, the Canny Edge detector was at first chosen. But a simpler operation was
finally used, using the function bwmorph, we have removed pixels inside our object.
We have chosen this method instead of Canny Edge Detection for two reasons. As
shown in Figure 3.5, the Canny Edge detection (a) gives smoother contours than the
bwmorph function (b). Moreover, it creates small subparts that could lead to errors
when defining the river banks. The output gives the two river banks as shown in
Figure 3.6 (d).

(a) (b)

Figure 3.5: Comparison between Canny Edge Detection and Bwmorph operation
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(a) (b)

(c)
(d)

Figure 3.6: Isolation of the river, Area 1

3.2.2 Computation of the width

Finally, we have to compute the width. As the aim of the method is to work with
any kind of river and configuration, some considerations must be taken into ac-
count. The orientation of the river must not influence the results. In order to have
the real width (perpendicular distance between two banks), the centroid was first
identified. The distance of each bank to all other points of the grid is computed
and then the centroid is the point where the absolute difference between the two
distance matrices is equal to 0. The results are shown in Figure 3.7. To obtain the
width, the distance between the bank and the centroid is multiplied by 2 and then
by the resolution of the image. A result on a portion of the river is shown in Figure
3.8.
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Figure 3.7: Centroid determination

Figure 3.8: Width on World View 3 image
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3.3 Results

In this section, we discuss the general results and the difference between images
from different resolutions.

3.3.1 General results

As we want to assess the validity of the method, we will consider results only on
the WV-3 images in a first step. As shown in Figure 3.8, the width is computed at
each point of the river and variations are well represented. The superposition with
the real image lets us check if qualitative variation is correct. A measure on ArcGIs
have also been made and the width value in five different points is as obtained by the
algorithm. Widths computed for Area 1 (a) and Area 8 (b) are presented in Figure
3.9. The range of values for Mbalmayo area goes from 30 to 110m and for Olama
area from 65-135m. The distribution and extreme values obtained is consistent with
the literature. In (Olivry, 1986), the width is of order 100m. Moreover, the fact that
the width at Olama is greater than in Mbalmayo is also coherent as the So’o tributary
join the Nyong river just a little upstream.

(a) (b)

Figure 3.9: Histograms of computed width for Area 1 and Area 8
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3.3.2 Comparison between WorldView-3 and Landsat images

The same segment of the river has been selected in order to have a coherent com-
parison. We have chosen a geometric form as a reference. The positive aspect is
that the method works, meaning the code for computing the river width run and
gives results also for Landsat images. The problem appears with the 30m export of
Landsat images. Indeed, the resolution is to low to identify distinct river banks in
step 4 and so the centroid cannot be found. In Figures 3.10 and 3.11, we see that
the method gives good qualitative results for the 10m export. In the 30m export, we
clearly see that there is closing pattern issue. Moreover, even with 10m export, the
section of the river must be carefully selected due to a risk of a closing pattern. If
in some place, the river is too thin, it closes the river and Matlab interprets it as a
single bank. In Figures 3.12 and 3.13, we can see that variations are well identified
and width values are almost the same or at least of the same order (also verified in
Figure 3.14). The image processing and method to compute the width are working
with images with lower resolution but to be efficient for the river discharge estima-
tion, it is necessary to use the 10m export tool from Google Earth Engine.

Figure 3.10: Bwmorph operation on WorldView-3 image
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Figure 3.11: Bwmorph operation on Landsat images

Figure 3.12: Computed widths on WV-3 image
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Figure 3.13: Computed widths on Landsat 10m image

(a) (b)

Figure 3.14: Histograms of computed width for WV-3 and Landsat(10m) images
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Chapter 4 Hydraulic component

The hydraulic principle used in this project is the Manning Equation (4.1), which
is the most widely used of all uniform-flow formulas for open-channel flow computations
(Chow, 1959). This means that the assumption that the flow is uniform has been
made. As we want a relation between discharge and width, a modified Manning’s
Equation has been used and it will be presented below. Manning’s Equation (modi-
fied or not) links river discharge to several parameters that will be described in this
chapter. Moreover, to perform the Metropolis-Hastings, a good prior is needed. The
range of possible values for each parameter will be discussed, and we will present
the synthetic river created. It will be used afterwards to assess the quality of results
produced by inversion.

Q = A ∗R2/3
h ∗

√
J ∗K (4.1)

With Q the discharge (m3/s), A the section (m2), Rh = A/P the hydraulic radius (m)
with P the wetted perimeter (m), J the slope (unit) and K the Manning’s roughness.

4.1 Modified Manning’s Equation

The width does not appear directly in the Manning’s Equation. To do the inversion
we need to find a way to express parameters of the equation as a function of the
width. We have used the relation 4.2 and it can be then applied in 4.3 and 4.4 to
obtain Rh = A/P . All parameters of the following equations are explained in Section
4.2.

W = BW + 2 ∗ z ∗ h (4.2)

A = (Bw + z ∗ h) ∗ h (4.3)

P = Bw + 2 ∗ h ∗
√

1 + z2 (4.4)
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4.2 Hydraulic parameters

In this project, parameters are not estimated using remotely sensed information
except the width. It is due to time issues but a lot of studies exist and are promising
and could be used to complete the work done here. In the following section, each
parameter will be presented and its values relative in the context of the case study
will be discussed. It is an important step of the method because it will define the
prior that will be used in the Metropolis-Hastings.

Slope: The channel bottom slope is given by J = tanθ with θ the angle of inclination
(Mays, 2010). It is often given in % or in ‰. For the Nyong river between Mbalmayo
and Olama, the slope can be found in the literature (Olivry, 1986) and (INSU, 2017).
It is equals to J = 0.16‰.

Channel Geometry: The channel geometry is very important as it influences the
section and the hydraulic radius. In this project, we assume that variation of width
will influence the discharge so we have to define geometry where the width is chang-
ing. The main channel geometries in hydraulics are the circle, triangle, rectangle
and, trapezoid. In this project, we only consider the trapezoid and the triangular
cases like in Figure 4.1. In order to limit the computational cost, we have chosen
to vary the angle of the riverbank and the width at the bottom. It let us go from a
triangle (Bw = 0) to a trapezoid. Bw is set to never be superior to W . The river banks
slope goes from z = 0.5 to z = 6 based on Appendix B of the book of Chow (Chow,
1959). If z = 0, the geometry is rectangular.

(a)
(b)

Figure 4.1: Trapezoidal (a) and triangular (b) geometries

Width: We used the width computed on our dataset of images. Results have already
been presented in Chapter 3. Between the two areas of interest, it gives values
between 40m and 120m.
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Water height: To define the limits of water height we have used old records pre-
sented in (Olivry, 1986) and you can find an example of the data for Olama station
in Figure C.1 in Appendix. For the Mbalmayo station, we had a little more data.
In the work of Jean-Claude Olivry, heights are related to discharges. The values of
discharges are consistent with the one we have for the period of interest, that it is
why we assume the value of height can be used. We have set values between 0.04m
and 2.6m. These values seem small but they are what is found in the literature for
the low-water period.

Manning’s Roughness: The Manning’s roughness is a key factor in the Manning’s
equation and there is no way to obtain the direct value. It needs to be determined
using different factors that influence it. Those factors are related to material of the
bed, irregularity, vegetation, variation of the cross-section, obstructions, and mean-
dering. Chow proposed a method in (Chow, 1959), that allow to estimate a value
for each factor and then compute the roughness coefficient n with an equation. The
table is presented in Figure C.1. Based on the information we found, we have cho-
sen the following values: n0 = 0.025, n1 = 0.020, 0.005 < n2 < 0.015,n3 = 0.015,
0.010 < n4 < 0.025, m5 = 1.150 which gives us values of n between 0.035 and 0.1.
This is consistent with the literature regarding K = 1.49/n in m1/3s1 (Mays, 2010).
Indeed for natural streams with vegetation K = 10, for natural streams with mean-
ders 20 < K < 30 and for uniform section and earth channel 40 < K < 60. With n
between 0.035 and 0.1 it gives K between 14.9m1/3s1 and 42.6m1/3s1.

All those parameters are useful for the prior in the Metropolis-Hastings. The values
used are summed up in the Table 4.1

Parameter Values range
Slope (J[‰]) 0.00016
Water height (h[m]) 0.04-2.6
Bank slope (z) 0.5-6
Bottom width (Bw[m]) 0-120
Roughness (K[m1/3s1]) 14.9-42.6

Table 4.1: Values used for the prior
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4.3 Synthetic river

In order to test and validate the inversion method, synthetic data have been created.
It is important because as it is a new methodology we have no idea of its quality.
With synthetic data, we know for sure what is the real solution. So we can compare
our results to the value we should have obtained and then assess the quality of our
methodology.

To generate those data we have used the hydraulic parameters described in the pre-
vious section with their chosen boundaries. We have then computed the width using
Equation 4.2 and discharge using Manning’s equation for every combination possi-
ble. To obtain all combinations we have fixed 4 out of 5 parameters and taken all
possible values of the fifth. We have done it for every parameter. The parameters
are the slope (fixed), the water height, the riverbank slope, the bottom width and
the roughness. Their boundaries and their number of values are presented in Table
4.2. In the code, n is converted in K (from 14.9 to 42.57).

The result is a matrix of 211 302 rows with 9 columns (parameters plus W , A, P , Rh
andQ). Out of those possibilities, we have removed all inconsistent values, meaning
ones where the width was off boundaries (40 and 120m), as well as the discharge was
off boundaries (10 and 140m3/s). It gives 93 800 combinations. The main interest
to have all these combinations is that it is easy to do subsets depending on what
characteristics we need without more computation.

Parameter Values range Step between values
Number
of values

Slope (J) 0.00016 - 1
Water height (h) 0.04-2.6 0.02 129
Bank slope (z) 0.5-6 0.5/1 9
Bottom width
(Bw)

0-120 10 13

Roughness (n) 0.035-0.1 0.005 14

Table 4.2: Values used for synthetic river
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Chapter 5 Probabilistic Inversion

In order to compute the discharge, the Metropolis-Hastings algorithm is used. It is
a well known probabilistic inversion method. Inverse problem theory is the mathe-
matical theory describing how information about a parameterized physical system can be
derived from observational data, theoretical relationships between model parameters and
data, and prior information(Mosegaard and Tarantola, 1995). In our case, observa-
tional data are the computed widths, the theoretical relationship is the Manning’s
Equation and prior information are the bounded definition of each parameter.

It exists two kinds of inversion methods. Deterministic ones, which usually pro-
vides a single estimate, one of many different acceptable inversion solutions. Prob-
abilistic inversion methods, on the other hand, provides (almost) all solutions with
their associated statistics. Those methods are very useful for highly non-linear prob-
lems (Zahner et al., 2015).

In this section, we will present the Metropolis-Hastings algorithm, then we will
discuss its structure and how we have implemented it in the context of the project
and finally, we will discuss the obtained results.

5.1 Metropolis-Hastings

Metropolis-Hastings algorithm is a Markov Chain Monte Carlo (MCMC) method.
MCMC methods are used for sampling from a probability distribution. A Monte
Carlo is a random walk in the model space, which means that the method explores
solutions in all the model space avoiding to be trapped in local likelihood maxima
(Mosegaard and Tarantola, 1995). The Markov Chain are sequences of events that are
probabilistically related to one another. Each event comes from a set of outcomes, and each
outcome determines which outcome occurs next, according to a fixed set of probabilities
(Shaver, 2017). In other words, the Metropolis-Hastings will do a random walk
(Monte Carlo) in the model space and to go from a step to the next one, the outcomes
are evaluated and added or not to the chain via a Markov chain.

The Figure 5.1 tries to sum up the process. Moreover, to have a concrete view, the
structure is detailed in Section 5.2.
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Prior
J , U(K), U(h), U(z), U(Bw)

Posterior
All mprop accepted

Initialization
mcurr,1, Wcurr,1, Lcurr,1

Random Walk
mprop,i, Wprop,i, Lprop,i

Acceptance criterion
If SP < rand then,
mcurr,i+1 = mprop,i

else mcurr,i+1 =mcurr,i

Loop for i=1 to n

Figure 5.1: Scheme of the Metropolis Hastings Algorithm

5.2 Structure

The method could be seen as a succession of three major steps. First, the initializa-
tion of the parameters before entering the loop. It could be seen as the starter point
of the walk. Then, entering the loop, the random walk is started, which corresponds
to a small step from the initial stage. Finally, the acceptance where a choice is made:
if the proposal becomes the current starting point for the next step of the walk or
if the current position is kept as a starting point. All accepted proposals are stored
and then used to compute the river discharge.

The method has been implemented in Matlab.
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Initialization
In this part, the prior is set and the initial current stage is created. First, all parame-
ters, except the slope (J) which is fixed, are defined. A uniform distribution has been
chosen with the lower and upper parameters defined in the synthetic case. Then,
the first current stage is created in order to initialize the MCMC. A random selec-
tion within the distributions is done. So, at this stage J, Kcurr , Bwcurr , zcurr and hcurr
are obtained. The combination of them is called mcurr . Using those parameters and
the transformed Manning’s Equation, we also defineWcurr , Acurr , Pcurr , Rhcurr . With
all these elements, the current likelihood Lcurr betweenWcurr andWobs is computed
using the Equation 5.1. In this project σ = 1.24 which is the size of a pixel. Different
formulas exists for the likelihood, this one was chosen because it corresponds to a
Gaussian likelihood.

Lcurr = exp(−0.5 ∗ (Wcurr −Wobs)
2/(σ2)) (5.1)

Random walk
When initialization is done, the random walk begins. For each parameter, a new
proposal value is defined, it corresponds to mprop = mcurr + θ ∗ f ∗ rand. The size of
the step betweenmprop andmcurr is defined by θ ∗f ∗rand. Where θ is a value that is
adapted for each parameter to have a proportional step with regards to its distribu-
tion. f is just a scaling factor to easily test the impact of variation in step size. The
random number warranties variations between each iteration. The proposed values
at each iteration have to be between the boundaries set in the prior and this condi-
tion is verified for each loop. The chosen θ values for parameters are presented in
Table 5.1.

Parameters θ value
Roughness 0.005
Bed width 5
Bank slopes 2
Water height 0.01

Table 5.1: Theta values

Then, as in initialization step, Wprop is computed and compared to Wobs to compute
the proposal likelihood Lprop using the Equation 5.1.
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Acceptance
The last part consists of an acceptance step. A selection parameter (SP ) is set as the
minimum between 1 and the ratio α = Lprop/Lcurr . Then, the proposal is accepted if
SP is smaller than a random number between 0 and 1. If the proposal is accepted,
in the next iteration mcurr = mprop, else the same mcurr is used and another small
random variation from this state is done.

This structure will be applied to particular settings because the method is based
under the assumption that there is variation in width but the discharge is constant
if the river section studied is not too long. Those conditions are what constrain the
inversion. Different widths will be tested and a condition on their related discharge
will be defined. An example of three sections is presented in the next section but
the idea is to test many more sections at the same time to improve the results.

5.3 Results

In this part, the obtained results will be presented and methodological issues, as
well as limits will be discussed in Chapter 6.
In order to give an overview of the results and not have too many figures, results
are often presented three by three. So the size of the graphics is often small which
is enough to have an overview and analyze them. But to have a more precise view,
some are also presented in Appendix G.

5.3.1 Synthetic case

From the synthetic data, in order to explore a case similar to a real setting, we have
made a subset that respects some conditions. First, we have selected consistent W
values with regards to Mbalmayo station. Then, we wanted a constant discharge
around the value measured at the station the day of the image acquisition. Finally,
we have chosen a constant K. It gives us 19 combinations.
Among those 19, the three sections presented in Table 5.2 were used for the inver-
sion. The likelihood is computed using the Equation 5.2 with the relations 5.3 and
5.4 .

L = l1 ∗ l2 ∗ l3 ∗ q1 ∗ q2 (5.2)

li = exp(−0.5 ∗ (Wi −Wobs(i))
2/(σ2)) (5.3)

qi = exp(−0.5 ∗ (Qi −Qi+1)2/(σ2)) (5.4)
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# index z K Bw h W Q

1 0.5 17.53 50 1.92 51.92 32.2
2 0.5 17.53 60 1.72 61.72 32.2
3 0.5 17.53 70 1.56 71.56 32.2

Table 5.2: Synthetic data used for the test

5.3.1.1 Variation in step size

First, we explored the impact of modifying the step size. We have tried three differ-
ent values for f : f = 1, f = 5 and f = 10. For each value we have run the inversion
three times because it gives different distributions. The number of iterations is set
to one million. In Figures 5.2, 5.3 and 5.4, the distribution is more centered on the
real value (vertical red line) for f = 5.

Figure 5.2: Distribution of discharge for f = 1

Figure 5.3: Distribution of discharge for f = 5
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Figure 5.4: Distribution of discharge for f = 10

We have also observed how the algorithm explores the prior depending on the step
size. For that, we have set α = 1, meaning the Markov chain is not conditioned by
observation. On Figure 5.5, the impact of the step size is clearly visible. With f = 5,
almost all the possible values for h are tested whereas, for f = 1, the algorithm tries
only some values. Those results confirm the choice of f = 5. For other parameters,
the change does not impact as much the exploration. This is due to the θ values that
are different for each parameters (0.01 for h, 5 for Bw).



Chapter 5. Probabilistic Inversion 36

(a)

(b)

Figure 5.5: Evolution of h1 through the random walk for f = 1 (a) and f = 5 (b)
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5.3.1.2 Number of iterations

As shown in Figure 5.3, results are different each time we run the code. This means
that we need to test more proposals. Two ways are possible, either we multiply the
number of Markov chains or we do more iterations. This two methods will lead to
similar results as explained in (Tierney, 1994). We have chosen to change from 1
million to 50 million iterations. We see that the discharge distribution tends to be
more similar with more iterations. But they are still not perfectly similar. The more
we had iterations, the more it is expensive in computing time. Creating multiple
Markov chain will help with this issue but due to time constraints, we have not
implemented it.

Figure 5.6: Distribution of discharge for f = 5,n = 1 ∗ 106

Figure 5.7: Distribution of discharge for f = 5, n = 5 ∗ 107

5.3.1.3 Evolution of the parameters

The results presented in previous sections are satisfying with regards to the dis-
charge. They are often around the real value and they are not really inconsistent
values (for example none is above 100m3/s). In Figure 5.8, we see that widths tends
to their real value. But, in Figure 5.9, we see that the other parameters are not close
to their expected value. This means that the overall results are satisfying but do not
necessarily take into account consistent hydraulics possibilities and do not corre-
spond the synthetic data. We have also done a bivariate analysis of the parameters.
It is presented in Figure 5.10. The bottom width and the water height seems to be
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dependent variables. For the other variables, it is difficult to infer relationships.

Figure 5.8: Evolution of W1, W2, W3 for f = 5, n = 1 ∗ 106
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(a) (b)

(c) (d)

Figure 5.9: Evolution of h (a), K (b), z (c), Bw (d) for f = 5, n = 1 ∗ 106
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Figure 5.10: Bivariate analysis with f = 5, n = 1 ∗ 106

5.3.2 Real data

In this section, we will present results obtained for real data. For the two stations,
three widths have been chosen. they are from the WorldView-3 images. The val-
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ues are the nearest of the station. The chosen values are presented in Table 5.3 and
discharge values measured the day of the images acquisition are 32.2m3/s at Mbal-
mayo and 27.5m3/s at Olama. They are identified with red lines on Figure 5.11 and
Figure 5.12. In those Figures, it seems that results are quite satisfying but as shown
in Appendix in Figures G.4 and G.5, it is one chain among others that are worst.
Even when we increase the number of iterations it does not give satisfying results.
The variation between the different width is maybe too small to lead to a good result.

Mbalmayo widths Olama widths
81.84 79.36
74.4 74.4
77.5 80.13

Table 5.3: Synthetic data used for the test

Figure 5.11: Distribution of discharge at Mbalmayo Station
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Figure 5.12: Distribution of discharge at Olama Station



Conclusion

In this study, several points have been treated. First,using image processing tools
and a creative computation idea, a method to obtain widths from satellite images
has been developed. Its efficiency has been proved independently of the river ori-
entation or the satellite used. Results were good for images with high resolution.
The test on lower resolution images had given satisfying results. However, as the
Nyong river is small, the impact of the differences found could be important on fi-
nal results. Overall, this method could be a useful tool and not only for hydraulics
application. Tests on rivers with different size and morphology will be needed to
confirm its efficiency.

Second, using classical laws of open-channel hydraulics, a consistent prior has been
created and a simple relation between width and discharge has been established. It
seems consistent with the literature but it would have been interesting to investi-
gate further the relation between the different parameters. The quality of the prior
has an impact on the final results and also, better knowing the importance of each
parameter and their relations could be useful to condition the Metropolis*Hastings.

Finally, the results obtained with a probabilistic inversion are very promising. In-
deed, with a generalist approach with regards to hydraulics laws and inversion
rules, obtained distribution of river discharge were consistent with the expected
value. Without a lot of tests and calibration, the algorithm has given values that
were not in outliers. However, the distribution obtained were different between
each chain, more iterations will be needed to really confirm the potential of the
method.

To sum up, the objectives were to develop a new approach and explore its capacities
and also to see if it would work on small rivers. We can conclude that even if there
is a lot of possible ameliorations, the uses of probabilistic inversion in order to esti-
mate river discharge using remotely sensed information is a very promising field of
study and opens new research perspectives that are discussed in the next chapter.
And this method works on small rivers.
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Chapter 6 Perspectives

6.1 Methodological issues

The method developed to compute the width demonstrated its efficiency as we have
obtained good results for the WorldView-3 and Landsat 7 images. However, the
method could be improved by creating another way for finding the centroid as it
is a step with a high computing cost. This means it will be difficult to use for very
large rivers. Moreover, with the Landsat 7 images, we have used a TOA percentile
composite with standard parameters but a customization could impact the results
and it will be interesting to explore this aspect. The same remark stands for the
export resolution on Google Earth Engine.

Common rules of open-channel hydraulics provided relationships between the dif-
ferent parameters and helps in defining the prior. However, it exists different re-
lations that may be more appropriate to our case study. Open-channel hydraulics
was not the main purpose of this work, and within the time given, it was difficult to
explore all existing equations. The Nyong river has a lot of aquatic vegetation and
we have not take into account the sediment transport in our calculus. It could in-
fluence the discharge. Hydraulics is a very complex science with a lot of unknown.
In this project, choices about the definition of parameters and the use of Manning’s
Equation instead of another could be discussed. This part should be carefully ex-
amined because the better is the prior and the relationships between its parameters,
the better will be the results.

The creation of synthetic data was really helpful to assess the quality of our method
and discuss the results obtained. However, when creating it, we have only looked
at boundaries for each parameter, independently of the others. But, some combi-
nations obtained are surely false and not exist in natural streams. Two kinds of
approaches could be used regarding this issue. The first one could be to construct
a river in laboratory and measures and controls every parameter in-situ. The other
option will be to better look at the relation existing between the parameters and add
conditions when generating the synthetic data.

Probabilistic inversion is a very efficient method to have information about non-
linear problems. And in our case, it seems to give encouraging results. However,
numerous aspect of our methods could be discussed. First, in the choice of param-
eters like the size of a step in the random walk or the equation for the likelihood.



Chapter 6. Perspectives 45

We have chosen classic relations in order to have a first idea of the results. But, by
using some rules and studies, the calibration of those parameters could improve the
results. Moreover, we have used only one Markov chain, but it could have given
better results if we had done it on several chains.

6.2 Applied perspectives

The Nyong river is predominantly covered by tropical rainforest and is free of anthro-
pogenic disturbance (industrial or agricultural)(Viers et al., 2000). In this context, it
could be very interesting to see if the urban expansion of Yaoudé had an impact on
the discharge of the Nyong. Indeed, one of the main tributaries of the Nyong river
is the Mefou river which drains the region of Yaoudé.

6.3 Limits, open questions and research perspectives

This project presents some limits and new questions have emerged. Thus, there are
further interesting developments of this project that might be imagined.

First, the method to compute the width have worked on the different segment that
we have tried but to really asses that it is an efficient method to compute the width
of rivers, it should be tried on different streams. For example, the fact that water
is almost never clear in the real world results in changes in its spectral curve, making it
difficult to use spectral indices with a single threshold to separate water pixels from non-
water pixels(Donchyts et al., 2016). Moreover, the computation of the width with
the real resolution of Landsat images (30m) is impossible and with the 10m export,
it works under specific conditions. To tackle this problematic, pansharpening on
Landsat images could be a good idea to pursue. Indeed, it will give 15m resolution
images which should be satisfying for the method and could avoid the change of
resolution during the export (which is not controlled). It will also be interesting to
work directly in the Google Earth Engine API to perform at least the first fourth
steps of the analysis as it will apply to any area of interest. It will also be useful to
customize for example the parameters of the TOA percentile composites or explore
if other bands than the NIR could work.

Second, there were some limits regarding the hydraulic part. We had a lack of
knowledge of the channel geometry and more generally of the relation between the
different parameters and their influence on the result. A sensitivity analysis of the
parameters could give insights into how they are linked and how they influence the
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result. It could be location specific or linked to the vegetation or sediment. More-
over, we have assumed that the discharge was constant through a certain segment
of the river, but we have data only at the station and they could be different 200m
up or down-stream.

Then, some limits have appears during the probabilistic inversion. The results ob-
tained still have a lot of errors. One idea that could be tested is to add a condition
in the Metropolis-Hastings using the stage-discharge curve that will maybe improve
the general result. Another condition could be the relation between discharges from
the two stations. Moreover, as the results are different between each chain, an idea
would be to combine the method with knowledge from data mining. For example,
a neural network method could teach the algorithm to restrain between different
chains some parameters. It would certainly help for the overall result but also for
the estimation of the different hydraulic parameters.

Another interesting area to complete this research will be to use results from other
studies to estimate and bound the hydraulic parameters in order to create a method
that really uses only remote sensed information. For example, using methods de-
scribed in (Andreadis et al., 2007) or in (Bjerklie et al., 2005).

Probabilistic inversion has been proved to be a good strategy in geophysics and give
good results in our method. Using simple concepts we have obtained promising
results. It should be more and more used.

Finally, the Surface Water and Ocean Topography (SWOT) satellite mission will cer-
tainly create new possibilities regarding the subject of this project. The launch
planned in 2020, and as described in (Biancamaria et al., 2016), discharge esti-
mation directly from SWOT data will be possible. There will be some limits, for
example, it will not necessarily apply small or braided rivers, but the data pro-
vided could at least help to improve the definition of the prior in the context of our
project. Moreover proof-of-concept experiments are realized using synthetic gener-
ated SWOT measurements (Durand et al., 2008). The use of probabilistic inversion
regarding hydraulic parameters estimation seems totally founded to complete those
studies and better are the data for the prior, better are the results.
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and al.

Figure A.1: Overview of studies using remonte sensing to estimate river discharge
(Sichangi et al., 2016)
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(a) (b)

(c) (d)

Figure B.1: Isolation of the river, Area 8
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Figure C.1: Water height data for Olama station



Appendix D. Roughness Coefficient 50
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Figure D.1: Values and Equation for the computation of the roughness coefficient
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Pansharpening is the process of merging a high-resolution panchromatic image with
a lower multispectral image acquired over the same area in order to obtain a higher
resolution color image. In the present work, it was first explored in order to improve
the resolution of Landsat images.

Different methods exist that can be divided into two categories: the component sub-
stitution (CS) family and multi-resolution analysis (MRA) family. The CS approaches
focus on the substitution of a component that is obtained by a spectral transformation of
the MS bands with the PAN image. The MRA-based techniques rely on the injection of
the spatial details that are obtained through a multi-resolution decomposition of the PAN
image into the up-sampled MS bands (Li et al., 2017).

Various studies have been done in order to compare and test pansharpening tech-
niques Snehmani et al. (2016),Vivone et al. (2015). To obtain the best result, a care-
ful selection of the fusion method is required because each pansharpening method
will induce distortions. Based on the three following paper Li et al. (2017),Snehmani
et al. (2016), Vivone et al. (2015) the method that seems to be the better for our case
is a technique from the MRA family that use the Generalized Laplacian Pyramids
(GPL) with Context Based Decision (CBD) model as it gives the better performance,
particularly for water bodies on WV-3 images. Unfortunately, it is a method that
is complex to implement and as it is not the main objective of the project, we have
decided to only test a CS method which is the Intensity Hue Saturation (IHS), using
ArcGIS, as it was quite easy to run and to see if the differences were really important.
The aim of this step is not to have a real quantitative measure but more a qualitative
idea of the impact that pansharpening could have. It would have been also relevant
to perform it on Landsat images as they are the one who needed the most to improve
resolution. But, it was difficult to do because we used TOA percentile composites
products and not raw data.

Intensity Hue Saturation method The IHS pan-sharpening method converts the
multi spectral image from RGB to intensity, hue, and saturation. The low-resolution
intensity is replaced with the high-resolution panchromatic image. We have used
the default parameters of ArcGis and the result is presented in Figure E.1.

Limits In Figure E.2, the result of step 2 applied to the pan-sharpened image is
presented. The problem is clearly visible, the river is now a combination of small
distinct objects and when the connected component analysis is done, the bigger ob-
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Figure E.1: Nyong River, World View 3, MS image and Pansharpened image (IHS)

ject is not anymore the river. So it is impossible to find the river banks and compute
the width. It could be something specific to the Nyong river because it contains a lot
of aquatic plants (Olivry, 1986). The resolution of WV-3 panchromatic is 0.31cm,
which will be enough to detect a pile of aquatic grass. Pansharpening could be a
useful tool but at the scale of a large river (¡100m), a resolution around a meter
seems sufficient.
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(a)

(b)

Figure E.2: Nyong River, Band 4 image (a) and Pan-sharpened image (b), step 2



Appendix F. Coding structure 54

Appendix F Coding structure

1. image analysis.m (see Chapter 3):

• import the file and select the NIR band;

• Cropping;

• Threshold selection

• Connected Component analysis;

• Bwmorph operation;

• Distance to bank;

• Distance to bank and centroid determination;

• Width computation;

• Plot the results.

2. analysis bvet data.m (see Chapter 2):

• Put data in Year Month Day Discharge format;

• Plot the discharge for each year;

• Comparison between the two stations;

• Plot the dry years.

3. Comparaison bvet 2017.m (see Chapter 2):

• Select data for the good period (February-March);

• Find the years that are similar;

• Plot the results.

4. synthetic data.m (see Chapter 4):

• Boundaries definition;

• Generation of possible values of parameters;

• Loop to create all combinations;

• Computation of W, A, P, Rh and Q;

• Creation of a subsection with Q and K constants and W around values
measured at Mbalmayo station.
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5. metropolis.m (See Chapter 5):

• Definition of the prior;

• Initialization, mcurr ;

• Compute the width, the discharge and the likelihood using likelihood.m;

• Definition of the size of the step.

• Begin the loop

• Definition of mprop;

• Compute the width, the discharge and the likelihood using likelihood.m
of the proposal;

• Definition of the acceptance (”if” loop);

• Update the current stage;

• Store the result;

• End of both loops.

• Plot the results.

6. likelihood.m (See Chapter 5):

• Definition of the input of the function;

• Compute the log likelihood;

• Compute the likelihood using exponential;
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Figure G.1: Distribution of discharge for f = 5
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Figure G.2: Distribution of discharge for f = 1
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Figure G.3: Distribution of discharge for f = 5, n = 5 ∗ 107
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Figure G.4: Distribution of discharge at Mbalmayo Station
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Figure G.5: Distribution of discharge at Olama Station
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Grégoire Mariethoz. Cours 12, pansharpening. Teledetection, Bachelor en Environ-
nement et Geosciences, 2017.

Larry W Mays. Water resources engineering. John Wiley & Sons, 2010.

Klaus Mosegaard and Albert Tarantola. Monte carlo sampling of solutions to inverse
problems. Journal of Geophysical Research: Solid Earth, 100(B7):12431–12447,
1995.

https://developers.google.com/earth-engine/scale
https://developers.google.com/earth-engine/scale
http://bvet.obs-mip.fr/fr
http://bvet.obs-mip.fr/fr


Bibliography 63

J Negrel, P Kosuth, and N Bercher. Estimating river discharge from earth observa-
tion measurement of river surface hydraulic variables. Hydrology and Earth System
Sciences, 15(6):p–2049, 2011.

Jean-Claude Olivry. Monographie du Nyong et des fleuves cotiers. Tome 1. ONAREST,
1979.

Jean-Claude Olivry. Fleuves et rivières du Cameroun. MESRES-ORSTOM, 1986.

Feifei Pan and Jennifer Nichols. Remote sensing of river stage using the cross-
sectional inundation area-river stage relationship (iarsr) constructed from digital
elevation model data. Hydrological Processes, 27(25):3596–3606, 2013.

Ben Shaver. A zero-math introduction to markov chain monte carlo methods, 2017.
URL https://towardsdatascience.com.

Arthur W Sichangi, Lei Wang, Kun Yang, Deliang Chen, Zhongjing Wang, Xiuping
Li, Jing Zhou, Wenbin Liu, and David Kuria. Estimating continental river basin
discharges using multiple remote sensing data sets. Remote Sensing of Environ-
ment, 179:36–53, 2016.

Laurence C Smith. Satellite remote sensing of river inundation area, stage, and
discharge: A review. Hydrological processes, 11(10):1427–1439, 1997.

Akshay Gore Snehmani, Ashwagosh Ganju, Satish Kumar, and PK Srivastava. A
comparative analysis of pansharpening techniques on quickbird and worldview-
3 images. 2016.

Qiuhong Tang, Huilin Gao, Hui Lu, and Dennis P Lettenmaier. Remote sensing:
hydrology. Progress in Physical Geography, 33(4):490–509, 2009.

Luke Tierney. Markov chains for exploring posterior distributions. the Annals of
Statistics, pages 1701–1728, 1994.

USGS. Landsat missions, 2017. URL https://landsat.usgs.gov/.
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