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Abstract 
Bayesian networks are graphical models that have been developed in the field of artificial 
intelligence as a framework to assist researchers and practitioners in applying probability theory 
to inference problems of substantive size as encountered in real-world applications. Influence 
diagrams (Bayesian decision networks) extend Bayesian networks to a modelling environment for 
coherent decision analysis under uncertainty. This chapter provides an overview of these methods 
and explains their contribution to the body of formal methods for the study, development, and 
implementation of probabilistic procedures for assessing the probative value of scientific evidence 
and the coherent analysis of related questions of decision-making. 
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Key points 

• Bayesian networks (BNs) are graphical probabilistic models that support scientists and 
lawyers in the evaluation of scientific evidence and in the coherent analysis of inference. 

• BNs are particularly well-suited for the analysis of complex configurations of scientific 
evidence. 

• Influence diagrams are a rigorous analytical framework for analysing questions of coherent 
decision-making. 

 
 

Introduction 
Some 40 years ago, Bayesian networks (BNs) have been developed in the field of artificial 
intelligence as a framework to assist researchers and practitioners in applying probability theory 
to inference problems of substantive size as encountered in real-world applications. Since the late 
1980s, Bayesian networks have also attracted the interest of researchers in forensic science. This 
tendency has considerably intensified throughout the last two decades. There is now a considerable 
body of scientific literature that reports on the use Bayesian networks for the study, understanding, 
development and implementation of probabilistic procedures for evaluating the probative value of 
particular items of scientific evidence in forensic science (Taroni et al., 2014; Dawid & Mortera, 
2020), in particular DNA evidence (Taylor et al., 2018). Influence diagrams (IDs) are extensions 
of BNs, designed to deal with coherent decision analysis under uncertainty (Howard and 
Matheson, 1984). Originally developed in the context of intelligence research on political conflicts 
in the 1970s (Howard et al., 2006), IDs – also called Bayesian decision networks – became popular 
in artificial intelligence and statistics, with applications in business and medical decision-making 
and, more recently, forensic science (Taroni et al., 2014). This article presents an overview of BNs 
and IDs and their contribution to the body of analytical methods for the coherent analysis of 
problems of inference (e.g., inference of source) and decision (e.g., identification decisions) at the 
intersection between forensic science and the law (Biedermann et al., 2018). 
 

Bayesian Networks 
Preliminaries 
Based on the elements of graph and probability theory, BNs can roughly be defined as a pictorial 
representation of the dependencies and influences (represented by arcs) among variables 
(represented by nodes) deemed to be relevant for a particular inference problem. Since the early 
1980s, BNs have gained widespread acceptance in the field of expert system technology, a field 
that focuses on the study of knowledge bases associated to inference engines. Through their ability 
to coordinate probabilistic inference tasks, such as deduction and induction, BNs are now 



considered a general representation scheme for uncertainty in knowledge. Although graphical 
approaches to represent probabilistic information have already been discussed in the first half of 
the nineteenth century, it is now generally agreed that the seminal works of Judea Pearl in the 
1980s (Pearl, 1982) have initiated the development of the formalism known today as BNs. In the 
landscape of artificial intelligence (AI), BNs are a representative of the statistical AI approaches, 
covering the domains of reasoning, knowledge and planning (Floridi and Cowls, 2019). 
The name ‘Bayesian networks’ is among the most frequently encountered designations. According 
to the field of application, a variety of other terms – some with possible nuances in definitional 
details – may be encountered. Among these other terms are ‘Bayes nets’, ‘Bayesian belief 
networks,’ ‘Bayesian expert systems,’ ‘graphical probabilistic networks,’ ‘probabilistic network 
models,’ or ‘causal networks.’ For example, the term ‘belief’ in ‘Bayesian belief networks’ 
emphasizes that the probabilistic assignments used in a given model reflect degrees of personal 
belief of the individual who conducts the modeling task. In yet other contexts, attention is drawn 
to the notion of causality. This stems from the fact that the arcs between the nodes of a BN can be 
interpreted as reflecting assumed causal relationships, even though the definition of BNs does not 
refer to causality and there is no requirement that the links represent causal impact. They only 
represent probabilistic relationships between variables.  
Definition and Properties of BNs 
BNs are a combination of graph and probability theory. Graph theory used to specify the qualitative 
model structure and probability theory is used to characterize the nature and strength of the 
relationships between the variables of a model. More formally, a Bayesian network covers the 
following elements: 
• A finite collection of random variables that are represented by nodes. Each of these nodes has 

a finite set of mutually exclusive states.  
• A set of directed edges (arcs) that connect pairs of nodes. The set of variables and the set of 

directed edges are combined in such a way that a directed acyclic graph is obtained. An acyclic 
graph is one that contains no loops. 

• Node probability tables are associated with each variable of a network. The probability table of 
a variable A that has entering edges from variables B1, ..., Bn contains conditional probabilities 
Pr(A|B1, ..., Bn). A variable A with no entering edges from other variables contains unconditional 
probabilities Pr(A). Here, the term ‘unconditional’ refers only to the absence of an explicit 
conditioning on other variables (nodes) in a network. Strictly speaking, a probability of the kind 
Pr(A) is also considered to be conditional because there is always contextual (background) 
information, commonly denoted by I, which is used when assigning Pr(A). Thus, strictly 
speaking, Pr(A) should be written as Pr(A|I). However, in forensic science literature, the 
conditioning on I is often omitted for simplicity. 

The nodes of a BN represent propositional variables of interest. Broadly speaking, variables 
represent statements or assertions that such and such is the case. An example is the outcome or 
observation that the features of a given crime stain correspond to the features of control material. 
More generally, propositions are basic intellectual attributes formed by an individual during the 
course of a reasoning task. Thus, a proposition can also be thought of as referring to states of affairs 
(state of nature).  
Most often, the actual state of nature is not known with certainty. For example, there may be 
uncertainty about the truth or otherwise of the proposition according to which a crime stain has 



been left by the offender, or the proposition that a given person of interest, rather than an unknown 
person, is the source of the crime stain. In a BN, such propositions are conceptualized in terms of 
nodes with states representing, e.g. in case of a binary proposition, the truth and the falsity of the 
proposition of interest. The degree of belief attached to each state of a node is expressed 
numerically, i.e. in terms of probabilities representing – for example – personal degrees of belief. 
Probabilities are organized in node probability tables. 
The mutually exclusive states of a variable are also referred to as the domain of the variable. The 
domain of a variable determines a variable’s subtype. Examples include {red, green, blue} for a 
labeled variable, {T, F} for a Boolean variable (with ‘T’ and ‘F’ denoting ‘true’ and ‘false,’ 
respectively), {-2, 1, 4, 5, 7.34, 8} for a numbered variable, and {]-∞; 0, ]0; 10], ]10; 100]} for an 
interval node. Note that an interval node is usable for specifying the intervals over which a 
continuous quantity can be implemented in a discrete form. 
The arrows in a BN represent probabilistic (relevance) relationships that correspond to a property 
that the analyst (modeler) assumes to hold within the context of a given inference problem. If a 
network is properly constructed, then a directed edge from a node A to a node B signifies that A 
has a direct influence on B.  
A distinctive feature of BNs is their incorporation of probabilities in terms of tables associated 
with each node. This provides a probabilistic interpretation of the nature and the strengths of the 
relationships between the nodes of a network. The node tables can accommodate probabilities from 
a variety of different sources. Among the most common sources are personal probabilities from 
human experts and (statistical) data from, for example, databases or literature. Thus, node 
probability tables can be considered as a means to interface a model to data. Yet a further 
possibility to specify node probability tables is the use of mathematical expressions, exploiting 
various variable subtypes as described above. 
An important property of BNs is the encoding of collections of conditional independence 
assumptions and the representation of probability distributions. For the purpose of illustration, 
consider a distribution Pr defined on n discrete variables A1, A2, ..., An, ordered arbitrarily. Using 
the product rule, the joint distribution Pr(A1, A2, ..., An) can be decomposed as follows, also known 
as the ‘chain rule’:  

Pr(𝐴&, 𝐴(, … , 𝐴*) = -.Pr	(
*

01(

𝐴0|𝐴&, … , 𝐴03&)4 Pr	(𝐴&) 

A more economic representation of a joint probability distribution can be obtained if one can 
specify variables that are not ‘sensitive’ to (i.e., directly influenced by) all predecessors, but only 
to a certain subset of those predecessors. Stated otherwise, a variable Ai may be independent of all 
other predecessors once a selected group of predecessors of Ai, called parents (par) of Ai, is known. 
In such a case, the product of the above equation can be rewritten in a shorter form: Pr(Ai|par(Ai)). 
Now, if the conditional independencies in a BN hold for the collection of variables A1, A2, ..., An, 
then the BN provides a representation of the joint probability distribution Pr(A1, A2, ..., An) in terms 
of the product of all specified potentials, that is, 

Pr(𝐴&, 𝐴(, … , 𝐴*) =.Pr	(
*

01(

𝐴0|par(𝐴0)) 



where par(Ai) represents the set of parental variables of Ai. This equation is called the ‘chain rule 
for Bayesian networks’ and formally defines what a BN means: a representation of the joint 
probability distribution for all the variables.  
A key task operated by BNs is the processing of newly acquired information, i.e. calculating the 
conditional probabilities of the states of the nodes in the network given that the state of one or 
more variables has been observed (or becomes known). It is common to denote the latter as 
evidence variables and the former as query variables. Broadly speaking, the term evidence can be 
interpreted as information that is available to a particular individual and that is thought to be 
incorporated into the belief system maintained by that individual. In the context of forensic 
science, such information may take the form of one or more propositions whose actual state 
becomes known to the individual conducting the inference task (e.g., the scientist observes a given 
amount of similarities and differences between evidential and reference materials). Such newly 
acquired information provides the basis for reasoning about other propositions that are relevant to 
a given inference problem. There may also be situations in which information (evidence) is of a 
more technical nature, such as numerical data generated by an experimental procedure: for 
example, the number of glass fragments collected on a person’s clothing, detected alleles in the 
context of DNA evidence, or scores generated by an automatic forensic comparison system. Such 
results in numerical form may directly be used as input data that can be accommodated by a BN 
(e.g., by means of a numbered node). Thus, evidence on a variable corresponds to a statement of 
the certainties of that variable’s states. If it is known with certainty in which state a variable is, 
then the evidence is called ‘hard’ and the node is said to be ‘instantiated.’ An instantiated variable 
may also be referred to as an ‘observed’ variable. Generally, evidence that is not ‘hard’ is called 
‘soft.’ One can also talk about evidence in terms of a function. For a variable with discrete states, 
for example, an evidence function that assigns a zero probability to all but one state may be said 
to provide hard evidence. 
In BNs, evidence is processed according to Bayes’ theorem. This represents one of the main points 
of interest for the study of BNs for probabilistic inference in forensic science. A convenient 
illustration of this property amounts to a two-node network, involving the two binary variables H 
and E, in terms of the following representation: 𝐻 → 𝐸. A very common and general problem that 
can be represented in this way is the evaluation of a screening (or, diagnostic) test where E refers 
to the result of the test (which is known with certainty and may be either positive or negative), and 
H is the proposition about which one is uncertain. For example, one may be uncertain about 
whether or not a trace is human blood, or whether or not an unknown powder contains an illegal 
drug. On observing that E holds, e.g. a positive test outcome, one seeks to calculate Pr(H|E,I), 
where I denotes background information. To use Bayes’ theorem for this task, i.e. Pr(H|E,I) = 
Pr(H,E)/Pr(E), the following calculations are needed (omitting I for shortness of notation): Pr(H,E) 
= Pr(H)Pr(E|H) and (ii) Pr(𝐸) = Pr(𝐸|𝐻) Pr(𝐻) + Pr(𝐸|𝐻;) Pr(𝐻;). Notice that calculation (ii) 
invokes the so-called extension of the conversation rule. 
In the above computation, evidence on the node E is ‘forwarded’ to the node H against the direction 
of the arc that holds between these two nodes. It is important to note that within BNs, propagation 
is also possible along the direction of the arcs. To continue the example introduced above, 
propagation along the direction of the arc	𝐻 → 𝐸 means to “determine” the probability of E given 
H, or Pr(E|H) for short. What happens during the passage from Pr(E) to Pr(E|H) can be seen in (ii). 
This relationship states that for assessing the uncertainty about E, uncertainty in relation to H needs 
to be taken into account. However, when H becomes ‘known,’ this means that Pr(H) = 1 and 



Pr(𝐻;) = 0. Consequently, (ii) reduces to Pr(E|H), and this is just the value that has been specified 
in the conditional probability table of the node E. 
This is an informal description of probabilistic calculations that can be handled within BNs, based 
solely on a local network fragment. Since the beginning of the development of BNs, researchers 
and practitioners have sought ways to automate these calculations through computerized 
implementations, especially for large networks. This was considered to be an essential step to be 
achieved if the approach is to be of use for complex real-world applications. Several algorithms 
are now available to perform calculations in an efficient manner. These approaches have been 
implemented in academically and commercially available BN software packages.  
Note, however, that the numerical specification of models may, at times, be challenging. In such 
situations, BNs may still be used, though at a more general level of detail, using qualitative 
abstractions and sensitivity analyses (e.g., Biedermann & Taroni, 2006). 
 

Influence Diagrams 
Influence diagrams, also called Bayesian decision networks, extend probabilistic inference 
networks (BNs) to a framework for coherent decision analysis under uncertainty. Besides 
probabilistic nodes, representing uncertain events, influence diagrams contain two additional types 
of nodes: decision nodes and utility (loss) nodes. Decision nodes specify the available actions at a 
given decision point whereas utility (loss) nodes specify the decision-maker’s preferences among 
various decision outcomes (e.g., Jensen & Nielsen, 2007; Kjaerulff & Madsen, 2008). 
To set this into perspective, recall that BNs focus on reasoning under uncertainty, that is questions 
of the following kind: “Given knowledge of the occurrence of event(s) A (B, C, etc.), e.g. the 
outcome of a diagnostic test, what is the probability of event(s) R (S, T, etc.) occurring (or having 
occurred), e.g. the presence of a target substance in the examined item?”  
Influence diagrams extend such inquiries to questions of decision analysis. For example, a BN for 
evaluating the result of a diagnostic test may contain a node to represent the decision to conduct a 
particular test or examination. See, for example, Taroni et al. (2005) for an application to the 
question of whether or not to conduct DNA analyses in disputed kinship cases, and Gittelson et al. 
(2013) in the context of fingermark analysis. 
The key feature of influence diagrams is the computation of expected utilities (or, losses), a main 
criterion in decision theory to characterize and compare rival decisions. More specifically, in 
decision theory, the optimal decision is to select the decision that maximizes (minimizes) expected 
utility (loss).   
 

Bayesian Networks and Influence Diagrams for Probabilistic Inference and 
Decision Analysis in Forensic Science 
Early Uses of Bayesian Networks for Particular Case Modeling 
One of the first studies, in print, on BNs applied to forensic case settings was published in the late 
1980s in the Journal of the Forensic Science Society (Aitken & Gammerman, 1989). It focuses on 
a hypothetical murder case. The authors show how a network approach  (see Figure 1) might be 
applied to cases involving several, possibly complicated, interrelated issues. They provide a 



detailed discussion of how (i) to extract relevant propositions from a case description, (ii) 
qualitatively represent relationships between propositions in terms of a directed acyclic graph, and 
(iii) incorporate data-informed (personal) beliefs as probabilities and use them for inference. See 
Dawid & Evett IW (1997) for a further, early paper on the use of BNs for particular case modeling.  

 
 

 
Figure 1 Bayesian network for a hypothetical murder case. The nodes are defined as follows: A, ‘X’ 
committed the murder; B, ‘Y’ committed the murder; E, eyewitness evidence of a row between ‘X,’ ‘Y’ and 
the victim some time before the crime was committed; F, fibers from a jacket similar to one found in the 
possession of ‘X’ are found at the scene of the crime; H, ‘Y’ drives the car of ‘X’ regularly; T, ‘Y’ picks up 
fibers from jacket of ‘X’. (Reproduced from Aitken, C. & Gammerman, A. (1989). Probabilistic reasoning in 
evidential assessment. Journal of the Forensic Science Society 29, 303–316; with permission from Elsevier). 

 

 
 

Bayesian Networks for Generic Patterns of Inference 
Rather than focusing on a particular case, as outlined in the previous section, one can construct 
BNs for recurrent patterns of inference concerning scientific evidence. This perspective places an 
emphasis on more generic and fundamental aspects that forensic scientists should account for when 
evaluating evidence with respect to propositions of judicial interest. Stated otherwise, the modeling 
concentrates on general case aspects (e.g., the relevance of trace material), irrespective of 
situational details. Figure 2(i) shows an example for such a BN, designed for evaluating one-trace 
cases involving transfer from the offender to the scene. It includes considerations such as 
• the rarity of the analytical features among members of the relevant suspect population; 
• the possibility that the stain was left by the person of interest, even though being innocent of 

the offense, and 
• the relevance of the crime stain for the case (i.e., the probability that the stain has a true 

connection with the offender). 
A more formal definition of the various nodes is given in Table 1. 
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Table 1 Definition of the binary nodes used in the BNs shown in Figure 2 
Node Definition 
H The person of interest (POI) is the offender 
S The crime stain came from the POI 
G The crime stain came from the offender 
M The the POI and the crime stain have corresponding DNA profiles 
R Reported correspondence between DNA profile of the POI and the DNA profile of the 

crime stain 
D The other (N-1) profiles in the database do not correspond 

 

 

 
Figure 2 BN fragments for (i) one-trace one-offender cases (involving transfer from the criminal to crime scene), 
(ii) the problem of laboratory error, (iii) results of a database search. Model (iv) shows a combination of the network 
fragments (i), (ii), and (iii). The definition of the nodes is as given in Table 1. (Reproduced from Taroni, F., 
Biedermann, A., Garbolino, P. & Aitken C.G.G. (2004). A general approach to Bayesian networks for the 
interpretation of evidence. Forensic Science International 139, 5–16; with permission from Elsevier). 

 
 
Figure 2(ii) shows a more refined representation of a situation in which one seeks to draw an 
inference about S, the proposition according to which the person of interest is the source of a crime 
stain. A particular aspect of this model is a distinction between (a) a true, but actually unobserved, 
correspondence between the profiles of the crime stain and control material from the person of 
interest (node M) and (b) an observed (or reported) correspondence by the scientist. This 
distinction allows one to account for the probability of a false positive report (Thompson et al., 
2003). A false positive occurs when a report states a correspondence when in fact the crime stain 
and the person of interest have different profiles. 
Figure 2(iii) shows a further BN useable for inference about the proposition S, but including the 
additional item of information D that a certain number of profiles in a database were found to be 
different from that of the crime stain. This is a relevant item of information that provides distinct 
evidential value for the proposition that the POI is the source of the crime stain (rather than an 
unknown person), in the same way as learning about a correspondence M between the profiles of 
the POI and the crime stain. 
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All three BNs, Figures 2(i)–(iii), have probabilistic underpinnings that agree with published 
likelihood ratio formulae, designed to assess the probative value of DNA evidence in the respective 
type of case.1 A further aspect worth mentioning is that these network fragments can be logically 
combined so as to lead to the model shown in Figure 2(iv). This model allows one to jointly 
evaluate the various aspects considered in the separate local network fragments 2(i)–(iii). This 
illustrates that BNs play an important role in the coherent representation and analysis of 
complicated patterns of evidence. In particular, it is possible to approach inference problems on a 
more local level first, and then use the fragments thus constructed for reasoning about a problem 
of greater complexity, such as the joint evaluation of multiple items of evidence (e.g., Juchli, 
Biedermann & Taroni, 2012). It is important, however, to keep in mind that a model remains a 
probabilistic interpretation of a real phenomenon or, more generally, an inference problem, 
constructed at a given level of acceptable approximation. There is no claim that the result 
represents the ‘true model.’ 
 

Contemporary uses of Bayesian Networks for Assessing Complex DNA Evidence 
Representation of genotypes 
In the previous sections, a single discrete chance node was used for representing the outcome of 
the scientist’s analyses and examinations, such as the DNA profile of a biological trace or, more 
generally, the observed similarities and differences between questioned and known materials. In 
the simplest case, this perspective amounts to a two-node network fragment in which knowledge 
about the state of an observational variable, such as E (e.g., short for ‘corresponding DNA 
profiles’), is used for drawing an inference about propositions according to which the POI is (is 
not) the source of the crime stain. If the latter propositions are represented by the node H, the BN 
takes the structure 𝐻 ⟶ 𝐸.  
Besides this formative and coarse modeling approach, considerable research has been devoted to 
the development of more sophisticated representational schemes for the outcomes of DNA 
profiling analyses, useable as repeatable submodules in similar situations (Dawid et al., 2002). 
These are generic network fragments, representing individual genes, rather than full genotypes or 
DNA profiles. As an example, consider the network fragment with the converging 
connection	𝑚𝑔 ⟶ 𝑔𝑡 ⟵ 𝑝𝑔, where gt represents a genotype, modeled as a logical combination 
of the alleles inherited from the mother and father, represented by the nodes mg and pg, (short for, 
respectively, ‘maternal gene’ and ‘paternal gene’). A gene A, for instance, can take one of several 
different forms, also called alleles. Suppose there are n alleles at gene A, denoted A1, A2, ..., An. In 
the BN 𝑚𝑔 ⟶ 𝑔𝑡 ⟵ 𝑝𝑔, the states A1, A2, and Ax are specified for nodes mg and pg. The third 
state, Ax, accounts for all unobserved alleles A3, ..., An. The possible states of the genotype node gt 
can then be defined as A1A1, A1A2, A1Ax, A2A2, A2Ax, and AxAx, covering all the logical combinations 
of pairs of alleles. For a more general ready-to-use representation, one might want to specify, for 
each parental gene pg and mg, the full repertory of alleles at a given locus. However, this may lead 
to a rapid increase in the size of the probability table for the node gt. This can be avoided by 
replacing the node gt by two distinct nodes gtmin and gtmax, as shown in Figure 3 (Dawid et al., 

 
1 For further examples of agreement between BN output and likelihood ratio formulae for value of evidence 

computations, see Garbolino & Taroni (2002). 



2007). These two nodes represent, respectively, the minimum and the maximum allele number of 
the two parental gene nodes pg and mg. 

 
Figure 3 Representation of an individual’s genotype as the minimum (gtmin) and maximum (gtmax) of the two 
parental gene nodes pg and mg, inherited via the paternal and maternal line, respectively. (Adapted from Dawid, 
A.P., Mortera, J. & Vicard, P. (2007) Object-oriented Bayesian networks for complex forensic DNA profiling 
problems. Forensic Science International 169, 195–205; with permission from Elsevier). 

 
Kinship analyses (disputed maternity) 
The application of the modeling approach for genotypes, outlined in the previous section, can be 
illustrated in the context of a case of disputed maternity. A certain woman, putative mother pm, is 
supposed to be the mother of a child c. DNA profiles are available for the the putative mother pm 
and the child c. No (putative) father is available in this case. The purpose of the analysis is to 
derive the likelihood ratio for the proposition that the putative mother pm, rather than an unknown 
woman, is the true mother tm, noted tm = pm ?, given knowledge about the child’s genotype cgt 
and the putative mother’s genotype pmgt. The pedigree corresponding to this inference problem is 
shown in Figure 4(i).  
Figure 4(ii) shows a representation of this disputed maternity case in terms of a BN. A BN with 
this structure can be constructed for each genetic marker for which DNA profiling results are 
available. These networks can be analyzed separately and the resulting likelihood ratios combined 
subsequently. It is also possible to combine the single-locus networks to build a ‘top-level’ 
network, in the context also called ‘supernetwork,’ which can be implemented with the help of 
object-oriented Bayesian networks (OOBNs) (Dawid et al., 2006). OOBNs are BNs with various 
hierarchical levels of specification (Kjaerulff & Madsen, 2008), providing a framework for 
probabilistic modelling at different levels of abstraction and representation.  
The BN shown in Figure 4(ii) allows one to obtain the same results as with classic arithmetic 
calculus of Essen-Möller under the Hardy-Weinberg assumption of independence. One might be 
tempted, thus, to conclude that working with BNs implies no real advantage, as there is no need to 
develop new methods for problems that can be solved by simple algebra. However, the purpose of 
using a graphical probabilistic model of the kind shown in Figure 4(ii) is different. Such a model 
provides a general rather than a case-specific representation: i.e. the same BN can be used to solve 
other cases involving individuals with different DNA profiles. Moreover, the model provides a 
solid basis for evaluating DNA results in more complex cases for which no simple, predefined 
formulae exist. Examples include extensions to deal with aspects such as missing data (i.e., when 
profiling data of some individuals are unavailable), additional data (e.g., from a related person, if 
available), mutation or DNA mixtures. 
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Figure 4 Different representations of a case of disputed maternity: (i) pedigree (with squares representing males 
and circles females, pm denoting the putative mother, tm denoting the true mother, f denoting the father and c 
denoting the child) and (ii) a BN. For the BN, tmpg, tmmg, fpg, and fmg denote the maternal m (in second place for 
fmg, and in third place for tmmg) and paternal p genes of the true mother tm and the father f; cpg and cmg denote 
the child’s paternal and maternal genes, respectively; pmpg and pmmg denote the putative mothers’s paternal and 
maternal genes, respectively; pmgt and cgt denote the genotypes of the putative mother and the child, respectively, 
and tm = pm ? takes two values in answer: ‘yes’ or ‘no’ as to whether the true mother is the putative mother.  

 

Evaluating Complex DNA Evidence Given Activity Level Propositions 
Forensic genetics laboratories encounter a considerable number of cases with biological traces 
containing only small quantities of DNA. Such traces pose interpretative challenges in the sense 
that, often times, the main question of interest for recipients of expert information is not ‘whose 
DNA is this?’, but a question of the kind ‘how did this DNA get there?’ (Taroni et al., 2013). DNA 
profiling results thus need to be interpreted with respect to so-called activity-level propositions. 
This requires the scientist to condition the evaluation on various intermediate propositions and 
case-specific allegations. It has long been recognized that BNs are well-suited to structure 
evaluative thinking that is required in such cases (Evett et al., 2002).  
For the purpose of illustration, consider the example presented in Taylor et al. (2018) regarding a 
case in which underwear from a complainant is examined. The case is described as follows: “A 
24-year-old girl (C), who normally lives with her biological mother (M) and father (F) has stayed 
for a week at her older brother’s (D) house. A friend of the girl receives a phone call from the girl 
stating that her brother has bitten her on the vagina, over her underwear. The friend picks up the 
girl and they go immediately to the police, where the underwear is seized and a reference from the 
girl taken. The police then arrest the brother and take a reference DNA sample from him.” (at p. 
138) 
The challenge of constructing a BN for this case consists in, first of all, defining variables and their 
relationships. Taylor et al. (2018) propose a methodology that focuses on defining nodes for the 
main propositions, the findings (or, observations) as well as intermediate propositions regarding 
particular events. The nodes are connected in such a way that they logically define argumentative 
pathways that can account for the findings given the competing (main) propositions. Figure 5 
shows an example of a BN that can be obtained when applying this methodology to the case 
described above. For the full numerical specification of this BN, see the supplementary materials 
in Taylor et al. (2018).2  

 
2 Freely available at: http://dx.doi.org/10.1016/j.fsigen.2017.12.006 
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A generalized model that extends previous works on evaluation given activity level propositions 
can be found in Taroni et al. (2021). 
 

 
Figure 5. BN for a case of alleged sexual assault. The node H represents the propositions ‘D has bitten C on the 
vagina, over her underwear’ and ‘C has been staying at D’s home, but no biting occurred’. (Adapted from Taylor, 
D., Biedermann, A., Hicks, T. & Champod, C.  (2018). A template for constructing Bayesian networks in forensic 
biology cases when considering activity level propositions. Forensic Science International: Genetics 33, 136–146; 
with permission from Elsevier). 

 

 
Influence Diagrams for Modelling Forensic Identification Decisions 
Influence diagrams are ideally suited to capture the conceptual relationship between inference and 
decision making. For the purpose of illustration, consider again Figure 2(ii), representing a BN 
for inference about the proposition S according to which the POI, rather than an unknown person, 
is the source of a crime stain, based on the report R provided by the scientist. The report R states 
that the crime stain and reference material from the POI have corresponding analytical features. A 
decision-maker, however, may not only be interested in questions of the kind ‘What is the 
probability that the POI is the source of the crime stain, given the report R provided by the scientist, 
and the background information I?’, i.e. Pr(S|R,I). The decision-maker may need to decide whether 
or not to consider (i.e., proceed as though) the POI is the source of the crime stain: this is commonly 
known as an identification (or, individualisation) decision. In this sense, identification is a question 
of decision-making for which Pr(S|R,I) is an important, but not sufficient ingredient. Besides 
uncertainty about the proposition S, represented by the probability Pr(S|R,I), the decision-maker 
also needs to consider the relative (un-)desirability of the possible consequences of making a 
decision about identification. In decision-theoretic language, this amounts to introducing two 
elements that can be formally represented in terms of an influence diagram: the first is a node 
representing the available decisions, and the second is a node representing a utility (loss) function. 
Decision and utility nodes are commonly represented by square and diamond boxes, respectively. 
Figure 6 illustrates how to use a decision node D and a loss node L for modelling the problem of 
forensic identification in our running example. The node L is specified as a direct descendant of 
the nodes S and D. This represents the understanding that the combination of a given decision (e.g., 
identification), together with a particular state of nature (e.g., the POI is the source of the crime 
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stain), leads to a well-defined outcome, the value (or, desirability) of which is expressed by the 
utility (loss) function at the node L. 

 
Figure 6 Influence diagram representing the problem of forensic identification. The definition of the nodes M, R 
and S is as in Table 1. The node D is a decision node representing the possible decisions regarding identification 
whereas the node L implements the loss function. 

For simplicity, consider only two possible decisions, identifying the POI as the source of the crime 
stain (d1) and not identifying the POI (d2) as the source of the crime stain (see Biedermann et al. 
(2008) for an extension to the conclusion “inconclusive”). Now make the following assumptions: 
(i) identifying (not identifying) the POI when the POI is (is not) the source of the crime stain 
represent desirable outcomes for which a zero loss is assigned; (ii) identifying the POI when in 
fact an unknown person is the source (i.e., an erroneous identification) is the overall worst 
consequence for which the maximum loss of l1=1 is assigned; (iii) not identifying the POI when 
the POI is in fact the source of the crime stain is an undesirable outcome, but less severe than a 
false identification, hence a loss value smaller than 1, i.e. l2<1, is assigned. Based on these 
assignments, we can compute the expected loss (EL) of each decision, given the expert’s report R 
and information I. It can be shown that EL(d1|R,I) reduces to 1-Pr(S|R,I) and EL(d2|R,I) reduces to 
l2·Pr(S|R,I). 
Figure 7 illustrates the influence diagram defined in Figure 6, constructed with the program Hugin 
Researcher (vers. 9.0). Evidence on the node R is available and leads to posterior probability 
Pr(S|R,I)=0.95, displayed as 95.00% in the monitor window associated with the node S. The loss 
l2 of a ‘missed’ identification is set to 0.1, i.e. ten times less than the loss l1=1 assigned to a false 
identification. The monitor window associated with the decision node D displays the expected 
losses for decisions d1 (identify the POI) and d2 (do not identify the POI). Following the formulae 
given above, we can see that  

 EL(d1|R,I) = 1-Pr(S|R,I) 
     = 1-0.95=0.05  

and  
 EL(d2|R,I) = l2·Pr(S|R,I) 

     = 0.1·0.95=0.095.  
Thus, in the case here, EL(d1|R,I)< EL(d2|R,I), i.e. decision d1 is the optimal decision as it 
minimises the expected loss. More generally, it can be shown that d1 has a smaller expected loss 
than d2, whenever the posterior odds Pr(𝑆|𝑅, 𝐼) /Pr	(𝑆̅|𝑅, 𝐼) exceeds the loss ratio l1/l2. More 
detailed decision-theoretic developments for forensic identification decisions can be found in 
Biedermann et al. (2008, 2016), Taroni et al. (2010, 2014) and Aitken et al. (2021). 
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Figure 7 Implementation of the influence diagram shown in Figure 6, using the program Hugin Researcher (vers. 
9.0). Evidence on the node R, the report of a scientist, is available (marked in red). This evidence leads to a posterior 
probability of 0.95 for the proposition that the POI is the source of the crime stain, displayed in the monitor window 
associated with the node S. The node D shows the expected losses of the two decisions d1, identify the POI as the 
source of the crime stain, and d2, do not identify the POI as the source of the crime stain. 

 

Conclusions 
BNs and influence diagrams represent powerful graphical devices to support scientists and lawyers 
in assessing the value of scientific evidence and thinking logically about questions of decision-
making (e.g., forensic identification). Compared to other graphical methods, BNs offers the 
additional advantage of incorporating probability theory as a coherent measure of uncertainty. In 
turn, influence diagrams allow one to operationalize decision-theoretic principles.  Computerized 
systems currently exist that can perform calculations in BNs and influence diagrams over a number 
of variables with complex dependency structure. More recent developments, in particular, the 
extension to object orientation, have further increased the possibility to extend analyses to levels 
of complication that are commonly associated with real-world applications. BNs and influence 
diagrams thus represent a complementary contribution to the body of analytical techniques that are 
needed to approach inference and decision problems in accordance with probability and decision 
theory, both conceptually and practically. 
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