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Abstract. The use of the Bayes factor or likelihood ratio as a metric
to assess the probative value of forensic traces is largely supported
by operational standards and recommendations in di↵erent forensic
disciplines. However, the progress towards more widespread consensus
about foundational principles is still fragile as it raises new problems
about which views di↵er. It is not uncommon, for example, to encounter
scientists who feel the need to compute the probability distribution of
a given expression of evidential value (i.e., a Bayes factor), or to place
intervals or significance probabilities on such a quantity. The paper here
presents arguments to show that such views involve a misconception
of principles and abuse of language. The conclusion of the discussion
is that, in a given case at hand, forensic scientists ought to o↵er to a
Court of justice a given single value for the Bayes factor, rather than
an expression based on a distribution over a range of values.
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1. INTRODUCTION

Decades ago, discussions about how to assess the probative value of forensic
traces, such as DNA or other transfer material, were less structured and for-
malized than they are today, and the diversity of opinion was more substantial.
Today, there still are instances of disagreement, which leads some commentators
to endorse spurious methodological pluralism (e.g., Simmross (2014)), but on the
whole it appears reasonable to say that the number of scientists or lawyers who
still are skeptical about the metric called Bayes factor, in the context often re-
ferred to as the likelihood ratio, has reduced considerably. This development is
favoured and supported by the fact that operational standards and recommenda-
tions in di↵erent forensic disciplines substantially support the use of this metric
of probative value. This progress towards more widespread consensus about foun-
dational principles is encouraging, but it is still fragile as it raises new problems
about which views di↵er.

University of Lausanne and Ca’ Foscari University of Venice (e-mail:

franco.taroni@unil.ch; silvia.bozza@unive.it). University of Lausanne and

University of Edinburgh (e-mail:

alex.biedermann@unil.ch; C.G.G.Aitken@ed.ac.uk).

1

imsart-sts ver. 2014/02/20 file: Uncertainty_LR_9072015.tex date: July 9, 2015

Published as: 
Dismissal of the illusion of uncertainty in the assessment of a 
likelihood ratio
Franco Taroni, Silvia Bozza, Alex Biedermann, and Colin Aitken
Law, Probability and Risk 2016 15: 1-16 http://lpr.oxfordjournals.org/
content/15/1/1.abstract?etoc



2 F. TARONI ET AL.

In this paper, two such problems are presented and discussed. One concerns
the understanding of the notion of probability as a measure of uncertainty, the
other concerns the use in evidence evaluation of the Bayes factor which in some
cases is represented by a ratio among probability density functions. An issue that
is common to these two problems is the idea held among some forensic scientists
(e.g., Stoel and Sjerps (2012),Alberink and Bolck (2008)) that both probability
and Bayes factors can, in some way, be ‘estimated’ and, thus, be accompanied
with some kind of ‘interval estimate’ of a true value. The choice of this topic for
discussion is motivated by the fact that it is not uncommon to encounter forensic
scientists who argue the need to determine the probability distribution of a given
expression of evidential value (i.e., a Bayes factor), or to fit an interval to such
an expression.

The paper argues that such views may involve a misconception of principles
and an abuse of language. It will be shown that with a clear view on what the
concepts of probability and of the Bayes factor, really mean and do not mean,
the widespread use of terms such as ‘estimation’ to justify the use of intervals
surrounding given values turns out � in many situations � to be internally in-
consistent, and hence misconceived.

The objective of this paper is to clarify the definitions of some basic terms and
their applications in forensic science in relation to the topic of value of evidence.
In particular, distinctions will be drawn between the concepts of uncertainty and
variability and the concepts of estimation and assignment. The conclusion of the
discussion is that, for a particular case, forensic scientists ought to o↵er to the
Court a single value for the Bayes factor, rather than a range of values.

The structure of this paper is as follows. In Section 2 the notion of the evalu-
ation of scientific findings is introduced, followed by the definition of the Bayes
factor and its use in forensic science. Section 3 presents an overview of the subjec-
tive interpretation of probability, while issues related to the practical derivation
of the Bayes factor are considered in Section 4. Particular attention will be paid
to what, in informal discussion, is often vaguely referred to as ‘uncertainty’ about
the actual value of a Bayes factor. Section 5 will pursue this discussion with the
use of practical examples, emphasising that there is a fundamental di↵erence be-
tween the concepts of uncertainty and variability and that this di↵erence should
be kept in mind in discourses about the likelihood ratio. Conclusions are presented
in Section 6.

2. THE PROBLEM: THE EVALUATION OF SCIENTIFIC FINDINGS

The assessment of the value of scientific findings is commonly considered
through the derivation of a Bayes factor, a rigorous concept that provides a
balanced measure of the degree to which the evidence is capable of discriminat-
ing among competing propositions suggested by opposing parties at trial. Denote
by Hp and Hd the propositions of interest to the Court, which need to be mutu-
ally exclusive but need not be exhaustive, where the subscript p stands for the
prosecution’s proposition and the subscript d stands for the defence proposition.
The scientific outcome, denoted E = {y, x}, is given by the observations or mea-
surements y on questioned material (e.g., traces or trace material recovered on
a crime scene) of unknown origin, often known as recovered material, and the
observations or measurements x on control material (e.g., material belonging to
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UNCERTAINTY IN THE ASSESSMENT OF A LIKELIHOOD RATIO 3

the suspect) of known origin. The odds form of Bayes theorem enables the prior
odds 1 in favour of the prosecution’s proposition, Pr(Hp)/Pr(Hd), to be updated
to the posterior odds given the findings E, Pr(Hp | E)/Pr(Hd | E), that is

Pr(Hp | E)

Pr(Hd | E)
=

L(Hp;E)

L(Hd;E)
⇥ Pr(Hp)

Pr(Hd)
,(2.1)

omitting explicit mention of background information I from the probability and
likelihood statements for shortness of notation (and throughout the remainder
of the paper). The fraction L(Hp;E)/L(Hd;E) is written as the ratio of the
likelihood L(Hp;E) of Hp given E to the likelihood L(Hd;E) of Hd given E,
often represented as Pr(E | Hp)/Pr(E | Hd). The ratio of the posterior odds and
the prior odds is the Bayes factor (BF). It measures the change produced by a
given item of information in the odds in favor of one proposition as opposed to
another, when going from the prior to the posterior distribution. Determination
of the Bayes factor is typically considered to be in the domain of the forensic
scientist and its value implies either an increase or decrease in the prior odds
once forensic findings are taken into account. In forensic science applications,
this quantity is usually referred to as the likelihood ratio, though it is emphasised
that the Bayes factor does not always simplify to a ratio of likelihoods2. When
the competing propositions of interest Hp and Hd are ‘simple’, that is there is
only one main proposition and one alternative, the Bayes factor reduces to the
well-known likelihood ratio (LR), and depends only on the observed data. When
‘composite’ propositions are considered (e.g., when at least one of the compared
propositions covers several possibilities), the Bayes factor does not reduce to
the likelihood ratio. Thus, generally speaking and as a first example, evaluation
of a simple main proposition versus a simple alternative proposition is only a
special case. Often, scientists may face the more general situation of dealing
with at least one composite hypothesis. In the context of forensic science, this
occurs in scenarios that involve multiple hypotheses for at least one of the party’s
propositions. With DNA stains, for example, the range of potential donors other
than a particular suspect at hand may not only cover unrelated individuals, but
also persons who may share various degrees of relatedness with the suspect. As
a second example, consider the case where the competing propositions embrace
composite hypotheses about parameters of interest (e.g., the question of whether
the proportion of items that contain an illicit substance is greater or lower than
a given threshold). In such a case, the Bayes factor can be expressed as a ratio of
weighted likelihoods (Kass and Raftery, 1995). It no longer depends only upon the
sample data. In view of this, the term likelihood ratio will be used as a synonym
for Bayes factor for the rest of the paper, to include the wider use of the first
example in forensic science applications.

Notice that to compute the likelihood ratio in a particular application, such
as the evaluation of findings in forensic science, two ingredients are necessary:
the probability distribution of the outcomes if hypothesis Hp is true, and the

1 The term ‘odds’ is used loosely here as the propositions need not be exhaustive.
2Note that the term likelihood must not be treated as a synonym of probability (Lindley,

2006). The intuitive reason for the term likelihood is that it measures the ability of an explanation
to give rise to the collected findings; available measurements for which the likelihood is large
are more likely to occur under a given explanation rather than under an explanation for which
the likelihood is small.
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probability distribution of those outcomes if hypothesisHd is true. This procedure
gives rise to a series of questions. Some discussants ask, for example: Does there
exist a true value of the likelihood ratio that could in some way be estimated? Is
it possible to compute a credible interval or a confidence interval on it?

In reply to these questions it is first necessary to look more closely at the
definition of the likelihood ratio. In practice, a forensic scientist may deal with
rather di↵erent contexts and the likelihoods at the numerator and denominator
that need to be ‘computed’ may have a di↵erent interpretation, and therefore
so may the likelihood ratio itself. Consider the case where a biological stain has
been found at the crime scene and that DNA analyses performed by a forensic
laboratory have led it to report a match E between the genetic profiles charac-
terizing the recovered material, y, and the control material x found on a suspect,
respectively. The competing propositions of interest to the Court may be:

Hp : the suspect is the origin of the trace;
Hd : another person, unrelated to the suspect, is the origin of the trace.

The likelihood ratio is therefore given by the ratio between the probability of a
reported match E if the hypothesisHp is true, versus the probability of a reported
match E if the hypothesis Hd is true, that is LR = Pr(E | Hp)/Pr(E | Hd).

Usually, the numerator is not the main issue of discussion. With some rea-
sonable assumptions it can often be taken to be equal to 1. Typically, if the
hypothesis Hp is true, then it is generally assumed the laboratory analyses will
report a match. This simplifies the likelihood ratio to 1/Pr(E | Hd). The condi-
tional probability of the denominator, usually denoted by � for short, is clearly
not available at a glance, so the problem of the expert is to assess this proba-
bility. But, how should this probability be interpreted? Does it make sense for a
person to speak in terms of estimation (either point or interval estimation) of the
evidential value, which is in the form of a likelihood ratio which is the expres-
sion of a ratio of two probability density functions? Related to this question is
consideration of a (prior) probability distribution for the probability3 in the de-
nominator, in order to enable a subsequent Bayesian learning procedure. Would
such consideration permit the user to advocate an ‘estimation’ of the likelihood
ratio? Moreover, would this imply the specification of a probability distribution
for the likelihood ratio? These are a series of closely intertwined questions, and
their answers are crucial to clarify how the likelihood ratio may be interpreted,
and how claims of ‘uncertainty’ about its value should be handled.

Clearly, it is not always possible to express the likelihood in terms of prob-
abilities. Forensic scientists often deal with cases where the measurements on
questioned items are on a continuous scale (e.g., the refractive index of glass
fragments). Whenever data are continuous, a probability density function f(·)
must be specified since it is not possible to assign probabilities to specific values
of a continuous random variable. Consider the case where a window is broken
during the commission of a crime, and measurements on the refractive index of
glass fragments recovered on a suspect’s pullover (y), are compared to those of
the broken window’s glass fragments (x). The competing propositions of interest
to the Court may be:

3 Note the implied phrase ‘probability of a probability’, which is unsound from a philosophical
point of view (Lindley, 2000)
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Hp : the recovered and the control glass fragments originate from the same
source;

Hd : the recovered and the control glass fragments originate from di↵erent sources.

Continuous measurements are being considered and the likelihood ratio may be
written as

LR =
f(x, y | Hp)

f(x, y | Hd)
,(2.2)

where probabilities have been replaced by densities. Note that observations do not
always conform to standard models (e.g., a Normal distribution), and statistical
methods can be implemented to estimate the unknown density function f(·), but
does this imply an estimation of the likelihood ratio?

All these fundamental questions give rise to three points of discussion that will
be addressed in the succeeding sections. These points are (a) the interpretation
of probability (Section 3), (b) the notion of estimation and its role in relation
to the likelihood ratio (Section 4), and (c) the conceptual di↵erence between
uncertainty and variability illustrated by the derivation of a likelihood ratio dis-
tribution (Section 5). The conclusion (Section 6) summarises the ideas discussed
in the context of the two main problems of the understanding of probability and
the communication of a likelihood ratio.

3. INTERPRETATION OF PROBABILITY

As outlined in the previous section, the likelihood ratio is often expressed
as a ratio between two conditional probabilities: the probability of observing
given findings if the proposition Hp is true, and the probability of observing the
same findings if the hypothesis Hd is true. Therefore, the task of the expert is
focussed on the assessment of these probabilities. How to think sensibly about
probability? This may seem an easy or almost unnecessary question as most
scientists will have at least some idea in their minds when they think of the term
‘probability’. A few comments may be worthwhile in this context because it is
important to distinguish between, on the one hand, the definition of probability
and, on the other hand, the interpretation of the abstract (mathematical) concept
of probability (e.g., Hays and Winkler, 1970). It is well known to scientists that,
axiomatically, probabilities take values in the range between 0 and 1, including
these limiting values, and independently of the way in which probabilities are
actually interpreted. The value 0 corresponds to an event whose occurrence is
impossible, and probability 1 is reserved for an event whose occurrence is certain.
While that is not controversial, the main question of interest is (Aven and Reniers,
2013): what does it mean for somebody to specify a probability p for a given
event? What does such a value really mean?

To answer this question in both a meaningful and operationally sound way,
it is perhaps useful to take one step back and ask why one uses probability.
One immediate answer, which is widely supported, says that probability serves
as measure of uncertainty for something � an event or proposition � that is
unknown to a given reasoning individual. For the individual at hand, it is not
known whether a given proposition (for example, the suspect is at the origin of the
trace), or a given event (for example, a random person from a relevant population
has a given DNA sequence) is true or not. Given the partial knowledge of the
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individual, the value p expresses the degree to which the proposition or event of
interest is taken to be true. Probability provides a very close description of the
problem faced by any person contemplating an uncertain event or proposition.

Two immediate consequences follow from this view. First, probability depends
on the extent of one’s knowledge, also sometimes referred to as a knowledge base.
A given event or proposition may be known to be true for one individual (who,
arguably, would give this proposition a value p = 1), but not so for another in-
dividual. The latter would thus have a probability smaller than 1, 0 < p < 1.
Arguably, probability is conditional on available information and there is no
problem in principle with two persons having di↵erent probabilities for the same
event (Lindley, 2000). This emphasis on conditionality leads to a second impor-
tant point, namely that probability is personal. It is personal in the sense that it
refers to the subject who holds a particular probability, hence the alternative des-
ignation ‘subjective probability’. Here, the term ‘subjective’ refers to the opinion
of the person of interest, and not to a suggestion of arbitrariness.

As an intermediate summary, note that probabilities reflect the extent to which
an individual’s knowledge is imperfect. It is important to acknowledge that such
personal belief is graduated. One can believe in the truth of an event more or
less than in the truth of another one, at any given time, essentially because
findings can accumulate and modify one’s probability of the event’s happening.
Probabilities depend necessarily on the individual, on available information, may
change as the information changes, and may vary amongst individuals because
di↵erent individuals may have di↵erent information or assessment criteria.

A corollary of these considerations is that probabilities are not states of nature,
but states of mind associated with individuals. One definition of probability is
to consider it as a measure of belief in the outcome of an event or the truth of a
proposition. The measures of belief held by an individual need to conform to the
rules of probability to be coherent. Coherence has the normative role of forcing
people to be honest and to make the best assessments of their own measures of
belief. Note, however, that the axiomatic foundation of probability theory only
places constraints on the values that probability may take (i.e., a value between
0 and 1), and how probabilities ought to be combined (i.e., with the rules of
addition and multiplication), but it does not say anything about what ought to
be one’s probability in a particular instance.

Acknowledgement that probabilities are states of mind raises the issue of how
to elicit personal probabilities. There are various devices and procedures to do
so. For the purpose of the current discussion, it will be su�cient to illustrate one
example. It focuses on the measure of probabilities as exhibited by an individual
in terms of the bets that the individual is willing to accept. According to this
scheme, an individual’s probability for a proposition is elicited by comparing two
lotteries of the same price. For example, define a first Lottery A as winning 100
(units of some sort of value, which may be monetary) with probability p = 0.5,
and winning 0 with probability (1� p) = 0.5, and a second Lottery B as winning
100 if it rains tomorrow, and winning 0 if it does not rain tomorrow. Here, ‘rain
tomorrow’ is the proposition about which you are uncertain. Note that it could
be any other event, including events of the present or the past. The fact that
the scheme is based on a gamble should not be objectionable because, at worst,
the gain will be zero in either gamble, so the individual need not fear a loss and
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hence refuse to engage in the gamble. With this condition, one can assume that
one would choose that o↵er which presents the greater chance of winning the
price. Clearly, if one prefers Lottery B, then this signifies that one considers the
probability of rain tomorrow to be greater than 0.5. By analogy, choosing Lottery
A would imply that one’s belief in rain tomorrow is lower than 0.5. Moreover, in
a case in which one is indi↵erent between the two gambles, one’s probability for
rain tomorrow would equate to the probability of winning the prize in Lottery A.
One can then conceive of a procedure in which one adjusts the chance of winning
in Lottery A so that the individual, whose probability for a proposition of interest
is to be elicited, would be indi↵erent with respect to Lottery B. Also, one can
proceed similarly to elicit an individual’s personal probability for any other event
of interest.

According to this scheme, typically found in Lindley’s writings, one’s probabil-
ity is thus defined by a point of indi↵erence with respect to a standard. Clearly,
one can adjust the measure of belief of success in the reference gamble in such
a way that one will be indi↵erent with respect to the truth of the event about
which one needs to give one’s probability. This understanding is fundamental, as
it implies that probability is given by a single number. It may be hard to define,
but that does not mean that probability does not exist in an individual’s mind
(Je↵reys, 1931). One cannot logically have two di↵erent numbers because they
would reflect di↵erent measures of belief.

This interpretation of probability is more typically known as the belief type

interpretation of probability. It is a very common and, for various reasons, ap-
propriate interpretation of the theory (de Finetti, 1974). It considers all proba-
bilities as subjective, in the sense of personal expressions of degree of belief held
by an individual. There are other interpretations of probability, though they run
rather quickly into conceptual di�culties and may exhibit drawbacks in practice,
in particular in forensic and legal contexts (Lindley, 2006).

According to the classical definition of probability(Laplace, 1814), for example,
the probability of an event about which we are uncertain and that can result in
several mutually exclusive and equally likely outcomes is given by the fraction of
the number of outcomes that are favorable to it4. This definition is simple and
intuitive, but circular since it contains the term ‘likely’ as part of the definition,
and clearly deficient in the forensic context of interest since for the cases under
attention such a split into equally uncertain possibilities does not exist (Lindley,
2006).

There is also a frequency-based interpretation of probability, where probability
is interpreted using the concept of frequency rather than beliefs.

As an illustration of the connection between frequency and probability, con-
sider an urn containing a certain number of balls, indistinguishable except by
their colour, which is either white or black, and the number of balls of each
colour being known. The extraction of a ball from this urn defines an experiment
having two and only two possible outcomes that are generally denoted as success
(say, the withdrawal of a white ball) or failure (say, the withdrawal of a black
ball). Let B denote the event ‘a white ball is extracted’. Under the circumstances
that balls are all indistinguishable from each other except for the colour, the

4The concept of equally likely, at the basis of the classical definition of probability, is discussed
in Hacking (1975)
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subjective probability to extract a white ball can be assessed as the known pro-

portion ✓ of white balls, that is Pr(B | ✓) = ✓. Assuming the urn contains a large
number of balls, so that the extraction of a few balls does not alter its compo-
sition substantially, individual draws (i.e., sampling5) will be considered as with
replacement and the probability of extracting a white ball at subsequent with-
drawals will still be ✓, independently on previous observations. In this way one
realizes a series of Bernoulli trials, where the outcome of each trial has a constant
probability independent from previous outcomes. Suppose now the observer does
not know the absolute value of balls present, nor the proportion that are of each
colour. De Finetti showed that every series of experiments having two and only
two possible outcomes that can be taken as exchangeable, that is the probability
assigned to the outcomes of a sequence of trials is invariant to permutation, can
be represented as random withdrawals from an urn of unknown composition. If
one can assess one’s uncertainty in such a way that labelling of the trials is not
relevant, then it can be proved that as the number of observations increases the
relative frequencies of successes (i.e., the relative frequency of white balls) tend
to a limiting value, that is the proportion ✓ of white balls. A subjective assessment
about the outcome of a sequence of Bernoulli trials is equivalent to placing a prior
distribution on ✓. According to this, one only needs to model a prior distribution
Pr(✓) for the various possible values of ✓: personal beliefs concerning the colour
of the next ball extracted can be computed as

Pr(B) =
Z

✓
Pr(B | ✓)Pr(✓)d✓

=
Z

✓
✓Pr(✓)d✓(3.1)

The introduction of a prior probability distribution modeling personal belief
about ✓ may seem, at first sight, in contradiction with the previous statements
that the probability is a single number. One can, in fact, have probabilities for
events, or probabilities for propositions, but not probabilities of probabilities,
otherwise one would have an infinite regression (de Finetti, 1976). Confusion
may arise from the fact that parameter ✓ is generally termed as ‘probability of

success’. However, it is worth noting that, although it is e↵ectively a probability,
it represents a chance rather than a belief.

To understand how to pass from observations of individual trials (which may
be summarised in terms of the relative frequency) to a probability distribution
over ✓, it will be helpful to describe how a person can revise, as new information
becomes available, her prior beliefs about the possible occurrence of the binary
trial discussed so far. Suppose that the initial state of mind of the individual
may be described by an urn containing w white balls and b black balls: the
individual’s uncertainty about the outcome of the experiment can be described
as the probability to observe a ball of colour white after one draw from this
urn and may be quantified in w/(w + b). A simple method to revise personal
probabilities is represented by Polya’s learning scheme, according to which after

5Note that the use of the term ‘sample’ in this context is one of purely technical nature
in statistics and has nothing to do with the widespread but inappropriate use of the same
term for designating physical trace material recovered or collected in forensic science context.
In particular, seizing (e.g., at crime scenes) and analysing trace material has to deal with the
material as it is, irrespective of its condition; there is no such thing as randomisation, for example.
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each drawing, the extracted ball is returned together with a ball of the same colour
(i.e., sampling is with replacement and duplication). In this way, the observation
of a ball of a given colour increases the degree of belief of observing a ball of the
same colour at the following extraction. According to this learning scheme the
probability to observe a white ball at the second extraction will be conditional
on the outcome of the previous one. It will be quantified as (w + 1)/(w + b+ 1)
whenever a white ball was observed at the first draw; conversely, if a black ball
was observed, it will be quantified as w/(w + b + 1). In the same way, one can
compute the probability of any sequence of outcomes for any number of draws.
The subjective learning that is realized following this scheme is the same as if
one’s belief about ✓, described by a probability distribution Pr(✓), is modelled
by a beta distribution with parameters ↵ = w and � = b. In fact, if a beta
distribution is assumed for ✓, it can be proved (see Appendix A, or Johnson and
Kotz (1977) for a wider discussion) that the marginal distribution of a given set of
outcomes is approximately the same as the one obtained according to the Polya
scheme described above.

The notion of frequency was briefly raised because it is commonly found among
many scientists, and it is useful to clarify the way in which it is related, but not
equivalent, to probability. A forensic scientist in fact may often encounter oc-
casions where probability, which refers to personal beliefs, and chance, which
refers to the probability of success in a Bernoulli series, are numerically the same
(Lindley, 1991). The evaluation of scientific evidence in Court is the expression
of one’s personal degree of conviction: this often requires a combination of data
on the occurrence of target features, summarised for example in terms of relative
frequencies, together with a personal knowledge of circumstances for a particular
case. Related to this is a shortcut widely observed among forensic scientists that
equates beliefs with relative frequencies (see Lindley (2002) for discussion on this
observation in other contexts). This gives rise to confusion between frequency, a
term which refers to data, and probability, which refers to personal beliefs. Clearly,
any probability judgement referring to a particular case, even when thought of
in a frequency format, has a component based on personal knowledge. If prob-
abilities are given a subjective interpretation, the relative frequencies (i.e., the
population proportions) are known, and each individual in the population has the
same probability of possessing a given characteristic of interest, that is observa-
tions are realizations of independent and identically distributed Bernoulli trials
given probability of success ✓, then relative frequencies determine the individual
probabilities. For a recent critical discussion of the notion of frequency in relation
to the rarity of particular genetic traits, see also Brenner (2014).

With these considerations in mind, the next Section will address an issue that
arises in discussions about the assignment of the likelihood ratio in forensic science
applications, in particular the idea held in informal discussions by some quarters
in the field that the likelihood ratio could be ‘estimated’.

The question is whether the Bayesian learning about the population param-
eter of interest does entitle one or not to claim a Bayesian inference about the
likelihood ratio.
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10 F. TARONI ET AL.

4. ESTIMATION VERSUS ASSIGNMENT

As for many scientists in various other disciplines, parameter estimation is
also of interest to forensic scientists. It is the topic that deals with the question
of how one can learn from experience to draw inferences about the value of a
population parameter. In essence, this notion refers to the process of using data
to derive the value for a population parameter, such as a mean, a variance or
a proportion. A main aspect of emphasis here is that the procedure refers to a
real underlying quantity, such as a weight, a length, or a population proportion.
A population proportion, for example, actually exists, but it may be unknown
to scientists, hence they seek to estimate it. On a conceptual account, the very
existence of an actual value of the parameter of interest represents a necessary
requirement for the use of the terms ‘estimate’ and ‘estimation’. The importance
of this understanding will be further clarified in Section 5.

Return to the typical case illustrated in the Section 2, where a stain was recov-
ered at the crime scene and the laboratory reports a match between the genetic
profiles of recovered and control material, denoted as xr and xc, respectively. The
evidence E is xr, the profile obtained from the stain at the crime scene and whose
source is unknown. The control material is the profile xc obtained from the sus-
pect and whose source is known. The likelihood ratio reduces to 1 divided by a
conditional probability: for simplicity, consider it as the probability � of observing
an individual with the observed genetic profile in the relevant population. In some
situations the population might be quite narrowly defined, in other cases less so,
but in nearly every case information about all the members of this population
will not be available. In practice, this quantity is not available, which is why it is
widely considered (‘estimated’) in terms of the allelic relative frequency f found
in an available database of individuals. These individuals are able to be assigned
to two particular mutually exclusive and exhaustive categories, those who possess
a given (‘target’) DNA sequence, and those who possess another DNA sequence,
di↵erent from the target one. This value f is strictly data-based and has no el-
ements of uncertainty. The observed relative frequency f must not be confused
with the limiting frequency about which there is uncertainty and about which we
express beliefs through the introduction of a beta distribution, say ✓ ⇠ Be(↵,�)
where Be(↵,�) denotes the beta distribution with probability density function

f(✓ | ↵,�) = �(↵+ �)

�(↵)�(�)
✓↵�1(1� ✓)��1.

Let x = (x1, . . . , xn) denote the data available at the expert’s disposal, where xi
denotes an observation made on the i-th individual, an individual drawn randomly
from the population of interest and indicates whether the target sequence of
DNA is observed or not and n is the number of people in the sample. The source
of the target sequence is assumed not to be in the sample. The variable xi is
a binary variable with xi = 1 if the DNA of individual i matches the DNA
of the target and = 0 otherwise. Thus x is a sequence of trials each of which
has a binary outcome. Whenever no subpopulation structure is considered, the
observed outcomes, xi, i = 1, . . . , n, can be treated as realisations of independent
and identically distributed Bernoulli trials given the probability of success ✓. Let
s =

Pn
i=1 xi represent the observed number of individuals having the target DNA

sequence. The expert’s uncertainty about the population parameter ✓ can then
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be described by a beta posterior distribution Be(↵ + s + 1;� + n � s), where
the parameters (↵,�) of the prior distribution are updated according to well-
established results. The prior parameter ↵ is increased by the number of profiles
(s + 1) that match the recovered profile, including that of the suspect (control)
profile. The prior parameter � is increased by the number of profiles (n� s) that
do not match the recovered profile. In the case described so far, the updated
conditional probability for the denominator is given by Pr(E | Hd, xc,x)

Pr(E | Hd, xc,x) =
Z

✓
Pr(E | Hd, xc,x, ✓)Pr(✓ | Hd, xc,x)d✓

=
Z

✓
✓Be(↵+ s+ 1,� + n� s)d✓

=
↵+ s+ 1

↵+ � + n+ 1

where Pr(E | Hd, xc,x, ✓) = Pr(xr | Hd, xc,x, ✓) = ✓. Note that Pr(E |
Hd, xc,x) is given by the posterior mean of a beta-distributed random variable
✓. By rearranging terms in the previous equation one may observe that

Pr(E | Hd, xc,x) =
✓

↵

↵+ �
⇥ ↵+ �

↵+ � + n+ 1

◆
+
✓
s+ 1

n
⇥ n

↵+ � + n+ 1

◆
,

that is the posterior mean can be expressed as a linear combination between the
prior mean ↵

↵+� and the observed relative frequency s+1
n , with weights such that

the larger the available data, the smaller influence will be ruled out by the prior
distribution.

It is emphasised that the association of a probability distribution with param-
eter ✓ is to describe the uncertainty about the true unknown value of ✓. The
association is not the representation of its variability: ✓ is a fixed quantity, it is
a number, it may be di�cult to assess but it is a number and therefore does
not have variability. Expression of Pr(E | Hd, xc,x) as the posterior mean of
a beta distribution reflects posterior uncertainty about ✓. This formulation of
Pr(E | Hd, xc,x) is the origin of what is occasionally and loosely termed as
‘uncertainty about the likelihood ratio’.

Some more terminology is required to emphasise the di↵erence between vari-
ability and uncertainty. A numerical value determined for a LR from given train-
ing data, control and recovered data will be known as an assignment

6. The value
calculated for the LR in such a situation is an objective assignment. Personal sub-
jectivity only enters the enumeration through the choice of the prior parameters
e.g, ↵ and �. Two people with the same subjective choices of prior parameters,
control and recovered data, training data and models will obtain the same value
of the LR. The true value of the LR is unknown. The value I assign to the LR is
my best assignment given the data, values for prior parameters and background
information, I. There is uncertainty about my assignment because the true value
is unknown. Uncertainty about a true unknown value of LR must not be confused
with the notion of variability of the likelihood ratio. The di↵erence is illustrated
in Section 5.

6 This terminology is introduced to distinguish the procedure from that of estimation, with
its statistical implication of variability and interval estimation.
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The questions left open at the end of Section 3 can now be answered: does
Bayesian learning about ✓ entitle one to claim a Bayesian learning process about
the likelihood ratio? Is it possible to estimate a likelihood ratio? If we can agree
that, following the above discussion, the scientist’s probability provided for the
denominator of the likelihood ratio depends on the posterior uncertainty about
parameter ✓, and this parameter refers directly to a real state of nature (i.e., a
population proportion), one can consider the choice of a parameter value (i.e.,
the posterior mean) as a necessary preliminary decision for an assignment of a
likelihood ratio. This reflects the idea that the problem of likelihood ratio assign-
ment is broken down into local problems which can be analysed and discussed
in a defensible way. However, there is no meaningful state of nature equivalent
for the likelihood ratio in its entirety, as it is given by a ratio of two conditional
probabilities. These probabilities may be hard to specify, but they are given by
single values, and so is the likelihood ratio.

Another aspect related to parameter estimation is the fact that, generally,
‘point estimation’ is taken as some process of arriving at an estimate without
regard to its precision. Interval estimation, where the precision of the estimate
is to some extent taken into account, deals with this given aspect. The idea is
to build a so-called credible interval, that specifies a range of values in which
the parameter of interest, say ✓, is located with a given probability. This allows
one to specify that ✓ has, for example, a 100(1 � p)% probability to be in a
range defined by a given pair of a lower and an upper bound. It is tempting
to consider the same arguments in the scenario under discussion: since there is
uncertainty about the proportion of the population that has the target DNA
sequence, and this uncertainty may be transposed to the likelihood ratio, with
the ensuing suggestion to build some sort of interval for this latter. Curran (2005),
for example, considered simulation techniques to build the sampling distribution
of the likelihood ratio from which sample quantiles were extracted to act as
endpoints of such an interval. However, even if it were sensible to determine an
interval, it is not clear how such an interval should act as a multiplication factor
for the prior odds in favour of a prosecution proposition, held by a recipient of
expert information. Some authors advocate the presentation of a lower bound
in order to avoid confusion that may arise from presenting a range of values to
the Court. This represents an arbitrary choice that may be di�cult to justify.
With the current scenario, a reported lower bound would equate the selection
of a value for ✓ characterised by a small probability density, with no reasonable
justification, apart from grounds of simplicity.

Clearly, a forensic scientist may deal with di↵erent contexts, and the likelihood
ratio may involve probability densities, as in (2.2). In some cases data present reg-
ular characteristics that can reasonably be described using standard parametric
models. For example, a natural choice for data that are approximately unimodal,
symmetric and bell-shaped is the Normal distribution. In this case, the task of the
forensic scientist reduces to the estimation of the distribution’s parameters under
propositions Hp and Hd. However, forensic scientists often deal with situations
where data do not have such regular characteristics that make it suitable to use a
standard distribution. In these cases, a probability density function can be esti-
mated from available data, for example with the use of kernel density estimation.
Kernel density estimation is not a novel approach in forensic science, and several
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applications can be found (see, e.g. Aitken and Taroni (2004)). In such a context,
it can be said that the forensic scientist will use the background information to
estimate a probability density function for each of the competing propositions.
These estimates, given the available control and recovered measurements (x, y)
, will enable computation of the value of the numerator and the denominator
in (2.2) and hence the assignment of a value to the likelihood ratio. The likeli-
hood ratio for the evaluation of a particular piece of evidence in a particular case
is thus represented by a number.

5. UNCERTAINTY AND VARIABILITY

There is uncertainty about the value of the likelihood ratio, as explained in
Section 4. However, it is inappropriate to represent this uncertainty as an interval
estimate of the true value of the LR.

There is, however, a possible use of the term ‘distribution’, or likelihood ra-

tio distribution, but its interpretation di↵ers fundamentally from what has been
discussed so far in that it is used in pre-assessment. Suppose that given two propo-
sitions of interest under which the findings should be evaluated, the scientist is
able to assign a value to a likelihood ratio. Imagine, for sake of illustration, that
a value of 10 is assigned. The scientist may thus report that this result slightly
supports the prosecution’s case, by a factor of 10. Such a result may give rise to
questions of the following kind: ‘How much credit should we owe to this result?’,
‘To what extent can we rely upon this result?’.

To approach this topic, scientists may consider related questions, that are more
readily tractable, in particular: ‘How often may a forensic scientist obtain such a
likelihood ratio for observations and findings that actually come from a population
characterizing the prosecution’s case, Hp (e.g., when items from the same source
are analysed and compared)?’, ‘How often may a forensic scientist obtain such
a likelihood ratio for observations and findings in a situation as specified by the
alternative proposition assumed by the defence case,Hd (e.g., when the compared
materials come from di↵erent sources)?’. Note that the answers to these questions
are not of particular relevance for the evaluation of evidence in a particular case.
An answer to the latter question in a particular case is presented as a p-value in
Dørum et al. (2014) but such a use is subject to the same criticisms as have been
made for the use of interval estimation.

To answer such questions, the scientist needs information about the likelihood
ratio distribution, independent of the observations made in a given case. Such
information is obtainable before findings are made. Several pairs of observations
for each setting of interest are generated, and for every pair a likelihood ratio
is determined. If this procedure is performed a certain number of times, that is
for many pairs of observations under each setting of interest the forensic scientist
obtains a sampling distribution of the likelihood ratio for each setting. In many
situations, such data can be compiled through practical experiments because tar-
get materials and substances are easily available. As an example, consider the
practical case mentioned in Section 2 where glass fragments are recovered at the
crime scene, and continuous measurements on the recovered and control materials
allow one to assign a given value to the likelihood ratio: how may the importance
of this assignment be assessed? A likelihood ratio distribution may help to quan-
tify how often a likelihood ratio taking values in a given range (containing the
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one characterising the case at hand) can be obtained when the analysed findings
come from the same source. Starting from a database containing measurements
of glass fragments originating from several windows, pairs of fragments coming
from the same and or from di↵erent windows are sampled and the likelihood ra-
tio for each pair is computed. These results provide a distribution among several
allocations of likelihood ratio results (Aitken and Lucy, 2004). Another possibil-
ity is to generate data for each of the target settings by simulations. Such an
approach may be acceptable, for instance, in applications where the distribution
of source features is well known and can be used to generate particular values by
simulation. Consider for example the case of kinship determination.

Given appropriate population data, one can create databases of pairs of in-
dividuals as suggested by Triggs and Buckleton (2002). For example, one can
generate a database of a large number of full siblings on the one hand, and a
database of a large number of unrelated individuals on the other hand. For each
pair of individuals coming from each database separately, a likelihood ratio is
determined. In this way, two distributions of likelihood ratio values are obtained,
one for the populations of pairs of siblings and one for the population of unrelated
pairs. Such distributional information may be valuable in consideration of ques-
tions during pre-assessment, such as: Is it possible to obtain a value supporting

the hypotheses of interest in this scenario?.
The data thus generated are helpful for the assessment of what may be called

the reliability or robustness of an analytical methodology (say, a 16 DNA loci
kit) with an associated likelihood ratio. The scientist may focus, for example, on
how many times a particular likelihood ratio � obtained for a particular setting
(e.g., same or di↵erent source) � points in the wrong direction (i.e., supports
the first proposition instead of the second, or vice-versa). This informs about
the potential of misleading evidence. For the sake of illustration, consider the
case of kinship determination. Simulation studies show that likelihood ratio dis-
tributions tend to overlap, and that there are values of the likelihood ratio that
appear to be reasonable under both propositions of interest (Taroni et al., 2005).
Such simulation studies thus allow scientists to give a general assessment of false
negatives and positives for a given setting, and assess the discriminative capacity
of a particular examination and evaluation procedure with respect to particular
propositions of interest. Note that several statistics coping with misleading evi-
dence and performance measures for likelihood ratios are available in literature.
Corradi and Ricciardi (2013), for example, propose a probability distribution for
the likelihood ratio conditional on competing hypotheses in a kinship identifica-
tion scenario. However, these pre-assessment investigations should not distract
one’s attention from the fact that, for a given case assessment, a comparison is
evaluated in terms of a single value of likelihood ratio or Bayes factor.

6. DISCUSSION AND CONCLUSION

Throughout the previous sections, the main argument was directed to point
out the rationale and properties underlying some key terms that are regularly
invoked in the context of probabilistic evaluative procedures in forensic science.
In combination, these aspects point out that – in the main – it is both misleading
and non-sensical to talk in terms of ‘estimation’ with respect to probabilities,
Bayes factors and likelihood ratios. A main motivation for presenting this dis-
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cussion is that scientific communications and forensic commentators regularly
invoke positions that are in conflict with this understanding. Examples include
statements such as ‘there is uncertainty about the probability to be used’, or ‘there
is uncertainty about the value the likelihood ratio’, which appears to prompt some
scientists to elaborate ways to construct intervals or distributions over probabil-
ities and likelihood ratios.

Such attempts must be considered spurious in at least two respects. First,
probability is a measure for uncertainty about the truth of a proposition, or
about the actual value an unknown quantity may assume (say, a population
proportion). By specifying probabilities/densities for various possible values of
the target quantity one obtains what is called a probability distribution. One
such example is the beta probability density that was introduced in Section 4 with
reference to a particular hypothetical forensic scenario of interest. However, this
does not allow to conclude that a given probability, say the probability Pr(E | Hd)
to find a person in the general population that possesses the target DNA sequence
, should itself have a distribution. That would mean to confuse the probability
with the unknown proportion of individuals possessing a given characteristic, and
place a probability on a probability, which would result in an infinite regression,
and would not solve the problem (de Finetti, 1976). Hence the title ‘The dismissal
of the illusion of uncertainty’ for this paper.

Second, one must not confuse the di�culty of the problem of measurement,
with the measuring device (probability) itself. This is not to ignore that the
specification, in the first place, of a probability for a possible value of an unknown
quantity (or, more generally, an event of interest) may be a di�cult task. However,
nothing will be gained if a particular expression for uncertainty, in terms of a
probability, is itself obscured or blurred by an additional level of uncertainty. This
same argument applies to likelihood ratios as a measure of probative value. These
distinctions are subtle, but fundamental. In everyday language such distinctions
are often coarse and these aspects are ignored. Scientific accounts cannot credibly
do so.

This is also not to deny that, on a purely technical account, one can introduce
additional mathematical concepts for the evaluation of evidence. However, such
an introduction does not provide release from the obligation to provide a concep-
tually sound, contextually consistent and operationally meaningful rationale for
such concepts. In practical matters of forensic science and law, it is important
for there to be agreement on the understanding of the first principles. Technical
matters should only be introduced once the objective is clearly defined, other-
wise they will merely serve to obscure any impasse there may be on foundational
matters.

The provision of probabilities and likelihood ratios can be a challenging issue,
and the requirement to assign a single value can be perceived as di�cult, or even
intimidating. However, with these provisions and requirements, the di�culty is
not one of uncertainty, because one is uncertain only about the real event, propo-
sition or parameter in the first place, nor about how one is thinking about their
truth or otherwise. The issue, instead, is more properly termed one of ‘precision’.
Thus, one way to approach the di�culty of measurement and the communication
of uncertainty, and hence the probative value, could be to avoid the use of num-
bers, as their use may suggest an unrealistically high precision for the value of a
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probability or likelihood ratio to several significant figures, for example. Instead,
scientists should devote their e↵orts to the elicitation and communication of re-
sults that they can present � within a personal and decision-theoretic perspective
� as their best representation of the value of the issue under consideration; i.e.,
as a probability or a likelihood ratio. Associated with these e↵orts in individual
cases, there is a general need for the instruction of recipients of expert information
(e.g., jurists) in the nature of probability, the importance of an understanding of
it and its proper use in dealing with uncertainty.
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APPENDIX A: APPENDIX

Consider an urn composed by w white balls and b black balls, and the Polya
learning scheme illustrated in Section 3, according to which after each drawing the
chosen ball is returned together with a ball of the same colour. Define a variable
Xi that takes value xi = 1 if a white ball is observed at the i�th extraction,
and value xi = 0 viceversa. Then, the probability to observe a white ball at the
second extraction can be revised as:

Pr(X2 = x2 | X1 = x1) =
w + x1

w + b+ 1
.

Similarly, at the i�th iteration the probability to extract a white ball is easily
computed as

Pr(Xi = xi | X1 = x1, . . . , Xi�1 = xi�1) =
w +

Pi�1
j=1 xj

w + b+ i� 1
.(A.1)

Consider a sequence of n draws: the joint probability Pr(X1 = x1, . . . , Xn = xn)
can be simply obtained by multiplying conditional probabilities in (A.1) for i =
1, . . . , n. For example given n = 5 draws, the probability of the generic set of
outcomes WBBWW can be computed as

Pr(X1 = 1)⇥Pr(X2 = 0 | X1 = 1)⇥· · ·⇥Pr(X5 = 1 | X1 = 1, X2 = 0, X3 = 0, X4 = 1) =

w

w + b
⇥ b

w + b+ 1
⇥ · · ·⇥ w + 2

w + b+ 4
=

w(w + 1)(w + 2)b(b+ 1)

(w + b) · · · (w + b+ 4)
=

w[3]b[5�3]

(w + b)[5]
,

where w[k] = w(w + 1) · · · (w + k � 1). In the same way, given n draws there one
can compute the probability to observe a total number s of white balls and a total
number (n � s) of black balls. Consider a variable Y that counts the number of
white balls that have been observed after n draws. Then one has

Pr(Y = s) =

 
n

s

!
w[s]b[n�s]

(w + b)[n]
,(A.2)

where
�n
s

�
represents the number of sequences that may be given by s white balls

and (n� s) black balls.
Suppose now variables Xi are independent, that is suppose they can be treated

as independent Bernoulli trials with a probability to observe a success (i.e., to
draw a white ball), given by ✓, and a probability to observe a failure (i.e., to draw
a black ball) given by (1 � ✓). Then, given ✓, the probability of any particular
sequence containing s white balls and (n� s) black balls is

Pr(Y = s | ✓) =
 
n

s

!

✓s(1� ✓)n�s.
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If a Beta distribution is introduced on ✓, say ✓ ⇠ Be(↵,�), the marginal prob-
ability to observe any sequence of outcomes with s successes and n � s failures
can be easily verified to be a Beta-Binomial distribution with parameters n,↵,�,
that is

Pr(Y = s) =

 
n

s

!
�(↵+ s)�(� + n� s)

�(↵+ � + n)

�(↵+ �)

�(↵)�(�)
.(A.3)

Rearranging terms in (A.3), one can observe that the marginal distribution is the
same as that obtained in (A.2) with the Polya sequence. In fact, recalling that
for any integer k the Gamma function satisfies the relationship �(k) = (k � 1)!,
then

Pr(Y = s) =

 
n

s

!
(↵+ s� 1)!(� + n� s� 1)!

(↵+ � + n� 1)!

(↵+ � � 1)!

(↵� 1)!(� � 1)!

=

 
n

s

!
↵(↵+ 1) · · · (↵+ s� 1)�(� + 1) · · · (� + n� s� 1)

(↵+ �)(↵+ � + 1) · · · (↵+ � + n� 1)

=

 
n

s

!
↵[s]�[n�s]

(↵+ �)[n]
.

The described learning scheme can be regarded as being generated by a sequence
of independent and identically distributed Bernoulli trials, in which the parameter
✓ has a beta distribution. Thus, if the Polya learning scheme is considered to revise
prior beliefs about the composition of the urn, it is the uncertainty about the
urn composition ✓ that is characterised by a beta distribution, while subsequent
draws are considered as independent and identically distributed Bernoulli trials.
See Johnson and Kotz (1977).
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