
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Comparison of YOLOv4-tiny and YOLOv7-tiny for instream wood detection

Marc O’Callaghan – University of Lausanne, Faculty of Geosciences and Environment

Abstract
The presence of instream wood has strong impli-
cations for river ecology, morphology, and hazard
assessment. Detecting it manually is a tedious,
if not impossible task, however, due to the large
amount of data to process. This work presents an
attempt to automate the process with two different
fully convolutional neural networks YOLOv4-tiny
and YOLOv7-tiny.

1. Introduction
The impact of instream wood on river ecology and geomor-
phogenesis has been under increasing study in recent years
(e.g. Wilcox & Wohl, 2006; Ruiz-Villanueva et al., 2018;
Friedrich et al., 2022). Logs transported by the stream may
mechanically exacerbate channel widening and damage in-
frastructures such as bridges and levees (Ruiz-Villanueva
et al., 2018; Wohl et al., 2016). Wood accumulations, on
the other hand, may obstruct the stream and thus increase
habitat diversity in the river ecosystem (Wohl et al., 2019).
However, this may also cause overbank flooding or increase
downstream scour (Friedrich et al., 2022; Wohl et al., 2016).
Fig. 1 summarises the effects of instream wood at river
segment scale.

Figure 1. Summary of the effects of wood of a river ecosystem by
Wohl et al. (2016:318).

It follows that monitoring wood transport in rivers is es-
sential to assess both ecosystem health and hazardousness.
Owing to the large quantity of data to process, and to the
difficulty to access certain study sites, tracking instream
wood manually is impractical, if at all possible. Aarnink et

al. (2022) have proposed a machine learning approach to
automate this process.
The aim of this work is to implement two fully convolutional
neural networks (FCN) for this purpose, as they are recog-
nised to be well suited to object detection (Géron, 2019).
A comparative approach aims to assess the performance of
both models as a starting point of future developments of an
algorithm best suited to instream wood detection.
The You Only Look Once (YOLO) algorithm series
(launched by Redmon et al., 2016) was chosen in view of its
speed of execution. We used YOLOv4-tiny (Bochkovskiy
et al., 2020) due to the availability of extensive documen-
tation on its implementation (e.g. TheAIGuy’s YouTube
tutorial (2020-06-29) and assorted GitHub repository and
Alexey Bochkovskiy’s GitHub repository (Bochkovskiy et
al., 2020). The second FCN we chose was YOLOv7-tiny
(Wang et al., 2022), which can be implemented through
Bochkovskiy’s darknet executable as well, but was origi-
nally made available on Wong Kin Yu’s GitHub repository.
The tiny versions were used for reasons of computational
efficiency, as they are considerably shallower and therefore
faster to train than the full-scale YOLOv4 and YOLOv7.
Wang et al. (2022) indicate that YOLOv7 performs signifi-
cantly better than previous YOLO installments on real-time
detection in the MS COCO dataset. The present work stud-
ies whether this also applies to the respective tiny versions,
and whether one of them can be used reliably for instream
wood detection.
The implementation focused on detecting one class
singlewood, which describes single logs of large wood
(i.e. wider than 10 cm and longer than 1 m, as defined
by Wohl et al., 2010). Its aim is to return a bounding box
around the objects of interest in each image.

2. Data and methods
2.1. Images

For this work, we used a subset of images provided by
Janbert Aarnink (University of Lausanne, Institute of Earth
Surface Dynamics), which originally comprised 5’429
labelled images. These were taken from videos shot with
smartphones above or beside a stream into which logs had
been cast manually, as no instream wood was spontaneously
present at the time of filming. The set of 2’000 still pictures

https://www.youtube.com/watch?v=mmj3nxGT2YQ&t=1626s
https://github.com/theAIGuysCode/YOLOv4-Cloud-Tutorial
https://github.com/AlexeyAB/darknet
https://github.com/WongKinYiu/yolov7


055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Comparison of YOLOv4-tiny and YOLOv7-tiny for instream wood detection

Figure 2. Example of a horizontally flipped image used in the
augmented training dataset. Note the log at the centre left.

taken from these videos was augmented by random flipping,
rotating, and colour alteration (cf. Fig. 2).
In order to reduce computation time in the scope
of this project, we restricted the set to 45 la-
belled images from the augmented dataset. This
was further split into a training and test set with
sklearn.model-selection.train test split
using test size = 0.2 and random state = 12.
A test size of 20% of the total set was chosen in alignment
with Géron (2019). This yielded a training set containing
36 elements and a test set containing 9.

2.2. Algorithms

YOLOv4 (Bochkovskiy et al., 2020) and YOLOv7 (Wang et
al., 2022) both consist of a sequence of backbone, neck and
head components (Fig. 3). The exact description of these
components’ setup lies beyond the scope of this work, but
it must be mentioned that they are both one-stage detectors
using dense prediction in the head.

Figure 3. Architecture of YOLOv4 (Bochkovskiy et al., 2020).
Although the individual components differ, YOLOv7 follows the
same global architecture (Wang et al., 2022).

The CFG files provided by Bochkovskiy consist of 162
layers for YOLOv4 while YOLOv7 consists of 143. The
tiny versions consist of 38 and 99 layers, respectively (cf.
Bochkovskiy’s yolov4-tiny-custom.cfg and yolov7-tiny.cfg
files on GitHub [retrieved 2022-12-14]).

Batch size 64
Subdivisions 16
Max iterations 6000
Steps low 4800
Steps high 5400
Network size 416x416
Classes 1
Filters 18

Table 1. Hyperparameters used for both algorithms (only diver-
gences from the default are shown). The filters were only
changed in the convolutional layers directly preceding the YOLO
layers.

As they are reduced versions of the full-scale YOLOv4 and
YOLOv7 and not standalone algorithms, there is no docu-
mentation focusing on their comparative performance nor
on their recommended setup. For this reason, we chose to
use the hyperparameters recommended by Bochkovskiy in
the readme of his GitHub repository (Tab. 1 [retrieved 2022-
12-14]). It is indicated that the steps should correspond
to the maximum number of iterations ± 10 % and the filters
of a convolutional layer directly preceding a YOLO layer
should be set to 5 × classes + 3, i.e. 18 in the case at hand.

3. Results and discussion
Fornari’s (2022) findings in a previous project with the same
scope, but using full-scale YOLOv4, reached a mean aver-
age precision (mAP; Hendry & Chen, 2019) of 80.88% at
IoU > 0.5. They used a dataset consisting of 12 training
images and 4 test images, because a larger dataset proved
unreasonably long to process.
In our case, YOLOv4-tiny achieved a best performance of
78 % mAP, which later decreased and plateaued at 67 %.
Processing was terminated at 3505 iterations as no signifi-
cant improvement had occured over the last approx. 1000
iterations (Fig. 4). YOLOv7-tiny, on the other hand, per-
formed considerably better on the training set, achieving up
to 91% mAP (Fig. 4).
Training and testing on the 45-image set took approx. 3 h
in both cases, a considerable improvement from Fornari’s
(2022) attempt. After training, we attempted to run both
algorithms on four other images from separate datasets, also
provided by Aarnink. Here, it became clear that the perfor-
mance, though not quantified, was much less satisfactory
(Fig. ??). Although both algorithms performed poorly on
these new inputs, it appears that YOLOv7-tiny was slightly
more adaptable than YOLOv4-tiny (it successfully detected
logs that YOLOv4-tiny missed in all but one of the four
images). On the fourth image, neither algorithm detected
instream wood at all.
The training and testing set were both selected from the same
dataset and were temporally contiguous, which presumably

https://github.com/AlexeyAB/darknet/blob/master/cfg/yolov4.cfg
https://github.com/AlexeyAB/darknet/blob/master/cfg/yolov4.cfg
https://github.com/AlexeyAB/darknet/blob/master/cfg/yolov7.cfg
https://github.com/AlexeyAB/darknet/blob/master/cfg/yolov4-tiny-custom.cfg
https://github.com/AlexeyAB/darknet/blob/master/cfg/yolov7-tiny.cfg
https://github.com/AlexeyAB/darknet#how-to-train-to-detect-your-custom-objects


110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Comparison of YOLOv4-tiny and YOLOv7-tiny for instream wood detection

Figure 4. mAP and test loss of YOLOv4-tiny (top) and YOLOv7-
tiny (bottom).

Figure 5. One of the manual test images, as processed by YOLOv7-
tiny. YOLOv4-tiny detected no logs.

resulted in both models overfitting and only recognising
those logs which were visible in that sequence. Although
YOLOv7-tiny proved slightly more transferable, it identified
logs in the manual test with considerably less confidence
(46% in image 4).
A more careful selection of training data among the images
provided by Aarnink, would presumably have resulted in
more transferable learning. Owing to the limited available
time, as well as the limited resources offered by Google
Colab, however, it proved impossible to do so.
The implementations proposed by Bochkovskiy in his
GitHub repository are unfortunately not comprehensively
documented. As such, it is not sure to what extent human er-
rors may have been introduced in our use of these algorithms
due to misunderstandings on our part. The fact that they
are designed for use on Google Colab is also problematic
due to the limited resources this platform offers. A portable
version of their code, which can be implemented on local
IDEs, would be advantageous. They do, however, offer a
relatively straightforward implementation of complex algo-
rithms which researchers who are not data scientists would
be incapable of designing.

4. Conclusion
We have shown that the tiny versions of YOLOv4 and
YOLOv7 can be trained in considerably less time than their
full-scale counterparts. This can be of interest when rapid
implementation of these algorithms is needed. YOLOv7-
tiny, in particular, reached high accuracies in the training
and test set and was able to recognise wood in other datasets
as well, despite certainly overfitting the training data. We
have also shown that ready-made implementations, as found
on GitHub, can be used in a realtively easy way to imple-



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Comparison of YOLOv4-tiny and YOLOv7-tiny for instream wood detection

ment complex algorithms for research.
A more thorough evaluation of the performance of both al-
gorithms should be performed by selecting a more diverse
training set. Within the limited time frame and resources
available, however, our results seem to point that YOLOv7-
tiny has greater potential for instream wood detection than
YOLOv4-tiny.

5. Code and data availability
The final version of our code and data is avail-
able at https://github.com/ocallaghanm/2022 ML EES/
blob/main/OCallaghanM project.ipynb. Indications to ac-
cess the data used in this work are included in the same
file.

Bibliography
Aarnink, J., Ruiz-Villanueva, V., & Vuaridel, M. (2022).
Machine learning and RFID-based large wood tracking in
rivers. https://doi.org/10.5194/egusphere-egu22-3974
Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020).
YOLOv4: Optimal Speed and Accuracy of Object Detection
(arXiv:2004.10934v1). arXiv preprint.
Fornari, A. (2022). Instream Large Wood detection trough
YOLOV4. Machine Learning for Earth and Environmental
Sciences course, SS 2022. University of Lausanne, FGSE.
Friedrich, H., Ravazzolo, D., Ruiz-Villanueva, V., Schalko,
I., Spreitzer, G., Tunnicliffe, J., & Weitbrecht, V. (2022).
Physical modelling of large wood (LW) processes relevant
for river management: Perspectives from New Zealand and
Switzerland. Earth Surface Processes and Landforms, 47(1),
32–57. https://doi.org/10.1002/esp.5181
Géron, A. (2019). Hands-on Machine Learning with Scikit-
Learn, Keras, and TensorFlow (2nd ed.). O’Reilly.
Hendry & Chen, R.-C. (2019). Automatic License Plate
Recognition via sliding-window darknet-YOLO deep learn-
ing. Image and Vision Computing, 87, 47–56. https:
//doi.org/10.1016/j.imavis.2019.04.007
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016,
May 9). You Only Look Once: Unified, Real-Time Object
Detection. IEEE Conference on Computer Vision and Pat-
tern Recognition. http://arxiv.org/abs/1506.02640
Ruiz-Villanueva, V., Badoux, A., Rickenmann, D., Böckli,
M., Schläfli, S., Steeb, N., Stoffel, M., & Rickli, C. (2018).
Impacts of a large flood along a mountain river basin:
The importance of channel widening and estimating the
large wood budget in the upper Emme River (Switzer-
land). Earth Surface Dynamics, 6(4), 1115–1137. https:
//doi.org/10.5194/esurf-6-1115-2018
Ruiz-Villanueva, V., Mazzorana, B., Bladé, E., Bürkli, L.,
Iribarren-Anacona, P., Mao, L., Nakamura, F., Ravazzolo,
D., Rickenmann, D., Sanz-Ramos, M., Stoffel, M., & Wohl,
E. (2019). Characterization of wood-laden flows in rivers.

Earth Surface Processes and Landforms, 44(9), 1694–1709.
https://doi.org/10.1002/esp.4603
Wilcox, A. C., & Wohl, E. E. (2006). Flow resistance dy-
namics in step-pool stream channels: 1. Large woody debris
and controls on total resistance. Water Resources Research,
42(5). https://doi.org/10.1029/2005WR004277
Wohl, E., Bledsoe, B. P., Fausch, K. D., Kramer, N.,
Bestgen, K. R., & Gooseff, M. N. (2016). Management
of Large Wood in Streams: An Overview and Proposed
Framework for Hazard Evaluation. JAWRA Journal of the
American Water Resources Association, 52(2), 315–335.
https://doi.org/10.1111/1752-1688.12388
Wohl, E., Kramer, N., Ruiz-Villanueva, V., Scott, D. N.,
Comiti, F., Gurnell, A. M., Piegay, H., Lininger, K. B.,
Jaeger, K. L., Walters, D. M., & Fausch, K. D. (2019).
The Natural Wood Regime in Rivers. BioScience, 69(4),
259–273. https://doi.org/10.1093/biosci/biz013

https://github.com/ocallaghanm/2022_ML_EES/blob/main/OCallaghanM_project.ipynb
https://github.com/ocallaghanm/2022_ML_EES/blob/main/OCallaghanM_project.ipynb
https://doi.org/10.5194/egusphere-egu22-3974
https://doi.org/10.1002/esp.5181
https://doi.org/10.1016/j.imavis.2019.04.007
https://doi.org/10.1016/j.imavis.2019.04.007
http://arxiv.org/abs/1506.02640
https://doi.org/10.5194/esurf-6-1115-2018
https://doi.org/10.5194/esurf-6-1115-2018
https://doi.org/10.1002/esp.4603
https://doi.org/10.1029/2005WR004277
https://doi.org/10.1111/1752-1688.12388
https://doi.org/10.1093/biosci/biz013

