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Machine Learning for Earth and Environmental Sciences
Final project on moderate and extreme winds bursts in Europe

Fabien Augsburger1

Abstract
This project aims to predict a 3 hours prediction
for 2 categories of wind in Europe (moderate and
extreme convective bursts). Over the 4 algorithms
used (Logistic Regression, Random Forest, Deci-
sion Tree, and Gradient Boosting), Random For-
est performed the best overall.

1. Introduction
The goal of this project is to predict 3 hours in advance
whether there will be an extreme wind burst or a moderate
wind burst based on a dataset from 2011 to 2020 related
to convective winds in Europe (fig. 1) with 10 predictors.
It contains an index, the years, and 20 variables related to
atmospheric data. Since there are 2 datasets, one for the
moderate convective winds bursts and the other one for ex-
treme convective winds bursts, the two datasets were merged
and a binary column for the classification was created (1
for the extreme convective winds bursts and 0 for moderate
convective winds bursts).

The link for the notebook is the following:

GitHub link

Here is a short description of the predictors:

• BSS0−1 and BSS0−6: the bulk vertical wind shear
between 0 - 1 km, and 0 - 6 km (expressed as a wind
speed difference in m/s).

• RH1000−850 and RH700−500: the relative humidity,
averaged between 1000 hPa - 850 hPa and 700 hPa -
500h Pa (expressed in %).

• GUSTEX: a variable used by Bart Geerts, which is
proportional to the 500hPa wind speed (expressed in
m/s).

• LAPSES1 and LAPSE700−500: the lapse rate, de-
fined as the difference in absolute temperature between
0 - 1 km divided by 1 km and between the 700 hPa
and the 500 hPa surfaces and divided by the altitude

Figure 1. Zone of interest: Europe. Source: Natural Earth Data,
2022

difference between the 700 hPa and 500 hPa surfaces
(expressed in K/km).

• TOTALTOTALS : The total totals index, defined as
the temperature at 850 hPa plus the dewpoint at 850
hPa, minus twice the temperature at 500 hPa. This
index is expressed in K and higher values correspond
to stronger storms. More information on the total totals
index.

• Kindex: The Kindex, defined as the following :

K = (T850 − T800) + Td850− (T700 − Td700)

Where T is the temperature at a xxx hPa and Td is the
dew point at xxx hPa.

It is expressed in K and higher values correspond to a
more unstable atmosphere, which increases the chance
of a strong storm forming. More information on the
kindex.

https://github.com/mrfabien/MLEE_project
https://unidata.github.io/MetPy/dev/api/generated/metpy.calc.total_totals_index.html
https://unidata.github.io/MetPy/dev/api/generated/metpy.calc.total_totals_index.html
https://unidata.github.io/MetPy/dev/api/generated/metpy.calc.k_index.html?highlight=k_index
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• CAPE: The CAPE, or Convective Available Poten-
tial Energy, is defined as the indication of the instability
(or stability) of the atmosphere and is expressed in J/kg.
Higher values increase the likelihood of a strong storm
forming. More information on the CAPE.

Description of two predictors for the moderate (top of ta-
ble 1) and extreme convective winds bursts of the dataset
(bottom of table 1):

Table 1. Description of the moderate (top) and extreme bottom
(convective winds bursts dataset

DESCRIPTION BSS0 1 MEAN BSS0 6 MEAN

COUNT 20613.000000 20613.000000
MEAN 4.983855 12.815968

STD 3.274193 6.495572
MIN 0.027840 0.593803
25% 2.545131 7.865498
50% 4.379407 12.039471
75% 6.800914 16.911604
MAX 20.297779 43.586357

DESCRIPTION BSS0 1 MEAN BSS0 6 MEAN

COUNT 15337.000000 15337.000000
MEAN 6.818424 14.547084

STD 3.395588 6.289388
MIN 0.040366 0.949590
25% 4.404220 9.939423
50% 6.480618 13.968437
75% 8.945686 18.663570
MAX 21.888948 48.024220

2. Methodology and algorithms used
The method was inspired from Lagerquist, and al. (1). Thus,
four algorithms are used:

• Logistic Regression

• Random Forest Classifier

• Decision Tree Classifier

• Gradient Boosting Classifier

First, a default run is made on each one of the classifiers,
then a search for the best hyperparameters is used (via Halv-
ingGridSearchCV) on Random Forest, Decision Tree and
Gradient Boosting. The hyperparameters tuning is on

• max leaf nodes

• min samples split

• max depth

Some specific algorithms hyperparameters are also tuned: n
estimators for Random Forest and learning rate
for Gradient Boosting.

Then, for the performance of each algorithm, an accuracy
test is done on the validation set by comparing the default
settings and the custom settings. Afterwards, another accu-
racy test is done on the validation and testing set with the
best model (based on its previous accuracy test).

The same process is repeated for the precision test. Finally,
on each algorithm tuned, a permutation feature is tested to
see which predictor is mainly used, and by which algorithm.

2.1. Logistic Regression

Parameters used for the first Logistic Regression are the
default ones. Then a second test is conducted with the
following solver : ’liblinear’. In the results, the 4 solvers
that it supports roughly performed the same.

2.2. Random Forest

The same method used in Logistic Regression is applied for
the Random Forest classifier. The second test is conducted
with the following hyperparameters tuning (table 2).

Table 2. Hyperparameters tuning on the Random Forest Classifier

HYPERPARAMETERS RANGE

MAX LEAF NODES 60, 80, 100, 120, 140, 160, 180, 200
MIN SAMPLES SPLIT 5, 10, 15, 20, 25
N ESTIMATORS 50, 100, 150, 200, 250
MAX DEPTH 3, 10, 20, 40

2.3. Decision Tree

Like the first two algorithms, a default run is done, then a
hyperparameters tuning is done with the same one used in
table 2 (except for n estimators).

2.4. Gradient Boosting

The hyperparameters tuning is done differently, as shown in
table 3.

Table 3. Hyperparameters tuning on the Gradient Boosting

HYPERPARAMETERS RANGE

MAX LEAF NODES 120, 140, 160, 180, 200
MIN SAMPLES SPLIT 5, 10, 15, 20, 25
LEARNING RATE 0.05, 0.1, 0.15, 0.2
MAX DEPTH 3, 10, 20, 40

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
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3. Results
3.1. Accuracy

The results from the default and the custom model are the
following (fig. 2). Those results are solely based on the
validation set.

Figure 2. Accuracy of each algorithm on their default and custom
settings

Since there are no models that clearly performed better in
their default settings or custom settings, an accuracy test is
then done with the testing set, and the validation set on the
most accurate models. Results are displayed in table 4.

Table 4. Accuracy of each algorithm on the testing, and validation
set

CLASSIFIER SETTINGS VALID TEST

LOGISTIC REGRESSION CUSTOM 59.84% 60.83%
RANDOM FOREST DEFAULT 67.07% 67.65%
DECISION TREE CUSTOM 64.57% 64.33%
GRADIENT BOOSTING CUSTOM 67.92% 66.80%

3.2. Precision score

The precision score of each algorithm based on the valida-
tion set is the displayed in figure 3. It compares the default
settings versus the tuned settings:

Figure 3. Precision of each algorithm on their default and custom
settings

The precision table is the following (table 4):

Table 5. Precision score of each algorithm on the validation, and
testing set

CLASSIFIER SETTINGS VALID TEST

LOGISTIC REGRESSION CUSTOM 54.62% 55.70%
RANDOM FOREST DEFAULT 62.68% 63.21%
DECISION TREE CUSTOM 57.68% 56.99%
GRADIENT BOOSTING CUSTOM 63.30% 61.69%

3.3. Features permutation

The results for the permutation tests are displayed in figure
4.

4. Discussion
The results from the 4 classifiers with their modifications
are not great. An accuracy of 57-66% can be improved
with the use of a neural network (Lagerquist, and al.)(1).
The precision score is not better and ranges from 49% to
63%. The best algorithm overall is Random Forest, mainly
because the results with the validation and testing set are
very close. Gradient Boosting comes second, because it has
a slight overfit on each testing set. Third and last are re-
spectively Decision Tree and Logistic Regression: Decision
Tree performs better in the accuracy and precision tests and
has fewer differences between the validation and testing set
compared to Logistic Regression.

It is interesting to see that Logistic Regression use mainly
one predictor, which is the mean CAPE (to a lesser extent, it
also uses RH1000−850 and RH700−500). Gradient Boosting
uses 3 others predictors : mean GUSTEX, mean BSS0−1
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Figure 4. Feature importance of each algorithm based on the best version of the model

and mean BSS0−6. Random Forest and Decision Tree
both use mainly the mean BSS0−1, but Random Forest is
the only algorithm that uses most of the other predictors.
Decision Tree also uses the standard deviation of BSS0−1

and mean K-index for its predictions. Knowing that mainly
the CAPE and K-index are used (2)(3)(4) to predict those
categories of wind, it is possible to use other variables, such
as BSS0−1, BSS0−6, or GUSTEX with a relative accuracy.
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