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Abstract

Understanding of environmental change in
Switzerland would benefit from updated temporal
resolution of land cover data. This study assesses
the performance of supervised machine learning
techniques to classify land cover on a regular basis
in Western Switzerland using data from Landsat-5.
Random Forests performs better than Multinomial
Logistic Regression with an overall accuracy of
76.8% when applied to test data from a different
year. However, the model requires improvement
to fully capture the minority classes.

1. Introduction
Land cover is increasingly recognised as key variable for
monitoring the state of the environment, providing essential
data for the systematic observation of the climate and biodi-
versity crises in particular (Bojinski et al., 2014; Jetz et al.,
2019). The availability of accurate, reliable, and timely land
cover data is therefore crucial for the understanding and
modelling of environmental processes (Verde et al., 2020).
For example, land use and land cover change are prerequi-
site data for calculating of carbon emissions and storage (Li
et al., 2018), feeding into international policy requirements.

Currently, the most extensive and thematically rich land
cover data available for Switzerland is the ArealStatistik,
derived from visual interpretation of the aerial photographs
taken over a 6-year period. At present, 4 datasets are avail-
able covering the last 3 decades with a spatial resolution of
100m. These statistics are useful in terms of the detailed and
country-specific categories they include, however their low
update frequency and relatively coarse spatial resolution are
at odds with the data needs for quantifying the dynamic and
spatially variable characteristics of land cover (Ban et al.,
2015). Recent efforts to downscale land cover/land use data
for Switzerland have improved the spatial resolution to 25
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m, however, there remains a demand for increased temporal
resolution of datasets produced (Giuliani et al., 2022).

Satellite imagery provides a consistent dataset of observa-
tions which is spatially continuous and contains the tempo-
ral resolution necessary to distinguish classes with strong
temporal dynamics (Verde et al., 2020). As such, the classifi-
cation of remote sensing datasets has been widely accepted
as the state-of-the-art in land cover mapping (Ban et al.,
2015). A particular focus has been on the use of supervised
machine learning methods and image classification to auto-
mate regular production of datasets with success at spatial
scales from the regional to global (Inglada et al., 2017).

This study aims to assess the performance of supervised
learning methods to classify land cover from satellite im-
agery, with the aim of presenting a method which could be
applied to produce annual land cover data for Switzerland.

2. Data
2.1. Study area

The study area in the western of Switzerland is shown in Fig-
ure 1, an area of 1,570 km2 or approximately 4% of Switzer-
land. This region contains the urban centers of Geneva and
Lausanne, as well as part of Lake Geneva.

Figure 1. Study area.
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2.2. Input data

Analysis-ready data was provided by the Swiss Data Cube
which collates available satellite imagery for Switzerland
(Chatenoux et al., 2021). The present study uses data from
Landsat-5 which has been pre-processed to produce top-of-
atmosphere reflectances. Data corresponding to the most
recent land cover survey (2013-2018) comes from Landsat-
8, and therefore has not been considered due to potential
issues in comparison stemming from the different instru-
mentation used. Characteristics of the satellite data used are
given in Table 1. The distribution of values of the different
satellite images was assessed prior to their use to ensure
extrapolation between years is feasible.

Table 1. Characteristics of satellite data.

RESOLUTION

BAND SPECTRAL SPATIAL

B1 VISIBLE 0.45 - 0.52 µM 30M
B2 VISIBLE 0.52 - 0.60 µM 30M
B3 VISIBLE 0.63 - 0.69 µM 30M
B4 NEAR-INFRARED 0.76 - 0.90 µM 30M
B5 NEAR-INFRARED 1.55 - 1.75 µM 30M

2.3. Reference data

Reference data comes from the ArealStatistik, which pro-
vides a classification for points spaced at 100m. Data from
the survey periods of 1979-1985, 1992-1997, 2004-2009
was retrieved, and the corresponding satellite images for
each dataset is given in Table 2. The classification used is
the base level with the 6 ’Principal domains’ of Artificial
Areas, Grass & Herb Vegetation, Brush Vegetation, Tree
Vegetation, Bare Land, and Watery Areas. Reference data
were reprojected into the coordinate system of the satellite
imagery, and the surface reflectance values for each band
extracted for each point to create the dataset.

Table 2. Reference data used for each layer of input data.

INPUT DATA REFERENCE DATA

1985/08/18 1979-1985
1984/07/30

1992/08/05 1992-1997
1993/07/07
1994/07/10
1996/07/31
1997/08/19

2004/09/07 2004-2009

3. Methods
3.1. Sampling strategy

Data from the first two survey periods (1979-1985 and 1992-
1997) was used for training and testing the model, as a first

iteration, with the 2004-2009 survey reserved for additional
testing to assess the model’s performance over time.

Random selection of training and validation data at the
pixel level can lead to model evaluation over-estimating
the performance of a classifier, due to the potential for spa-
tial autocorrelation between instances (Inglada et al., 2017;
Tonini et al., 2020). A potential strategy to overcome this
is to select training and validation sets from separate poly-
gons (Pelletier et al., 2016), however due to the relatively
small size of the study area selected, this approach could
introduce greater imbalance between LC classes. Hence,
data was split using spatial k-fold cross validation, using an
approach similar to the method described in (Tonini et al.,
2020).

For this method, the area of interest was overlaid with a
grid of 194 10km2 cells, shown in Figure 2, and each data
point was then assigned to its overlaying cell. Data for 20
cells, corresponding to around 12% of the total data, was
set aside to form the test set. The cell identifier for the
remaining instances which was used as the ‘group’ input
for a grouped k-fold split, which split data into two sets for
training and validation, whilst ensuring that instances for
each set originated from different cells. 7 folds were used
in the grouped k-fold split, to ensure consistency in the size
of the validation and test sets (the size of the validation set
being 1/k of the total input to a k-fold split). The final ratio
was 76:12:12 for training:validation:test.

Figure 2. Spatial grid covering the study area.

The resulting class distribution of pixels used for training,
validation and testing is given in Figure 3, as well as the
distribution of the 2004-2009 dataset used for further testing.

3.2. Multinomial logistic regression

Multinomial logistic regression (MLR) was implemented as
a simple baseline model to set a benchmark for comparison
with more complex ML models.
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Figure 3. Class distribution across training, validation and test sets.

3.3. Random Forests

Random Forests (RF) is an ensemble learning method in
which multiple decision trees are produced (Breiman, 2001).
RF has become widely used in classifying remote sensing
due to its high accuracy and low propensity for overfit-
ting (Belgiu & Drăguţ, 2016) and has successfully been
applied for land cover classification in similar landscapes
in France using Landsat data (Pelletier et al., 2016; Inglada
et al., 2017). The model was run twice, once with data
as described above, and once with SMOTE oversampling.
SMOTE is a data augmentation technique which synthe-
sizes new instances of the minority classes to remove the
influence of class imbalance.

3.4. Hyperparameter selection

Successive halving grid search was implemented to per-
form a hyperparameter search using the training and vali-
dation sets. This method begins by evaluating model pe-
formance over all hyperparameter combinations provided
using a small sample of data. Under successive iterations,
the best candidates from the previous round are selected and
the model is evaluated using a greater number of samples.

The hyperparameters evaluated for the MLR model were the
optimization algorithm used (solver) and the regularization
strength (C). The range of hyperparameters used in grid
search and the results of the hyperperameters leading to
the best model performance, determined by highest overall
accuracy, are provided in Table 3. The only optimization
algorithms considered were ‘SAGA’ and ‘SAG’ due to their
ability to handle large datasets.

The hyperparameters evaluated for the RF model were the
number of trees in the forest (N estimators), the maximal
depth of each tree (Max depth), the minimum samples re-
quired to split an internal node (Min samples split), and the
minimum samples per node (Min samples leaf). The range

Table 3. Results of multinomial logistic regression hyperparameter
search.

HYPERPARAMETER RANGE BEST

SOLVER SAGA, SAG SAG
C 100, 10, 1.0, 0.01 0.01

of hyperparameters used in grid search and the results of
the hyperperameters leading to the best model performance,
determined by highest overall accuracy, are provided in Ta-
ble 4. Whilst other work has included ‘N estimators’ of
up to 400 in hyperparameter determination, this option was
omitted due to the diminishing return in increased accuracy
relative to the increased computation time.

Table 4. Results of RF hyperparameter search.

HYPERPARAMETER RANGE BEST

N ESTIMATORS 50, 100, 150, 200 200
MAX DEPTH 10, 25, 50 25
MIN SAMPLES SPLIT 2, 5, 10 5
MIN SAMPLES LEAF 1, 10, 25, 50 10

4. Results and Discussion
Initial results in Table 5 show that the RF model performed
better than the MLR model, producing an overall accuracy
of 76.8% on the 2004 test data. The accuracy of both models
was lower on the first set of test data taken from the first
2 time periods, likely because of this data has a notably
different class distribution compared to the training and
validation sets, as seen in Figure 3. Running the RF model
with SMOTE did not lead to an improvement in overall
accuracy (73.5% accuracy on the validation set), but rather
resulted in overfitting the training data (99.2% accuracy on
the training set). The overall f1 score, which represents a
weighted average of the model’s precision (the proportion
of land cover class predictions which are correct) and recall
(the proportion of on-the-ground land cover classes correctly
predicted), was also calculated to give an evaluation of the
model’s performance considering the imbalanced classes.

Table 5. Performance metrics of the MLR and RF models.

ACCURACY F1 SCORE

MLR RF MLR RF

TRAINING 65.1 79.1 60.9 77.5
VALIDATION 64.9 74.9 57.5 73.3
TEST 59.3 69.6 53.3 66.4
TEST 2004 67.6 76.8 62.5 75.2

Figure 4 shows RF model’s predictions on the 2004 Landsat
image test data, alongside the 2004-2009 reference data. Dif-
ferences can be observed in the distribution of the vegetated
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Figure 4. Reference land cover values (left) and RF predictions (right) for 2004/09/07.

land cover classes, with a distinct absence of Brush Veg-
etation (30) in the predictions, and an over-representation
of Tree Vegetation (40) in the north-west of the study area.
Slight differences in the Watery Areas (60) class to the south-
west of the Lac de Joux, absent in the predictions, indicate
the limitation of using reference data from a single season,
as the seasonality of water presence is not well captured.

Figure 5 confirms that the model performs particularly
poorly for the classification of Brush Vegetation, most fre-
quently mis-classified as Grass & Herb Vegetation. Intra-
class variability is known to be a difficulty in production of
land cover maps over large areas (Inglada et al., 2017), and
this is perhaps an important factor for this class, which con-
tains diverse vegetation such as brush meadows and vines.
For example, the RF model notably fails to classify the large
area of Brush Vegetation (30) seen along the middle of the
north-west edge of Lake Geneva, which from more detailed
land cover maps can be identified as vines.

Watery areas is the best-classified class, with an f1 score of
0.97, and most likely performs well due to the distinct spec-
tral signature of water. With higher scores for precision than
recall, the presence of Artificial Areas and Tree vegetation
are slightly over-estimated. Bare Land shows reasonable re-
call, indicating the majority actual instances of this class are
captured, however the model’s overall performance for this
class is low due to low precision, indicating many erroneous
classifications of other classes as Bare Land.

5. Conclusions
In terms of overall accuracy, the RF model presented per-
forms relatively well, however the poor performance on
two classes raises questions on its potential applicability

Figure 5. Performance metrics of RF classification, by land cover
class.

to other areas of Switzerland. Further work is required to
determine if other methods of over- or under-sampling the
dataset to deal with the class imbalance would be effective.
However, additional testing with a larger study area would
also be useful to increase the presence of Brush Vegetation
and Bare Land in the dataset as the low number of instances
may explain in part the poor performance on these classes.
The classification results presented here could be improved
through including spectral features (i.e. NDVI or similar
indices) and temporal features (i.e. mulitple images per
year) in the input data, which has previously been shown to
produce a slight improvement in land cover classification
accuracy. (Pelletier et al., 2016). Further testing on multiple
years of the survey periods is also required to assess the
impact of reference data referring to a 6-year time period.
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6. Code & Data availability
The code used in this report is available at
https://github.com/isabelntho/ML final project. Data
is available at https://drive.google.com/drive/folders/1JmLc-
dOOEzn11kOksIDPDhDqQotXmFBp?usp=sharing
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