

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Predicting the exposure concentration of a pollutant on tadpoles based on their behavior and physical traits

Machine learning project

Christophe Reis - University of Lausanne (UNIL)

Abstract

Behavioral and physiological data of 160 tadpoles are used to predict the exposure concentration to which they were subjected. In order to do so, several machine learning tools are used with the objective of developing a reliable model that could increase the sensitivity of the analyses and thus allow improvements in ecotoxicological studies on tadpoles, but also on other organisms. The first results did not allow to arrive at a satisfactory model. However, they are encouraging and offer a perspective of improvement in the future.

key words : machine learning, ecotoxicology, tadpoles.

1. Introduction

In ecotoxicological tests, living species found in the environment are often used to evaluate the toxicity of a xenobiotic (e.g. organic pollutants or heavy metals). These tests consist in exposing individuals to different concentrations and evaluating, over time, its morphological (size, length, etc.) and behavioral (speed of movement, angle of movement, etc.) evolution.

Currently, data analysis only takes into account one of the two aspects at a time. The use of Machine Learning (ML) would have the potential to demonstrate behavioral and morphological changes at the same time. In addition, the use of ML could increase the sensitivity of the data analyses and therefore it would be possible to compare concentrations that are closer to each other compared to what we do today (concentration difference by a factor of 10: 0.001, 0.01, 0.1, 1 mg [mg/L]). In addition, a solvent test is used to determine the solubility of the pesticide.

In addition, the data collection method is based on a software developed by Pennekamp et al. (2015). The Tadpoles are filmed with a video of 60 frames per second and where the difference between two images represents a point. Therefore, the resulting database is quickly very large. ML is again an ideal tool since it is designed to work with a lot of data.

For all these reasons, machine learning is a field that deserves to be studied in order to develop a tool that allows the analysis of morphological and behavioral data according to exposure concentrations.

2. Chloropyrifos and effects on Acetylcholinesterase

The Chloropyrifos is an organophosphor which inhibit the activity of Acetylcholinesterase (AChE) (Giesy & Solomon, 2014), an enzyme that plays an important role in the moderation of neuronal transmission in the nervous system (Trang & Khandhar, 2022). Upon contact with the pesticide, the insects are killed.

Figure 1. Picture of a tadpole.

However, the effect is not limited to the target species, but can also be found elsewhere in the environment and affect other species such as amphibians (see Figure 1). This is why it is important to study the toxicity of pesticides used in agriculture to better understand the problem of its use and its fate

3. Data

The data used in this work are from an experiment conducted by Laurent Boualit, a PhD student at IDYST (UNIL). 160 tadpoles were exposed to Chloropyrifos during a eigh days

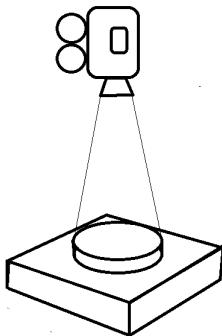


Figure 2. Diagram of the filming.

experiment at five different concentrations (0, 0.0001, 0.001, 0.01, 0.1 [mg/L]). After six, seven and eight days since the first exposure, the tadpoles were placed individually in petri dishes and filmed from above with a light source below (see Figure 2).

Thus, each time the tadpole makes a movement, the camera records the data which are listed in (table 1) and represent five random data. In total, the method allowed to record 269'000 observations with a non-constant number of data per individual. Indeed, some tadpoles were less active than others. Note that the construction of the model is conducted on measurements after six days.

Table 1. Variables collected from the filming program.

Area [pix]	Perimeter [pix]	Maj [pix]	Min [pix]
87,00	40,63	15,21	7,28
100,00	44,28	17,96	7,09
40,00	28,63	10,93	4,66
77,00	39,11	13,93	7,04
5,00	8,49	3,09	2,06

step_length [pix]	step_speed [pix/sec]	abs_angle [°]
0,63	37,62	3,00
2,45	146,76	0,85
0,58	35,06	0,75
1,25	75,00	3,71
2,84	24,35	6,27

rel_angle [°]	Nom_Conc [mg/L]
-0,24	0,0001
-0,20	0,0001
-2,57	0
-0,01	0,001
2,34	0,01

The "Perim" gives the length of the silhouette and "Area" its area. "Major" represents the maximum distance in length

and "Minor" in width of the individual. "Step_length" represents the length of displacement and "step_speed" its speed. "abs_angle" and "rel_angle" represent respectively the angle relative to an axis defined on the petri dish and the angle relative to the last position. Finally, "Nom_Conc" indicates the concentration of Chloropyrifos to which the tadpole was exposed.

4. Methodology

4.1. Data preprocessing

After downloading the data, it is necessary to filter the relevant ones. Indeed, the program which films and emits the results returns several variables which are not necessary (e.g. size of the petri dish). It is also necessary to make sure that no value has a "NaN". Since the number of data is huge, all rows that contain NaN are deleted from the database (otherwise, we would transform it into zero to avoid losing to much data). A total of 14,754 lines were deleted (about 5.5% of total data). Furthermore, since there are five different concentrations, the different categories (from zero to five) must be encoded (e.g. 0 = 0, 0.0001 = 1, 0.001 = 2, and so on.).

Once the data processing is finished, we must now choose the criteria that will be used to predict the concentration and divide this data set (also taking the concentrations that are related) into three sets: Train (70%), Test (15%) and Validation (15%).

4.2. Model-based approaches

The first method that is used in this work is a simple classifier using a few classification algorithm such as RandomForestClassifier or DecisionThreesClassifier. The model will be first trained in a train dataset before being applyied to a test dataset. A confusion matrix is generated and the accuracy score is calculated. According to the score, a search for better hyperparameters (HP) will be apply to find a the best ones. Once the accuracy seems acceptable (at least 80%), the model will work on the validation dataset (unknown by the model) to see if the accuracy is still good. Finally, the model will be tested on the two others days (seven and eight) which are two datasets that the model never saw.

In order to take the problem from several angles, others methods will also be tested. it would be interesting to explore the possibility offered by the softmax regression which is a kind of logistic regression but for multiclass (more than two). The two approach could then be compared.

110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 Table 2. Accuracy result with RandomForestClassifier.

	Variables name	RTC result [%]
Behavior features	Step_speed	39,8
	Step_length	28,4
	Abs_angle	25,1
	Rel_angle	25,6
Morphological features	Perimeter	28,2
	Area	27,1
	Major	35,5
	Minor	31,4
Combinations	Step_speed + Major	76,4
	Step_length + Minor	74
	Step_speed + rel_angle + Major	75,6
	Step_speed + Major + Minor +	
	step_length	77,3

5. Results

5.1. Ensemble learning (classification)

First, a classification was run using the RandomForestClassifier for each of the variables independently. Then, some multi-variables RFC are processed to check the accuracy. All the results are summarized in (table 2). From the different results, it is possible to say that having two or four variables doesn't change the accuracy so much (we stay around 75-77%). It is therefore that the two highest values in each category are retained for the rest of this work. For the first tests, RFC is used. After the first run through the train and test dataset, we reach an accuracy of 77.5% for the test set. We can therefore conclude that the model is satisfactory but does not have sufficient accuracy to accept it. To improve the model, a grid search CV is conducted to find the best hyperparameters around the default one since the accuracy is already good. Unfortunately, the running time was much too long, even using all the eight processor, and no results came out of this HP search.

Therefore, another classifier has been adopted : The DecisionTreesClassifier. This classifier gave an accuracy of 76.3% with default hyperparameters. Which is slightly over the RFC accuracy. Again, a grid search CV is conducted to find the best hyperparameters around the default one. How-

ever, as for the RFC, the hyperparameters found were never able to make the model evolve and never exceeded 30% accuracy (even by doing a RandomizedSearchCV).

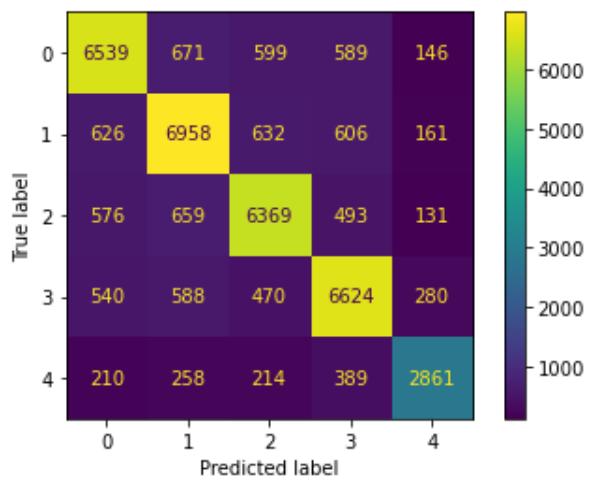


Figure 3. Confusion matrix using RFC on validation dataset.

The Figure 3 shows the confusion matrix obtain with the best model (RandomForestClassifier with default HP). The label 0 is equal to the concentration of 0 [mg/l], the label 1 is equal to 10^{-3} [mg/l] and so on until 4 that is equal to 10^{-1} [mg/l]. We can see that the model confuses all concentrations with the same probability with a few exceptions. Indeed, if we take the last line, we see that the model predicts wrongly the concentrations from 0 to 10^{-2} [mg/l] the same number of times. We can see that despite a factor of 10 between the concentrations, it is still difficult to see a difference when taking into account the behavior and morphology.

5.2. Softmax regression

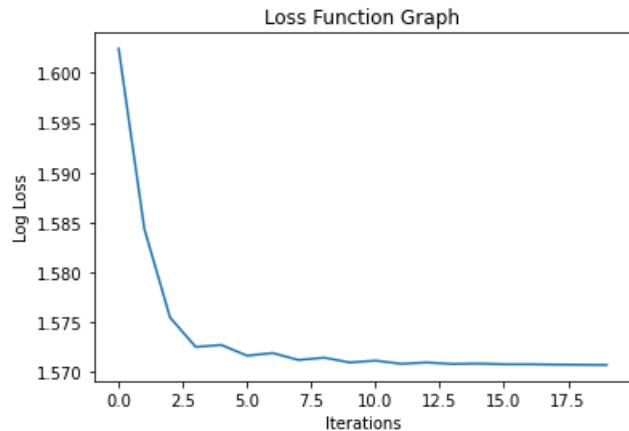


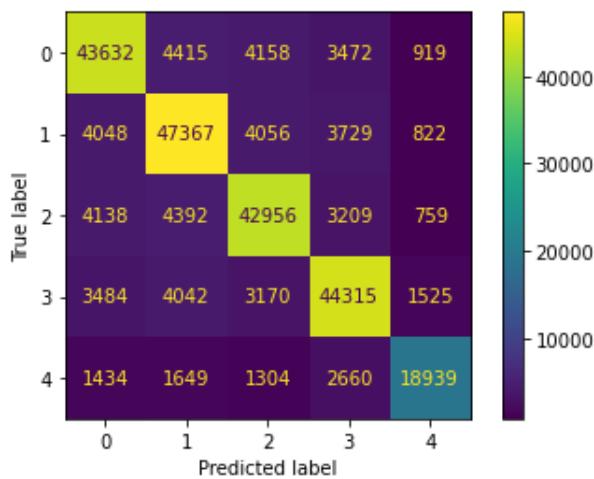
Figure 4. log_loss function for the SMR.

165 Unfortunately, the use of the softmax regression model did
 166 not allow to obtain a more conclusive result. Indeed, even
 167 by adapting the learning rate and the number of epochs,
 168 the precision of the model never exceeds 24% of accuracy.
 169 Moreover, (Figure 4) shows us that the log-loss of the model
 170 starts from a value that is far too high, but also that the
 171 attenuation of the latter over the epochs is far too weak to
 172 offer an ideal model.

173 It may be that the model does not quite fit the dataset to
 174 be analyzed. Further investigations should be conducted to
 175 improve the softmax regression model in order to use it. In
 176 any case, this is a possibility that remains to be explored in
 177 the future.

179 180 5.3. Application to data from day 7 and 8

181 Now that all possibilities are exhausted, the best model ob-
 182 tained so far is kept to be applied to the next days data. This
 183 is to demonstrate that the model is well trained. Therefore,
 184 the best model obtained is the classification using Random-
 185 Forest with default hyperparameters with an accuracy of
 186 77.5% using the four variables in the last row of Table 2.
 187 From then on, the model is again trained on the train set of
 188 say six. Then it is applied to the entire data of day seven
 189 and eight without training. The accuracy is the same for the
 190 two run (77.5%). We can therefore say that the model using
 191 RandomForest offers a constant model that gives an equal
 192 result between the data of day six on which he trained and
 193 the days seven and eight that he never saw.



211 212 *Figure 5. Confusion matrix using RFC on day 8 dataset.*

213 To have a visualization of the errors, Figure 5 shows the
 214 confusion matrix of the model. We see that the error matrix
 215 for eight days is very similar to the one for six days on the
 216 training dataset except for the number of predictions since
 217 the model is applied to the whole database. We can therefore
 218 conclude that if the model is improved in the future, the

219 result on days seven and eight will also be improved in the
 220 same way. This is very promising.

6. Discussion

221 Through this project, several aspects of machine learning
 222 can be highlighted. First of all, we could see that the Radom-
 223 Forest is an algorithm that works very well in a natural way
 224 without the need to modify it. This shows its strength and
 225 explains why it is one of the most robust models known.
 226 However, other classifiers such as the DecisionTrees are still
 227 models that stand up well.

228 Despite the good basic accuracies, the hyperparameters
 229 could not be improved using GridSearchCv or Random-
 230 izedSearchCV. This may be due to poor initialization of the
 231 HP to be searched. For the next research, it would be inter-
 232 esting to continue the research in order to obtain a precision
 233 higher than 80% (even close to 90%).

234 In a second time, the research of another method allowed
 235 to develop a classification with several labels: the softmax
 236 regression. However, once again, the result is not up to stan-
 237 dard. A lot of work remains to be done in order to make the
 238 model truly optimal. It is again an approach that deserves to
 239 be studied and optimized.

240 Also the results obtained in section 5.3 are very encouraging.
 241 Indeed, the model works well on data that it has never seen
 242 before. With an improvement of the different models seen
 243 in this project, it would be possible to develop a powerful
 244 model that would work on all databases.

245 Finally, despite the multiple angles of attack already taken,
 246 there is still one method that has not been explored: the neu-
 247 ronal network. This model is very efficient and can largely
 248 surpass those seen in this project. Unfortunately, it could not
 249 be treated here. In future research, after having continued to
 250 develop the first two approaches, it would be wise to try it
 251 in order to do a comparison.

7. Conclusion

252 To conclude, we can say that machine learning is definitely
 253 a very powerful and useful tool that can be adapted to a
 254 large number of study cases. However, it requires a lot of
 255 resources and time if we want to have a model that is not
 256 only operational, but also optimized. Indeed, even if the
 257 results obtained for the prediction of days seven and eight
 258 after a training on day six are satisfactory, there is still a
 259 lot of optimization work to be done in order to get a very
 260 satisfactory result.

261 Finally, the number of possible approaches offered by ma-
 262 chine learning allows the user to try several methods and
 263 thus get several results as well as a freedom of creativity that
 264 has few limits. And, in the absence of convincing results
 265 from the trials carried out in this project, this is certainly the
 266 best conclusion that is possible here.

220 **8. Python code link**
221

222 Link to the [GitHub page](#)
223

224 **9. Acknowledgements**
225

226 First of all, I would like to thank Laurent Boualit for his
227 enthusiasm since the moment I proposed this project. The
228 results are not satisfactory for the moment, but I promise,
229 the work continues!

230 I would also like to thank my peers for their precious feed-
231 back. They helped me to improve not only the final report
232 that you have read, but also the machine learning part.

233 In addition, I would also like to thank Tom Beucler and
234 Milton Gomez Delgadillo for their responsiveness and avail-
235 ability throughout the semester to answer the thousands of
236 questions and spend time trying to improve my models.

237 Finally, I would like to thank three people who will prob-
238 ably never hear about me and this project, but who helped
239 me a lot for the "Softmax regression" part with their online
240 articles: [Suraj Verma](#), [Lily Chen](#) and [Arthur Juliani](#).

241 **References**
242

243 Giesy, J. P., & Solomon, K. R. (Eds.). (2014). *Ecological*
244 *risk assessment for chlorpyrifos in terrestrial and aquatic*
245 *systems in the united states* (Vol. 231). Springer Interna-
246 *tional Publishing*. <https://doi.org/10.1007/978-3-319-03865-0>

247 Pennekamp, F., Schtickzelle, N., & Petchey, O. (2015,
248 June 4). *BEMOVI, software for extracting behavior*
249 *and morphology from videos, illustrated with analyses*
250 *of microbes*. Retrieved May 19, 2022, from <https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.1529>

251 Trang, A., & Khandhar, P. B. (2022). Physiology, acetyl-
252 cholinesterase. *StatPearls*. StatPearls Publishing. Re-
253 trieval May 11, 2022, from <http://www.ncbi.nlm.nih.gov/books/NBK539735/>

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274