
12.815 Atmospheric radiation and convection

December 8, 2015

Pr Sara Seager and Pr Kerry Emanuel

Notes written by Tom Beucler

1



Contents

Notations, glossary and conventions 5

1 Introduction 8
1.1 Basics of Earth's radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Radiative equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Greenhouse gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 From RE to RCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Radiation overview 14
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 De�nition of �ux and intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 The radiative transfer equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Optical depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Blackbody radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.1 Blackbody . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.2 Planck's law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.3 Wien's law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.4 Stefan-Boltzmann law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.5 Kirchho�'s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Monte Carlo simulations of the radiative transfer equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Modeling Transmission and Emission 23
3.1 Absorption vs emission lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Absorption coe�cient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Origin of absorption and emission lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.3 Earth's absorption and emission lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Local thermodynamic equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Thermal emission from a solution to the radiative transfer equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Plane parallel atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Solution to the radiative transfer equation in LTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 RE and consequences on the Earth's climatic budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Buoyancy of dry, moist and cloudy air 34
4.1 Buoyancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Moist variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Stability of dry air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Convection from maintained and instantaneous point sources and buoyancy 36
5.1 The Buckingham Pi theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Maintained point source of buoyancy: Plumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Instantaneous point source of buoyancy: Thermals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.1 Unstrati�ed problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3.2 Constant strati�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 The Prandtl problem 42
6.1 Irrelevance of the Rayleigh-Bénard problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2 Prandtl convective boundary layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3 Mechanically generated turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.4 Competition between thermally and mechanically generated turbulences . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2



7 Molecular spectroscopy 46
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2 Preamble of spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.3 Molecular energy levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.4 Molecular rotational energy levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.5 Molecular rotational-vibrational lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.5.1 Vibrational energy levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.5.2 Vibrational modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.5.3 P and R rotational-vibrational branches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.6 Line broadening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.6.1 Cross-section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.6.2 Overview of line broadening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.6.3 Natural broadening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.6.4 Doppler broadening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.6.5 Collisional or Lorentz broadening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

8 Moist convection 60
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.2 Moist thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8.2.1 De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.2.2 Thermodynamics of moist but unsaturated air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.2.3 Phase transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.2.4 Adiabatic invariants for moist isobaric processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.2.5 Adiabatic invariants for moist reversible processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8.3 Stability to motions involving phase transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.3.1 Buoyancy of a moist cloudy sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.3.2 Stability of an entropy pro�le . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.3.3 Thermodynamic diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

9 Scattering 72
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
9.2 The scattering phase function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

9.2.1 De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.2.3 In�uence of the particle's size and the radiation's wavelength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

9.3 Traditional radiative transfer scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.3.1 Single scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.3.2 Multiple scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.3.3 Radiative transfer in a plane parallel atmosphere with direct solar scattering . . . . . . . . . . . . . . . . . . . . 80

10 Radiative heating 81
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
10.2 Radiative heating and cooling rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
10.3 Opacity treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

10.3.1 Line by line radiative transfer method (LBLRTM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
10.3.2 Correlated K-distribution method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
10.3.3 Numerical implementation and in�uence on the heating rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

10.4 Band models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
10.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
10.4.2 Transmittance and absorptance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
10.4.3 Absorptance of a single line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
10.4.4 Absorptance of a regular band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3



11 Radiative-convective equilibrium 87
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

11.1.1 De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
11.1.2 Simple models of RE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
11.1.3 1D models of RCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
11.1.4 Vertical velocities in RCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

11.2 Stable perturbations from RCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
11.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
11.2.2 A simple model of RCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
11.2.3 Relaxation timescales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

11.3 Shallow convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
11.3.1 Observation of clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
11.3.2 Thermodynamics of shallow convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
11.3.3 Observations of shallow convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

11.4 Deep, precipitating convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
11.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
11.4.2 Mesoscale organization of convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

11.5 Interaction of radiation and convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
11.5.1 Numerical simulation of RCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
11.5.2 Self-aggregation of convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
11.5.3 Radiative-convective instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
11.5.4 Climatic consequences of self-aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
11.5.5 Self-aggregation on a f-plane and cyclogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

12 Introduction to remote sensing 117
12.1 Exoplanet atmospheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

12.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
12.1.2 Exoplanet atmosphere observation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
12.1.3 Earth as an exoplanet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

12.2 Temperature sounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
12.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
12.2.2 Computing the weighting functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
12.2.3 GOES weighting function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
12.2.4 Retrieval theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

12.3 Remote sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
12.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
12.3.2 Vegetation remote sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
12.3.3 Remote sensing by transmitted sunlight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

13 Cloud microphysics 130
13.1 Climatic importance of clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
13.2 How to �nd a cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
13.3 How to make a cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
13.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4



Notations, glossary and conventions

Vectors are denoted by upper right arrows (eg
−→
X ) and matrices by a bold font (eg M).

Symbol Description Units Cross-reference

A Area m2 2.2
ap Planetary albedo 1 1.2
Aν Absorptance 1 10.4.2
b Buoyancy m.s−2 4.3
B Rotational constant in energy units J 7.4
Bλ Planck function in wavelength W.m−2.µm−1.sr−1 2.5

Bν Planck function in frequency W.m−2.Hz−1.sr−1 2.5
c Speed of light m.s−1 2.3
cl Speci�c heat capacity of liquid water J.kg−1.K−1 8.2
c′p Speci�c heat capacity of moist air at constant pressure J.kg−1.K−1 8.2

cpd Speci�c heat capacity of dry air at constant pressure J.kg−1.K−1 4.3
cpv Speci�c heat capacity of water vapor at constant pressure J.kg−1.K−1 8.2
c′v Speci�c heat capacity of moist air at constant volume J.kg−1.K−1 8.2
cvd Speci�c heat capacity of dry air at constant volume J.kg−1.K−1 8.2
cvv Speci�c heat capacity of water vapor at constant volume J.kg−1.K−1 8.2
e Partial pressure of water vapor N.m−2 ≡ Pa 4.2
e∗ Saturated water vapor partial pressure N.m−2 ≡ Pa 8.2
f Normalized broadening function in frequency Hz−1 7.6
F Radiative �ux W.m−2 1.2
Fb Surface buoyancy �ux W.kg−1 6.2

F[λ1,λ2] Broadband �ux W.m−2.µm−1 2.2
Fλ Monochromatic �ux W.m−2.µm−1 2.2
g Gravity constant m.s−2 4.1
g Speci�c free enthalpy J.kg−1 ≡ m2.s−2 8.2
h Planck's constant J.s ≡ m2.kg.s−1 2.5
h Moist static energy (MSE) J.kg−1 ≡ m2.s−2 8.2
h∗ Saturated MSE J.kg−1 ≡ m2.s−2 11.2
hd Dry static energy (DSE) J.kg−1 ≡ m2.s−2 8.2
hw Liquid water enthalpy J.kg−1 ≡ m2.s−2 8.2
H Relative humidity 1 8.2
Iλ Intensity in wavelengths units W.m−2.µm−1.sr−1 2.2

Iν Intensity in frequency units W.m−2.Hz−1.sr−1 2.3
j Quantum rotational number 1 7.4

jν Mass emission coe�cient in frequency W.kg−1.Hz−1.sr−1 2.3
Jλ Mean intensity W.m−2.µm−1.sr−1 2.2

k Mass extinction cross section m2.kg−1 2.3
k Speci�c enthalpy J.kg−1 ≡ m2.s−2 4.3
−→
k Vertical unit vector 1 2.2
kB Boltzmann constant J.K−1 2.5
Lv Latent heat of vaporization of water vapor J.kg−1 ≡ m2.s−2 8.2
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M Mass kg 4.1
md Mean molecular weight of dry air kg.mol−1 4.2
Mu Convective updraft velocity m.s−1 11.1
mv Molecular weight of water kg.mol−1 4.2
n Number density m−3 3.1
−→n Normal unit vector 1 2.2
N Buoyancy/Brunt-Vaisala frequency s−1 5.3
p Pressure N.m−2 ≡ Pa 4.1
P Scattering phase function 1 9.2
−→p Electric dipole moment C.m 7.3
pd Partial pressure of dry air N.m−2 ≡ Pa 4.2
q Speci�c humidity 1 8.2
q∗ Saturated speci�c humidity 1 8.2

Q̇ Radiative heating rate per unit mass W.kg−1 6.2
r Mixing ratio of water vapor 1 4.2
R∗ Ideal gas constant J.K−1.mol−1 4.2
R′ Speci�c gas constant of moist air J.K−1.kg−1 8.2
Rd Speci�c gas constant of dry air J.K−1.kg−1 4.2
rl Mixing ratio of liquid water 1 8.2
rp Planetary radius m 1.2
rT Total mixing ratio of water 1 4.2
Rv Speci�c gas constant of water vapor J.K−1.kg−1 8.2
s Moist entropy J.K−1.kg−1 8.2
s Path length m 2.3
s∗ Saturated speci�c entropy J.kg−1.K−1 8.3
S0 Solar constant W.m−2 1.2

sd Dry speci�c entropy J.kg−1.K−1 1.4
t Time s 2.2
T Absolute temperature K 1.2
Te E�ective emission temperature K 1.2
Tv Virtual temperature K 4.2
Tν Transmittance 1 10.4.2
Tρ Density temperature K 4.2
u Zonal velocity m.s−1 4.1
u Path length of absorbing gases kg.m−2 10.4.2
v Meridional velocity m.s−1 4.1
v Quantum vibrational number 1 7.5
−→v Velocity �eld of the �uid m.s−1 8.2
V Volume m3 4.1
w Vertical velocity m.s−1 4.1
x Abscissa m 4.1
x Size parameter 1 9.2
y Ordinate m 4.1
z Altitude m 1.4
z0 Roughness length m 6.3
z0T Roughness thermal length m 6.2
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α Speci�c volume m3.kg−1 4.1
αc Speci�c volume of liquid water m3.kg−1 4.2
αd Speci�c volume of dry air m3.kg−1 4.2
Γ Lapse rate K.m−1 4.3
Γd Dry adiabatic lapse rate K.m−1 4.3
Γm Moist adiabatic lapse rate K.m−1 8.3
ε Ratio of water vapor molecular weight to dry air's 1 4.2
ελ Emissivity in wavelength W.m−3.µm−1.sr−1 2.5
εν Emissivity in frequency W.m−3.Hz−1.sr−1 2.5
θ Zenith angle\Colatitude rad 2.2
θ Potential temperature K 5.3
θe Equivalent potential temperature K 289
θlv Liquid water virtual potential temperature K 283
θρ Density potential temperature K 8.2
κ Absorptivity m−1 2.5
κ Thermal di�usivity m2.s−1 6.1
λ Wavelength µm 2.2
ν Frequency s−1 ≡ Hz 2.3
ν Mechanical di�usivity m2.s−1 6.1
ν̃ Electromagnetic wavenumber cm−1 7.1
ρ Density kg.m−3 2.3
ρd Density of dry air kg.m−3 4.2
ρv Density of water vapor kg.m−3 4.2
σ Stefan-Boltzmann constant W.m−2.K−1 1.2
σ Cross-section m2/molecule 7.6
τ Optical depth 1 2.4
φ Longitude rad 2.2
ϕ Passive tracer Depends 6.3
Ω Solid angle sr 2.2
ω̃ Single scattering albedo 1 9.2
−→
Ω Unit direction vector 1 9.2

Acronym De�nition Cross-reference

CAPE Convective Available Potential Energy 8.3
CIN Convective Inhibition Energy 8.3
LCL Lifted Condensation Level 8.3
LHF Latent Heat Flux 11.2
LFC Level Free Convection 8.3
LNB Level Neutral Buoyancy 8.3
LW Longwave 10.2
RCE Radiative-Convective Equilibrium 1
RE Radiative Equilibrium 1.2
SHF Sensible heat �ux 11.2
SW Shortwave 10.2
TOA Top Of the Atmosphere 1.2
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1 Introduction

Radiative-convective equilibrium (RCE) is the simplest thermodynamic framework to describe planetary atmospheres, where the
radiative cooling/heating is balanced by convective heating/cooling. It shows the importance of studying atmospheric radiation and
convection together, in order to better understand atmospheric physics.

1.1 Basics of Earth's radiation

Looking at the composition of the Earth's atmosphere on 1, we see that Oxygen (O2) and Nitrogen (N2) constitute 99% of the dry
atmospheric mass, whereas Carbon dioxide (CO2), Argon (Ar) and the remaining gases only constitute a very small portion of it.

Figure 1: Composition of Earth's atmosphere

The right part of �gure 2 presents the Earth's mean energy budget:

� First, note that only half of the incoming solar radiation is absorbed by the surface; the rest is absorbed by the atmosphere or
re�ected.

� Then, we can see on the right part of the diagram that the surface gets more energy from the back radiation than the solar
radiation: this is the greenhouse e�ect.

� Finally, the budget of energy would not close if we were to only look at the radiation part. Roughly one quarter of the energy
emitted by the surface comes from convective surface �uxes. Most of it is latent heat (which means there is a net positive water
vapor �ux from the surface to the atmosphere), especially in the Tropics.

� In the end, we have a net balance of energy for the Earth's climatic system: there is as much energy coming out than coming in.

Figure 2: Earth's mean energy budget
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We now look at the spectral distribution of the radiation transmitted by the atmosphere on 3. The smooth curves are the Planck
functions for the Sun (red) and the Earth (purple, blue, and black depending on the latitude) if they are approximated as black bodies.
We can see that the two spectra have almost no overlap, and we will approximate them as separate, and use the terms:

� Shortwave/solar radiation for the solar part of the spectrum.

� Longwave/terrestrial radiation for the terrestrial part of the spectrum.

Figure 3: Radiation transmitted by the atmosphere

We can see that the most energetic part of the shortwave radiation (roughly the UV part) is absorbed by oxygen and scattered, and
that some visible shortwave bands are absorbed by water vapor (which is important in the Tropics). The greenhouse gases, which
absorb in the longwave part of the spectrum, comprise (in order of importance) water vapor (H2O), carbon dioxide (CO2), methane
(CH4) and Nitrous Oxide (N2O). The visible band is the least absorbed band, which explains why our eyes have evolved to see in this
band.

1.2 Radiative equilibrium

Radiative-equilibrium (RE) is the state the atmosphere and surface would reach in the absence of non-radiative enthalpy �uxes. It is
a hypothetical state: the troposphere is never in RE, whereas the stratosphere is not that far from RE. The Stefan-Boltzmann law
stipulates that if the radiation emitted by a black body is integrated over all the wavelengths, the �ux of energy is given by:

F = σT 4 (1)

where σ = 5.67.10−8W.m−2.K−4 is the Stefan-Boltzmann constant. For instance, the solar radiative �ux is equal to Fsolar =
6.4.107W.m−2. According to Stefan-Boltzmann law 1, it corresponds to a surface temperature Tsolar ≈ 6000K. To model RE, we
assume that a constant proportion ap of the incoming total solar radiation is re�ected back to space (ap ≈ 30% is by de�nition the
Earth's albedo). As the Earth is a sphere of radius rp, its cross section is πr

2
p, and the total absorbed solar radiation is S0(1−ap)πr2

p where

S0 ≈ 1360W.m−2 is the solar constant. As the total surface area of the Earth is 4πr2
p, the absorption per unit area is approximately

given by:
S0

4
(1− ap) ≈ 240W.m−2 (2)

Most of this absorption is done by the surface, but clouds also play an important role in absorbing the solar radiation. If the Earth
didn't have an atmosphere, it would need to emit back the same radiative energy per unit area. If in addition it was a black body, we
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could obtain its temperature through Stefan-Boltzmann law 1:

σT 4
e =

S0

4
(1− ap) ⇒ Te ≈ 255K ≈ −18°C (3)

The previous equation 3 de�nes the e�ective emission temperature Te. This temperature is too cold compared to the observed average
surface temperature Tobs ≈ 288K ≈ 15°C because we have neglected the greenhouse e�ect. As a �rst attempt to model the greenhouse
e�ect, we assume that:

� The atmosphere is a single layer of gas.

� It is transparent to shortwave radiation.

� It is opaque to longwave radiation.

� In the longwave domain, the surface and the atmosphere emit radiation like black bodies.

Figure 4: Schematic of the highly idealized RE model

To compute the temperature TA of the atmosphere and the temperature TS of the surface, we use:

� The Top Of the Atmosphere (TOA) energy balance:

σT 4
A =

S0

4
(1− ap) = σT 4

e ⇒ TA = Te

� The surface energy balance:

σT 4
S = σT 4

A +
S0

4
(1− ap) = 2σT 4

e ⇒ TS = 2
1
4Te ≈ 303K

In this model, the surface temperature is higher than both the atmospheric and the e�ective emission temperatures because the
radiative cooling of the Earth has to compensate for the incoming solar radiation and the heat emission from the atmosphere. The
surface temperature TS is now too large compared to the observed temperature Tobs ≈ 288K, for several reasons:

� The model is so highly simpli�ed that we didn't expect to match the observations.

� The Earth's surface does not only loose heat through radiative heat transfer, but also through convection.

1.3 Greenhouse gases

Fourier was the �rst to realize that something was missing in the Earth's radiative budget, but historically, Tyndall was the �rst
to understand quantitatively what a greenhouse gas was. His experimental setting, depicted in �gure 5, allowed him to test how
much radiation a given gas absorbed. He showed that the main constituents of the atmosphere, ie Oxygen and Nitrogen, are actually
transparent to solar and terrestrial radiation. Thus, if the Earth was only constituted of these two gases, its surface temperature would
be the e�ective emission temperature Te ≈ 255K ≈ 0F.
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Figure 5: Tyndall's experimental setting

. It was by studying water vapor, carbon dioxide, methane... that he realized that a tiny fraction of the atmospheric mass (< 1%) was
entirely responsible for the greenhouse e�ect. This di�erence in radiative behavior is due to the structure of the molecules: O2 and
N2 are diatomic whereas H2O, CO2 and CH4 are triatomic and have more vibrational and rotational degrees of freedom, as depicted
on �gure 6.

Figure 6: Schematic of a diatomic (left) and a triatomic (right) molecule's degrees of freedom

Clouds (especially low clouds) are also partly responsible for the greenhouse e�ect.

1.4 From RE to RCE

On �gure 10, a full numerical calculation of the annual mean temperature pro�le in RE is represented in blue. It assumes a greenhouse
gas pro�le that does not vary with time, except for the water vapor pro�le. The latter is prescribed by assuming a constant relative
humidityH, which is approximately the ratio of the water vapor density to its saturation value. We see that the atmospheric temperature
in RE decreases sharply near the surface, and then increases more slowly above the tropopause, which is completely unrealistic for
the troposphere but acceptable for the stratosphere. The temperature's discontinuity near the surface comes from the discontinuity
of emissivity between the surface (1) and the atmosphere (small emissivity). This unrealistic feature motivates the introduction of
convection in our model. Convection refers to the �uid motion originating from variations in the �uid's density and the presence of a
gravity �eld. More crudely, because of the buoyancy force, hot air rises and cold air sinks, as shown on �gure 7.

Figure 7: Schematic of two convective cells

11



The fact that the atmosphere is convecting simpli�es its study, as molecular di�usion is negligible compared to convective processes.
As convection is always more e�cient than radiation in a non-dimensional sense, the atmosphere will always be close to a state of
convective neutrality rather than in RE. A good example is the fact that boiling water never goes above the evaporation's temperature
of water because convection is so e�cient at removing the warm water vapor from the boiling interface. We will prove later in the class
that an atmosphere is convectively stable if its entropy pro�le is strictly increasing with altitude:

Figure 8: Convective stability of the atmosphere

. Convection will bring back the entropy pro�le back to its neutral state ds
dz = 0 whenever the atmosphere is convectively unstable

(ie ds
dz < 0). Note that convection does not produce energy but only transfers it (from potential energy it produces kinetic energy).

Taking convection into account allows us to numerically compute the temperature pro�le in RCE, represented by a green line on �gure
10. More precisely, whenever the entropy decreases with altitude, we set it back to constant in a way that conserves energy (usually it
will warm the atmosphere). We then adjust the mixing ration of water using the assumption of �xed relative humidity. If we compare
RCE to RE:

� The adiabatic lapse rate (the rate at which temperature decreases with altitude) is much smaller, because we haven't allowed the
entropy to vary with altitude.

� The temperature is much warmer in the troposphere, and the temperature discontinuity has been suppressed. The fact that
the entire troposphere is warmer can be explained by the positive feedback between speci�c humidity and temperature at �xed
relative humidity. This positive feedback is more e�ective in the lower troposphere, where the near surface layers becomes almost
opaque.

� The stratosphere is not exactly identical, because of the change of tropospheric temperature a�ects the amount of infrared emitted
upwards, which changes the amount of absorption in the stratosphere. This underlines the non-locality of radiative processes.

The presence of condensed water (clouds) makes the real atmosphere much more complicated/exciting to study, as we can see by
looking at the photo of a cumulus cloud over the Indian Ocean on �gure 9This underlines the complex topography of clouds, with non
trivial consequences on scattering and radiative transfer.
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Figure 9: Photo of a cumulus cloud over the Indian Ocean

Latent heat release by the condensation of water vapor makes atmospheric convection non adiabatic. However, by assuming
thermodynamic equilibrium between liquid water and water vapor in the atmosphere, we will see that in one dimension, we can simply
rede�ne the entropy to include the e�ects of condensation on the convective stability of the atmosphere. To a good approximation, the
atmosphere is neutrally stable to convection, and this new entropy variable is approximately conserved with height in the troposphere,
as we can see by doing balloon-based soundings of the tropical atmosphere (�gure 10). Because the radiative cooling of the atmosphere
makes it convect, and the convection redistributes the water in the atmosphere, which has strong radiative e�ects, moist RCE (RCE
that takes into account the e�ect of condensation) is a two-way street between radiation and convection. Here, we avoid this complexity
by assuming a constant relative humidity pro�le again, leading to the temperature pro�le represented by a red line on �gure 10.

Figure 10: Left: Tropical sounding of the atmosphere (full line) compared to a theoretical pro�le conserving entropy in the vertical
(dashed line)
Right: Temperature pro�les in pure RE (blue line), dry RCE (green line), moist RCE (red line) and in a tropical sounding (black
dashed line)

If we compare the moist RCE to its the other pro�les:
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� The adiabatic lapse rate is less steep than in dry RCE and in RE.

� More generally, the troposphere is warmer than in RE, which explains why radiation cools the Earth's troposphere while convection
warms it by releasing latent heat.

� Typical tropical soundings, such as the one represented by a black line on �gure 10, are quite close to moist RCE in the troposphere.

� In the stratosphere, typical soundings are even colder than the moist RCE because of the Brewer-Dobson circulation, a wave-driven
stratospheric circulation which is thermally indirect (it makes cold air ascend and warm air descend).

� As the lower stratosphere is colder than in RE, the air is being radiatively heated. It is compensated by the fact that convection
actually cools the lower stratosphere: Buoyant plumes overshoot after reaching their level of neutral buoyancy near the tropopause,
and when the air parcels fall back down, there is a net transfer of mass downwards which cools the atmosphere.

If we are interested in the spatial features of RCE, it is possible to simulate it in a box with periodic boundary conditions. The radiation
pro�le is speci�ed for computational reasons, and the evolution of convection is studied. On �gure , the colors show the moist entropy
distribution near the surface. This calculation include an island producing a diurnal cycle of convection, but we will see later in the
class that convection doesn't even need an island to spontaneously self-aggregate.

Figure 11: Simulation of convection in a box

2 Radiation overview

2.1 Introduction

We remember the Earth's mean energy budget presented in 2. We now focus on the radiation part (incoming and re�ected, shortwave
and longwave), and the physical mechanisms responsible for the absorption and scattering of radiation, which will eventually lead to
the radiative transfer equation 9. Looking at the solar radiation spectrum on �gure 12, we can see that the radiation at sea level mostly
deviates from the blackbody spectrum because of absorption bands. Each absorption band corresponds to one/several molecules. In
the shortwave domain, the main absorber is Water vapor (H2O), followed by Ozone (O3). Note that the previous spectrum does not
include clouds, which are also strong absorbers in the shortwave domain. A way to think about this shortwave spectrum is to imagine
a "blackbody spectrum with bites taken from it by the absorbing molecules".
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Figure 12: Solar radiation spectrum

On �gure 13, we can see a simulation of how our solar system would look if we were to observe it 30l.y. away, if the interstellar
medium was transparent. To each planet has been associated a blackbody spectrum, and the absorption bands have been added on
the Earth spectrum.

Figure 13: Monochromatic intensity as a function of wavelength for the Sun and the planets from the Solar system if all were observed
from a 30l.y. distance

We note that:

� The intensity of the star's spectrum is much larger the sum of the intensity of the planets spectra (beware of the logarithmic
scale): Only a small part of the solar radiation is re�ected by the planets.

� There are two separated spectral peak, a left one corresponding to the shortwave radiation re�ected from the Sun and a right
one corresponding to the longwave radiation thermally emitted from the planets surfaces.

We now look at the Earth's thermal emission spectrum, which is depicted on �gure 14.
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Figure 14: Radiance of the Earth as a function of the wave number

It has been obtained from satellite data (black curve) and from running the MODTRAN model (red curve).

� The main absorption bands correspond to the greenhouse gases listed in 1.3.

� Numerous small absorption bands on the spectrum are due to water vapor, the main greenhouse gas in the atmosphere.

� From the atmospheric longwave window below 1000cm−1, where we can "see the ground", we can see that the place where the
spectrum was observed was hot (almost 320K ≈ 47°C), consistently with the fact that the observations took place in the Sahara
desert.

� In the middle of the Ozone's absorption band, there is a peak of lessened absorption due to the intrinsic absorption of O3.

� In the middle of the Carbon Dioxide's absorption band, there is a peak of lessened absorption due to the positive temperature
gradient in the stratosphere, as we will see later in class.

An online MODTRAN model of the Earth's thermal emission spectrum is available at [http://climatemodels.uchicago.edu/modtran/].
In this model, the temperature's pro�le does not adapt to the changes in atmospheric chemistry, making it a tool to understand
the longwave absorption of the atmosphere, but not to realistically simulate this spectrum. Finally, we look at the thermal emission
spectrum of the exoplanet Gemini, which has a pretty hot surface (600− 750K) and orbits at ∼ 13au of its star Eridani (cf left part of
�gure 15).

Figure 15: Gemini planet imager discovery (left) and thermal emission spectrum (right)

Looking at the exoplanet's thermal emission spectrum on the right of �gure 15 and comparing the observations with the blackbody
curves allows us to identify two components of the exoplanet's atmosphere:
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� On the left side, between 1µm and 1.2µm, we see H2O emission features, without the individual bands that we can not resolve
at this distance.

� On the right side, above 1.5µm, we can see CH4 emission features.

The error bars are quite large, but it is still a good measurement given how far the exoplanet is. Note that if you wanted to detect the
light coming from such an exoplanet from Earth, you would have to take into account the Earth's absorption spectrum 14 and look
through an atmospheric window, keeping in mind that the local water vapor features might a�ect the quality of the observation. This
explains why telescopes are set in high and dry places, such as the mountains of Chili.

2.2 De�nition of �ux and intensity

2.2.1 Flux

By de�nition, the �ux (more rigorously the �ux density) F is the rate at which radiation is incident on or passes through a surface, in
units of W.m−2:

F def
=

d2Eλ
dAdt

(4)

where Eλ is the energy continuously transported by radiation, dA is an in�nitesimal area, and dt an in�nitesimal time. If we take the
example of a Summer day at the beach, you could compute the solar �ux by looking at how much the sun heats a small area of your
skin. As the day progresses, the sunlight strikes the surface at an increasingly oblique angle, spreading the same energy over a larger
and larger area, as we can see on �gure 16. As a consequence, the �ux on the speci�ed area (eg the small area of your skin) decreases.

Figure 16: Sun over the beach at noon (left) in the end of the afternoon (middle) and at dusk (right)

Note that the �ux itself makes no distinction concerning where the radiation is coming from, as it is the sum of the radiation you
get over all the directions. If we are interested:

� In a speci�c wavelength, we de�ne the monochromatic �ux, in units of W.m−2.µm−1:

Fλ
def
=

dF
dλ

= lim
∆λ→0

F[λ,λ+∆λ] (5)

� In a given band [λ1, λ2], we de�ne the broadband �ux, in units of W.m−2.µm−1:

F[λ1,λ2]
def
=

´ λ2

λ1
Fλdλ

λ2 − λ1
(6)

For instance, we could be interested in the visible band, approximately [400µm, 800µm].
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2.2.2 Intensity

The intensity provides the strength and direction of the various sources contributing to the incident �ux on a surface. For visible
radiation, intensity roughly corresponds to the "brightness" your eyes can see looking backwards along a ray on incoming radiation.
Coming back to the example of the sun over the beach on �gure 16, the sun (a localized high intensity source) has a much higher
intensity and is much "brighter" than the clear sky (a uniform low intensity source). Clouds may also appear "brighter" or "darker"
depending on their thickness and their angle from the sun. More rigorously, the intensity is the monochromatic �ux, measured on a
surface making an angle θ with the reference surface, per unit solid angle traveling in a particular direction:

Iλ(Ω, θ)
def
=

1

cos θ

dF
dΩ

=
d4Eλ

cos θdAdΩdλdt
⇔ Fλ =

ˆ
(Ω)

Iλ(−→n ·
−→
k )dΩ =

ˆ
(Ω)

Iλ cos θdΩ (7)

where we have adopted the notations on the left of �gure 17.

Figure 17: Schematic of incident radiation (left) and spherical coordinates (right)

The solid angle Ω, in units of sr, can be mathematically de�ned by adopting the spherical coordinate system presented on the right
of �gure 17, and considering an elementary area dσ:

dΩ
def
=

dσ

r2
= sin θdθdφ (8)

2.2.3 Summary

The table below summarizes the de�nitions of some key quantities in radiative transfer. Note that these terms are described di�erently
depending on the book/journal you read:

Quantity [Units] Name De�nition

Iλ Intensity d4Eλ
cos θdAdΩdλdt

Jλ Mean intensity 1
4π

´
(Ω)

IλdΩ

Fλ Monochromatic �ux d3Eλ
dAdλdt =

´
(Ω)

Iλ cos θdΩ

F Flux/�ux density d2Eλ
dAdt =

´ +∞
0

Fλdλ

f Total �ux dEλ
dt =

´
(A)
FdA

2.3 The radiative transfer equation

The radiative transfer equation can be written:

dIν(s, ν, µ, t)

ds︸ ︷︷ ︸
Change intensity

= − ρk(s, ν, t)Iν(s, ν, µ, t)︸ ︷︷ ︸
Exctinction=Loss

+ ρjν(s, ν, µ, t)︸ ︷︷ ︸
Emission=Gain

(9)

where:
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� Iν is the intensity in frequency units, linked to the intensity in wavelengths units by:

Iν = |dλ
dν
|Iλ =

cIλ
ν2

(10)

where we have used c = λν.

� s is the distance traveled by radiation in the medium (aka path length) and ρ is the density of the medium.

� k is the mass extinction cross section in units m2.kg−1. Alternatively, we can use the absorption coe�cient κ = ρk in units m−1.
The extinction cross section depends on how fast photons are absorbed by the medium and computing it is a quantum mechanical
problem.

� jν is the mass emission coe�cient in units W.kg−1.Hz−1.sr−1. Alternatively, we can use the emission coe�cient εν = ρjν in units
W.m−3.Hz−1.sr−1. The emission coe�cient depends on scattering and is also very hard to compute.

� µ = cos θ is the cosine of the angle between the surface through which radiation goes and the reference surface.

In 9, we can see that we have a competition between extinction/emission, ie processes that remove/add photons from/to the beam. If
we consider the three fundamental radiative processes:

1. Absorption of radiation contributes to the extinction.

2. Emission of radiation contributes to the emission.

3. Scattering of radiation contributes to both the extinction and the emission.

2.4 Optical depth

The optical depth τ is a measure of transparency. If you think of an object in a fog, such as on �gure 18:

� When the object is immediately in front of you: τ = 0.

� As the object moves away, τ increases.

� τ depends on the frequency of the electromagnetic radiation.

Figure 18: Mountain behind a fog

Mathematically, we de�ne τ as a dimensionless vertical scale:

dτ
def
= −κdz = −ρkdz = −ρk cos θds (11)

The negative sign arises from the fact that we are looking down into the atmosphere. Physically the optical depth can be better
understood by considering the last photon that makes it to the observer. In a very "optically thick" atmosphere, a lot of molecules
absorb and emit photons on the way, which explains why the last photon making it to the observer has been emitted "recently", as we
can see on �gure 19.
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Figure 19: Di�erence between an "optically thick" band (left) and an atmospheric window (right) for the path of photons

2.5 Blackbody radiation

2.5.1 Blackbody

A blackbody is a "perfect" radiator that absorbs all radiation incident on it and remits radiation in a frequency spectrum depending
only on its temperature. Blackbody radiation is furthermore isotropic, ie independent of direction. An ideal blackbody is one which is
in equilibrium with the Planck distribution: it absorbs all the radiation incident upon it and emits radiation in the Planck distribution
for its temperature. In the real world, it is impossible to �nd an ideal blackbody. Examples of objects close to the ideal blackbody
include:

� The inside of a cavity, such as a closed heated oven (cf �gure 20), where the radiation is continuously being absorbed and remitted
by the walls. A small opening in the cavity will act as a source of radiation, and almost give o� radiation characteristic of an
ideal blackbody.

� A dense cloud, in which multiple scattering occurs and the light can not escape.

Figure 20: Schematic of a cavity with a small opening

2.5.2 Planck's law

When a blackbody is in thermal equilibrium, its intensity (note that the Planck functions are indeed given per unit steradians) is given
by Planck's law:

� In frequency units:
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Bν(T ) =
2hν3

c2[exp( hν
kBT

)− 1]
(12)

� In wavelength units:

Bλ(T ) = |dν
dλ
|Bν =

2hc2

λ5[exp( hc
λkBT

)− 1]
(13)

Note that the blackbody's intensity and spectrum depends only on the temperature of the body. The two asymptotes of the Planck's
function are:

1. Wien's tail:

λ→ 0 ⇒ Bλ →
2hc2

λ5
exp(− hc

λkBT
) (14)

2. Rayleigh Jeans tail:

λ→ +∞ ⇒ Bλ →
2ckBT

λ4
(15)

2.5.3 Wien's law

Most objects emit radiation at many wavelengths. However, there is one wavelength where the object emits the largest amount of
radiation. Wien's law gives the wavelength at which Bλ is maximum:

λmax =
b

T
(16)

where b ≈ 2.90.10−3m.K is Wien's constant. Inverting Wien's law for an object emitting at maximal intensity for wavelength λ allows
us to �nd its brightness temperature. As we can see on �gure 21, the hotter an object, the shorter the wavelength at which it will emit
most of its radiation.

Figure 21: Planck's function as a function of wavelength for di�erent brightness temperatures

If λmax is a visible wavelength, then it will determine the color of the emitting source to a good approximation, which explains
why colors can be associated to black bodies with brightness temperatures between 1000K and 10000K. The correspondence between
wavelength and temperature can be seen in many situations, including in the experiment photographed on the left of �gure 22 where
molten lava is poured on ice: the hot lava is yellow-orange, corresponding to a brightness temperature of 3000K; it then becomes red
(2000K) as it cools down to eventually become black as it solidi�es, meaning that its wavelength of maximal intensity in now in the
infrared.
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Figure 22: Molten lava on ice (left) and examples of brightness temperatures (right)

Other examples of real objects with their associated brightness temperatures can be found on the right of �gure 22.

2.5.4 Stefan-Boltzmann law

In the sake of broadband analysis, we can integrate Planck's function 13 over a given band [λ1, λ2]:

π

ˆ λ2

λ1

Bλdλ = σT 4
b,λ (17)

where Tb,λ has the dimensions of a temperature and σ ≈ 5.67.10−8W.m−2.K−4 is the Stefan-Boltzmann constant. For example,
by integrating a spectrum of the atmosphere over the band corresponding to the atmospheric window, it is possible to obtain the
temperature of the ground, which is what we had done when analyzing 14. Integrating Planck's function over all the possible wavelengths
allows us to derive Stefan-Boltzmann's law, that we had taken as a given in 1:

π

ˆ +∞

0

Bλdλ = σT 4 (18)

Inverting Stefan-Boltzmann law to �nd the temperature of a blackbody emitting a given radiative �ux is the easiest way to compute
its brightness temperature.

2.5.5 Kirchho�'s law

For a body of any arbitrary material emitting and absorbing thermal electromagnetic radiation in thermodynamic equilibrium, Kirch-
ho�'s law states that the ratio of its emissivity ελ to its absorptivity κ is equal to the Planck function Bλ:

ελ = κBλ(T ) (19)

It will allow us to simplify the radiative transfer equation 9 in special cases.

2.6 Monte Carlo simulations of the radiative transfer equations

The radiative transfer equation 9 is di�cult to solve in the case of three dimensional complicated surfaces or when the medium
has discontinuities (eg cloud boundaries). As a consequence, Monte Carlo simulations of the radiative transfer equation have been
developed, where each photon is individually emitted, scattered and absorbed with a given probability, as shown on �gure 23.
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Figure 23: Steps of the Monte Carlo simulation of the radiative transfer equation (left) and schematic of the photons in the simulation
(right)

The simulations are very computationally intensive (typically 108 photons are needed), and have been for instance used for biomedical
applications or even radiation through stellar disks. They give an interesting discrete viewpoint of radiation, where electromagnetic
radiation is equivalent to a beam of traveling photons.

3 Modeling Transmission and Emission

3.1 Absorption vs emission lines

3.1.1 Absorption coe�cient

The absorption coe�cient κ (in units m−1) can be computed by summing over the absorbers cross-sections σij (in units m2) :

κ =
∑
j

κj =
∑
j

∑
i

nijσij (20)

where i refers to di�erent energy levels and j to di�erent atoms/molecules, while nij is the number density in units m−3. The cross sec-
tions of di�erent absorbers at di�erent frequencies can be found on database such as [http://vpl.astro.washington.edu/spectra/allmoleculeslist08.htm].
For instance the cross-sections of CO2 and CH4 are shown on �gure 24.
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Figure 24: Cross-sections of CO2 (left) and CH4 (right) in units cm2/molecule for increasing wavelengths in units µm (up to down)

All of these cross-sections must be considered when studying the interaction of a given greenhouse gas with light.

3.1.2 Origin of absorption and emission lines

We have seen in 2.5 that a hot blackbody emits a continuous spectrum. A cloud of cooler gas placed between the blackbody and the
observer will absorb some discrete wavelengths of this continuous spectrum, corresponding to the discrete quantized energy levels of
its molecular constituents (cf �gure 25).

Figure 25: Spectra observed for di�erent con�gurations of a hot blackbody and a cloud of cooler gas

We now assume that the deepest layer of a planetary atmosphere emits a continuous spectrum, like a blackbody. If we look from
above, depending on the vertical temperature gradient, three di�erent situations arise:

1. If the atmosphere is isothermal (left of �gure 26), the spectrum emerging from the top of the atmosphere will be the same
continuous blackbody spectrum.

2. If the temperature decreases with altitude (middle of �gure 26), the cooler layer of gas on top of the hot blackbody will behave
like the cool gas on �gure 25, and an absorption spectrum will result.
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3. If the temperature increases with altitude (right of �gure 26), we will have emission lines from the hotter layers of the atmosphere
on top of the black body.

Figure 26: Three options for the vertical temperature gradient: zero (left), negative (middle) and positive (right)

3.1.3 Earth's absorption and emission lines

Looking at the Earth's vertical temperature structure, we can distinguish four layers based on the vertical temperature gradient's sign
(left of �gure 27).

Figure 27: Earth, Venus and Mars's temperature structures

We are mostly concerned with the two lowest layers of the Earth's atmosphere: the troposphere and the stratosphere, which
constitute the vast majority of the atmospheric mass. Note that the Earth has a stratosphere mostly because of the Ozone's shortwave
absorption, and that it is not true for other planets such as Venus or Mars (right of �gure 27). We can see the uniqueness of the
Earth's temperature structure by comparing the longwave absorption of Venus, Earth and Mars on �gure 28. The Earth is the only
planet to have the small emission peak in the middle of the CO2 absorption band, because of the positive temperature gradient in the
stratosphere. This peak is small because the density of Carbon Dioxide decreases almost exponentially with altitude, and emits only
at the wavelength where it cross section is large, as we can see on �gure 24.
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Figure 28: Longwave brightness temperature vs wavenumber for di�erent planetary atmospheres

3.2 Local thermodynamic equilibrium

Amaterial is said to be in thermodynamic equilibrium when it is in thermal, chemical and mechanical equilibrium. Local thermodynamic
equilibrium (LTE) implies thermodynamic equilibrium over a small volume of the atmosphere, and is only valid locally, where any
temperature, pressure or chemical gradients are small given the photon mean free path. We do not assume the equilibrium to hold
for radiation and allows it to depart from that of a black body. Coming back to 20, we were left to compute the level populations
ni for each given atom/molecule j of the system. We recall the discrete energy levels of the hydrogen atom (left of �gure 29), and that
photons can allow electrons to jump from one level to the other (right of �gure 29).
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Figure 29: Hydrogen energy levels (left) and e�ects of photons on level populations (right)

From the role of photons in energy level's transitions, we can expect radiation to have an in�uence on the level populations, making
the radiative transfer equation 9 extremely hard to solve as the absorption coe�cient κ depends on the intensity I in this case. For
instance, the latter case happens when a planet is very close to a big star and highly irradiated by it: we then need to write a radiative
equation at each level of energy of the important atoms/molecules. However, if LTE applies, collision processes dominate over radiative
e�ects. Collisions control the population's level by coupling the radiation �eld to the matter's temperature via the kinetic energy of
the gas (cf �gure 30), and drives the population's density to Boltzmann's distribution:

ni∑
i ni

=
gi exp(− hνi

kBT
)∑

i gi exp(− hνi
kBT

)
(21)

where ni is the number density at the energy level i associated to the frequency νi, and gi is the degeneracy of level i (there is
1 vibrational level and 2i+ 1 rotational levels).

Figure 30: Di�erent collision situations in a two energy level system

Consequently, in LTE, all properties of the matter only depend on the local kinetic temperature and the density, making 9 much
easier to solve. In the Earth's atmosphere, LTE will only be valid under 60 − 70km, where pressure is high enough for collisional
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processes to dominate. LTE breaks down in the upper atmosphere because of the open boundary to space. Another common situation
where LTE breaks down is when average electronic energy levels are arti�cially pumped (eg lasers, �uorescent light bulbs, gas discharge
tubes, light-emitting diodes...).

3.3 Thermal emission from a solution to the radiative transfer equation

3.3.1 Plane parallel atmosphere

Let's consider incident radiation at an angle θ in a given atmosphere, as represented on �gure 31.

Figure 31: Schematic of incident radiation in a slab atmosphere

We make the plane parallel atmosphere, which includes two assumptions:

1. At a given location, we ignore the horizontal variations in the radiative properties of the atmosphere. It is valid for a highly
strati�ed atmosphere, where physical properties such as temperature, pressure and density vary much more strongly in the vertical
than in the horizontal direction. It is not valid for objects with horizontal structures, such as clouds.

2. We ignore the curvature of the planet, approximately valid for:

H

cos θ
� rp (22)

where H is the scale height of the atmosphere, θ the incident angle and rp the planet's radius. For the Earth where H ≈ 8km and
rp ≈ 6400km, the approximation is always valid, and most photons make it through the Earth's atmosphere without ever "feeling"
the e�ects of its curvature.

3.3.2 Solution to the radiative transfer equation in LTE

We work in a plane parallel atmosphere and assume that LTE holds. We write the radiative transfer equation 9 and use the optical
depth τ de�ned in 11 as the vertical coordinate; using the notations introduced in 31:

µ
dI(τ, λ, µ, t)

dτ
= I(τ, λ, µ, t)− ε(τ, λ, µ, t)

κ(τ, λ, t)
(23)

In LTE, Kirchho�'s law 19 holds and we obtain:

µ
dI(τ, λ, µ, t)

dτ
= I(τ, λ, µ, t)−B(τ, λ, t) ⇒ µ

d

dτ
[I exp(− τ

µ
)] = −B exp(− τ

µ
) (24)
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Integrating the previous equation 24 from τ ′ = 0 (top of the atmosphere) to τ ′ = τ (corresponding to an altitude z):

I(0)︸︷︷︸
Intensity satellite

= I(τ)︸︷︷︸
Intensity

exp(− τ
µ

)︸ ︷︷ ︸
Transmittance if µ=1

+

ˆ τ

0

B(τ ′)

µ
exp(−τ

′

µ
)dτ ′︸ ︷︷ ︸

Path−integrated emission

(25)

Note that the intensity seen from the satellite I(0) is not a�ected by the emission B(τ ′) from points through which the intervening
atmosphere is opaque (τ � 1).

Going back to the online longwave MODTRAN spectrum [http://climatemodels.uchicago.edu/modtran/], we can use the model to
study the following questions:

1. Identify the major gases in Earth's IR thermal emission spectrum (hint: increase or decrease the concentration to see which
spectral feature is a�ected).

2. Methane has a current concentration of 1.7ppm in the atmosphere, and is doubling at a faster rate than is CO2.
(a) Is 10 additional ppm of Methane more or less important than 10ppm of Carbon Dioxide in the atmosphere at current
concentrations?
(b) Would a doubling of Methane have as great an impact on the heat balance as a doubling of Carbon Dioxide?

3. How do clouds a�ect the appearance of Earth's IR spectrum?

4. Choose a greenhouse gas and increase the gas by a large amount. What is the surface temperature increase required to preserve
the same total outgoing �ux?

3.4 Transmission

To understand transmission, we consider the case where there is no scattering nor emission, so that the only extinction in the intensity
comes from the absorption. In this case, we start from τ ′ = 0 and are interested in the intensity at a given optical depth τ ′ = τ with
no emission (ε = 0), so that the integral of equation 24 reduces to Beer-Lambert's law:

I(τ)︸︷︷︸
Intensity

= I(0)︸︷︷︸
Initial intensity

exp(− τ
µ

)︸ ︷︷ ︸
Transmittance if µ=1

(26)

For example, if the atmosphere is transparent, its absorptivity is κ = 0, and Beer-Lambert's law 26 gives I(τ) = I(0). In contrast,
if the atmosphere is opaque κ is high enough so that I(τ) ≈ 0 as soon as the ray travels a short physical distance z. We are now
interested in planetary examples of radiation transmission.

1. The sun is red at sunset because it has to go through a "longer atmospheric path" (cf �gure 32), meaning that the optical
depth is larger. As Rayleigh's scattering (which applies as long as the parcels of the atmosphere are smaller than the radiation's
wavelength) scales like λ−4, blue light (short visible wavelengths) is scattered out of the solar radiation when it takes the "long
path", and only red light remains, making the sun look red.

Figure 32: Why is Sun red at sunset?
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2. We can also look at the di�erences between Limb and Nadir remote sensing methods, which look at microwave wavelength (cf
�gure 33).

Figure 33: Limb and Nadir sounding (left) and the System Microwave limb sounder (MLS, right)

Nadir sounding looks from above at the zenith sky atmospheric transmission (left of �gure 34): The main absorption features
come from Water vapor, Carbon Dioxide and Ozone. The atmospheric windows (8 − 12µm, 3 − 5µm) are used to measure the
concentration of other atmospheric trace gas species. Unlike Nadir, the Limb sounder looks forward from its satellite Aura, which
allows it to measure a given slice of the atmosphere. As the transmission through the atmosphere is much better at these higher
altitudes, it can measure tracer species which would be very hard to detect looking at the surface of the Earth. In that purpose, it
makes passive measurements in broad bands at �ve distinct frequencies, and is able to produce maps of the potential temperature
of nine tracers with concentrations that can be very small (down to pptv, cf right of �gure 34).

Figure 34: Nadir transmission spectrum (left) and MLS potential temperature maps (right)

3. It is possible to simulate what Earth would look like if it were observed as an exoplanet, in front of the Sun. Figure 35 shows the
relative transmission the Earth at di�erent wavelengths. If we look at the most energetic part of the spectrum (λ ∼ 0− 0.5µm),
it is possible to see the Ozone and the Water Vapor absorption peaks forming as we get closer to the surface of the Earth.
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Figure 35: Relative transmission of the "exoplanet Earth" at di�erent altitudes as a function of the wavelength, for 0− 4µm (left) and
for 7− 16µm (right)

However, it doesn't explain the big amount of absorption between 0.5µm and 1µm as we get closer to the surface. To analyze
these transmission �gures in more details, looking at the relative transmission of the Earth's main absorbers on �gure 36 is
helpful, and we can see that the big absorption on the left is actually due to aerosols. In the less energetic part of the longwave
domain, we can see on �gure 36 that the greenhouse gases are strong absorbers with very large e�ective height, which explains
why nothing makes it through the atmosphere near the surface on the right of �gure 35.

Figure 36: E�ective height and relative transmission of the main atmospheric constituents

4. Finally, understanding transmission allows to infer exoplanet atmospheres compositions, when they are in front of a star (left of
�gure 37). Indeed, when the exoplanet transits across a star, additional light is absorbed by the planetary atmosphere, which
makes it look bigger because we have additional absorption peaks in the star's emission spectrum (right of �gure 37).
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Figure 37: Absorption peaks of an exoplanet transiting across a star

Taking the example of a super Earth, we expect di�erent transmission spectra depending on its composition (left of �gure 38). If
the main atmospheric constituent is a light constituent, such as H2, its scale height is very large and we expect the transmission
spectrum to include large features allowing us to measure the tracer gas concentrations. However, if the main constituents of the
atmosphere are heavy (eg water), the signal will move forward without attenuation for high altitudes or will be entirely absorbed
if it travels too close to the surface, which makes it impossible to infer the exoplanet's atmospheric composition. In the latter
case, it is possible to observe the exoplanet for a longer time, hoping to detect characteristic features (eg water). In the example
shown on the right of �gure 38, the additional time does not help inferring the composition of the exoplanet's bulk interior or/and
atmosphere, and more precise measurements would not provide more information on that topic.

Figure 38: Trying to �nd the composition of the atmosphere of the Super Earth GJ1214b

If the emission spectrum shows a large scale height with big features along with mutated features, the presence of clouds is
suspected on the exoplanet, but being assertive is only possible in speci�c cases, which explains why so many exoplanets are
"suspected to have clouds".
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Figure 39: Clouds on exoplanets

When the chemical composition of the atmosphere is known and the atmosphere is suspected to have solid aerosol, laboratory
experiments can help determine if it possible for clouds to form on a given exoplanet, as well as probing the scattering properties
of these aerosol/clouds.

3.5 RE and consequences on the Earth's climatic budget

We have de�ned radiative-equilibrium (RE) in 1.2: in a purely radiative context, we can see RE as an energy conservation statement.
In a small atmospheric volume, an imbalance in the amount of radiation coming in and out can be seen as a radiative heating/cooling
rate. When the amounts coming in and out are the same, the system is in RE and it is possible to compute the atmospheric temperature
pro�le. In RE, an analogy can be drawn between a bathtub and the climatic system. The �ow of water through di�erent levels of a
fountain represents the �ow of photons through the atmospheric layers, with absorption/emission analogous to the mixing/evacuation
of the water. From this analogy, it is possible to obtain new insight on the anthropogenic emissions and their consequences on the
climatic system:

Figure 40: The bathtub analogy for the Earth's Carbon and climatic budgets

We now want to formulate a global version of RE, using the de�nitions 2.2. Assuming that the absorptivity κ and the emissivity
in frequency units εν are isotropic, the balance between absorption and emission integrated over all the atmosphere can be written:

4π

ˆ +∞

0

κ(τ, ν)Jν(τ, ν)dν =

ˆ +∞

0

dν

ˆ
(Ω)

dΩεν(τ, ν) (27)
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If we assume LTE 3.2, Kirchho�'s law 19 applies and:

ˆ +∞

0

dν

ˆ
(Ω)

dΩεν(τ, ν) =

ˆ +∞

0

dν

ˆ
(Ω)

dΩκ(τ, ν) = 4π

ˆ +∞

0

κ(τ, ν)Bν(τ, ν)dν (28)

Combining equations 27 and 28 leads to the global statement of RE:

ˆ +∞

0

dνκ(τ, ν)[Bν(τ, ν)− Jν(τ, ν)] = 0 (29)

4 Buoyancy of dry, moist and cloudy air

4.1 Buoyancy

To our knowledge, the concept of buoyancy was historically formulated by Archimedes (250BC). In a �uid with velocity (u, v, w), the
vertical momentum equation can be written:

Dw

Dt
= −α∂p

∂z
− g (30)

where α = 1
ρ is the speci�c volume, p the �uid's pressure, and z the vertical coordinate aligned with the gravity vector −→g = −g−→ez . We

are interested in variations about the hydrostatic equilibrium, denoted by over-lines and de�ned by:

α
∂p

∂z

def
= −g (31)

In that purpose, we decompose (α, p, u, v, w) in a hydrostatic component and a perturbation, that we assume to be small:
α
p
u
v
w

 =


α
p
0
0
0

 +


α′

p′

u′

v′

w′

 (32)

Consequently, the vertical momentum budget 30 can be approximated to:

Dw

Dt
=
∂w′

∂t
+ u′

∂w′

∂x
+ v′

∂w′

∂y
+ w′

∂w′

∂z
≈ ∂w′

∂t
≈ −α′ ∂p

∂z
− α∂p

′

∂z

∂w′

∂t
= g

α′

α︸︷︷︸
Buoyancy

− α
∂p′

∂z︸ ︷︷ ︸
Non hydrostatic pressure perturbation

(33)

Physically, variations in the density of the �uid generate a vertical acceleration, which is the buoyancy term. The non-hydrostatic
pressure perturbation usually scales like the square of the perturbation velocity, which means that it is a small term counteracting the
buoyancy force. Integrating the buoyancy term over a �nite volume of �uid gives Archimedes law:

Fbuoyancy =

ˆ
(V )

ρg
α′

α
dV = −g

ˆ
(V )

ρ′dV = −gM ′ = −(Mimmersed object −Mdisplaced fluid volume)g (34)

where V [m3] refers to a volume and M [kg] to a mass.

4.2 Moist variables

Because of gravity, density is not constant in the atmosphere. Water vapor/liquid water (H2O) weights less/more than the main molec-
ular components of the atmosphere (O2,N2), which means that variations in the concentration of atmospheric water vapor/condensed
water will have consequences on the atmospheric density α−1:

α =
Vair + Vcondensed water

Mdry air +Mwater vapor +Mliquid water
= αd

1 +

10−2︷︸︸︷
rT

10−3︷︸︸︷
αl
αd

1 + rT
≈ αd

1 + rT
(35)

where we have de�ned:
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� Dry air as the all the constituents of the atmosphere, except water, which mass concentration evolves on much longer time scales.
From now on, we will use the subscript d for dry air, v for water vapor and l for liquid water.

� The speci�c volume of dry air when the mass of water vapor is negligible:

αd
def
=

Vair

Md
(36)

� The speci�c volume of condensed water when the mass of liquid water and water vapor are negligible:

αl
def
=

Vl
Md

(37)

� The total mixing ratio of water:

rT
def
=

Mv +Ml

Md
(38)

In practice, we do not take into account the deviation of the atmosphere from the ideal gas law, so that the speci�c volume of dry air
is given by:

αd =
RdT

pd
(39)

where we have introduced the partial pressure of dry air pd and the speci�c gas constant of dry air:

Rd
def
=

R∗

md
(40)

involving the ideal gas constant R∗ and the mean molecular weight of dry air md, that we compute from the molecular weight mi and
the mass Mi of each atmospheric molecule i:

md
def
=

∑
iMi∑

im
−1
i Mi

(41)

We now want to relate pd to p using the mixing ratio r. From Dalton's law:

p

pd
=
pd + e

pd
=
R∗T ( ρdmd + ρv

mv
)

R∗Tρd
md

=
1 + r

ε

1 + rT
(42)

where we have de�ned:

� The partial pressure of water vapor e.

� The mixing ratio of water vapor:

r
def
= rT (Ml = 0) =

Mv

Md
=
ρv

ρd
(43)

� The ratio of the molecular weight of water vapor to the molecular weight of dry air:

ε
def
=

mv

md
≈ 0.622 (44)

Combining equations 35 and 42, we obtain:

α ≈ RdT

p

1 + r
ε

1 + rT
(45)

Note that in the absence of condensation, the previous expression 45 along with the de�nition of the mixing ratio 43 give:

α =
RdT

p

1 + r
ε

1 + r
>
RdT

p
= αd (46)

This explains why moist air is more buoyant than dry air, which is the basis to understand convection in the absence of latent heating.
For meteorological purposes, and in order to write equations 45 and 46 in a more simple way, we can introduce:

� The density temperature:

Tρ
def
= T

1 + r
ε

1 + rT
(47)

� The virtual temperature:

Tv
def
= Tρ(Ml = 0) = T

1 + r
ε

1 + r
> T (48)
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4.3 Stability of dry air

We just saw that the speci�c volume was clearly not a conserved variable as an air parcel ascends in the atmosphere: we thus need
to relate it to a conserved variable. For adiabatic reversible displacement of air parcels, the speci�c entropy s is conserved, making
it a natural choice. To relate changes inα to changes in s, we will derive one of Maxwell's relations, from the �rst principle of
thermodynamics. For a dry ideal gas, an in�nitesimal change of speci�c enthalpy k = u+ pα (where u is the speci�c internal energy)
is related to pressure and entropy changes through the second thermodynamic identity:

dk = αdp+ Tds (49)

Note that the second identity 49 can be derived from the �rst law of thermodynamics by using the de�nition of the speci�c enthalpy k:

dk
def
= du+ d(pα) = −pdα+ Tds+ d(pα) = αdp+ Tds (50)

Applying Schwartz's theorem for partial di�erentials to identity 49 gives us Maxwell relation:

∂

∂s
[(
∂k

∂p
)s]p =

∂

∂p
[(
∂k

∂s
)p]s ⇒ (

∂α

∂s
)p = (

∂T

∂p
)s (51)

We can now use it to relate the changes in α at constant pressure to the changes in s:

α = α(p, s) ⇒ (dα)p = (
∂α

∂s
)pds = (

∂T

∂p
)sds (52)

Note that we have neglected the presence of water vapor for simplicity. We will incorporate it when we consider the stability of moist
air. Coming back to the de�nition of buoyancy 33 and using our new equation 52:

b = g
α′

α
=
g

α
(
∂T

∂p
)ss
′ = Γds

′ (53)

where primes denote the di�erence of a variable between the air parcel and the environment. We have de�ned the dry adiabatic lapse
rate:

Γd
def
=

g

α
(
∂T

∂p
)s

hydrostatic
= −(

∂T

∂z
)s

ideal gas
=

g

cpd
≈ 1°C

100m
(54)

where cpd is the speci�c heat of dry air at constant pressure. Equation 53 gives a direct relation between the entropy pro�le and
convective stability:

� If ∂s∂z > 0: Suppose an air parcel has an entropy perturbation s′ > 0. Then, the buoyancy force will be oriented upwards b > 0,
and the parcel will be displaced to an environment of higher entropy. As a consequence, s′ will decrease, and the air parcel will
stabilize. An environment with positive entropy gradient is thus stable.

� If ∂s∂z = 0, the atmosphere is neutrally stable.

� If ∂s∂z < 0, the atmosphere is convectively unstable.

In the troposphere, the adiabatic lapse rate Γ does not change dramatically, so that we will often approximate it as constant in class.

5 Convection from maintained and instantaneous point sources and buoyancy

5.1 The Buckingham Pi theorem

Dimensional analysis gives a lot of insight about the physics of a problem, by helping to identify its controlling parameters. Consider
a physical system depending on n dimensional quantities qi: ϕ(q1, q2, ..., qn). The Buckingham Pi theorem states that the dependence
of the system can be reduced to m dimensionless parameters Πi: ϕ(Π1,Π2, ...,Πm). If k is the minimal number of primary quantities
needed to express the dimensions of the dimensional quantities qi:

m = n− k (55)

Theorem 55 is especially helpful for problems with a small number of parameters.
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5.2 Maintained point source of buoyancy: Plumes

Figure 41: Plumes in neutrally and stably strati�ed �uid (left) and volcanic plume (right)

Imagine a steady point source of buoyancy: it will generate a plume. Examples of plumes include erupting volcanoes or laboratory
plume experiments (cf �gure 41). To model a maintained point source of buoyancy, we make the following assumptions:

� The atmosphere is unstrati�ed.

� We approximate the plume as fully turbulent, which means that the convection is independent of molecular viscosities.

� We make the Boussinesq approximation, and neglect the density variations of the �uid, except when they are coupled with gravity
(ie the buoyancy force).

By de�nition, the buoyancy �ux Fb is the supply of buoyancy to the �uid:

Fb ∼ Velocity ·Area · b ⇒ [Fb] = L4.T−3 (56)

If we assume that the area of the source is in�nitesimally small, the buoyancy �ux and the altitude z are the only controlling parameter
of the problem. According to the Pi theorem , the dependence of the system can be reduced to 2 − 2 = 0 dimensionless parameters,
which allows us to �nd their scaling through dimensional analysis. For instance, we �nd the scaling of:

� The vertical velocity in the plume:

[w] = L.T−1 ⇒ w ∼ (
Fb
z

)
1
3 (57)

� The horizontal velocity in the plume:

[u] = L.T−1 ⇒ u ∼ w ∼ (
Fb
z

)
1
3 (58)

which means that mass is not conserved within the plume: there is an entrainment rate of air equal to the vertical velocity in the
plume.

� The radius of the plume
[R] = L ⇒ R ∼ z (59)

which implies a conical cross-section, consistently with what we observe when laboratory experiments are made (�gure 41).

� The buoyancy itself:

[b] = L.T−2 ⇒ b ∼ (
F2
b

z5
)

1
3 (60)

� The volume �ux:
[Q] = L3.T−1 ⇒ Q ∼ R2w ∼ (Fbz5)

1
3 (61)

The success of dimensional analysis relies in the simplicity of our solutions, compared to the complexity of the problem. Laboratory
experiments allows to compute the constant in front of the power law scalings found previously, and from similarity arguments we
can extend the formulas to the geophysical world. They also allows us to check the consistency of our scaling law, helping us identify
the main control parameters of the problem. Experimentally, Yih (1951) found that the following laws for the vertical velocity, the
buoyancy and the radius:

w = 4.7(
Fb
z

)
1
3 exp(−96R2

z2
) (62)
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b = 11.0(
F2
b

z5
)

1
3 exp(−71R2

z2
) (63)

R = 0.12z (64)

Comparing formulas 62, 63 and 64 to 57, 60 and 59 con�rms that dimensional analysis gives a proper scaling for (w, b,R), but that
experiments are still needed to con�rm that scaling and obtain the quantitative dependence of these quantities.

5.3 Instantaneous point source of buoyancy: Thermals

5.3.1 Unstrati�ed problem

The previous laws rely on the fact that we only had two controlling parameters for the system. They do not apply when the point
source of buoyancy is time-dependent. Another model with no time-dependence is the instantaneous point source of buoyancy. In this
case, there is no maintained buoyancy �ux; instead, at time t = 0, the point source of buoyancy releases a given amount of buoyancy:

B
def
=

ˆ
(Plume)

bdV ⇒ [B] = L4.T−2 (65)

The controlling parameters for this problem are now (B, z), meaning that the Pi theorem 55 tells us that the system is controlled by
2− 2 = 0 dimensionless parameters. It is straightforward to derive di�erent scaling laws for all the quantities studied in section 5.2. In
particular, the vertical velocity scaling is:

[w] = L.T−1 ⇒ w ∼
√
B

z
(66)

If we compare this scaling law for the vertical velocity to the one obtained for the maintained point source of buoyancy 57, we can
see that w decreases much faster with altitude in the case of an instantaneous point source of buoyancy. Physically, we know that the
plume is slowing for two reasons:

1. The plume entrains and transfer momentum to a larger and larger volume of quiescent air around it.

2. The plume mixes the �uid on a larger and larger radius R ∼ z.

In the case of an instantaneous point source, the plume is entraining a third dimension that was not present in the two-dimensional
maintained point source case. Thus, the dilution process is more costful, which explains why the vertical variations in w are larger. If
several point source of buoyancy are separated by a distance L, dimensional analysis only allows us to �nd the scaling laws at a large
enough vertical distance from the plume ∆z � L, where all the plumes look like "one merged plume". However, by doing laboratory
experiments, it can be shown that the di�erent plumes entrain themselves mutually, which mean that they merge relatively close to
the ground, and that we can hope that are scaling laws apply for small z. An old application of this phenomenon was to align burners
on both side of the runways of an airport to dissipate the fog and allow planes to take o�.

5.3.2 Constant strati�cation

If the atmosphere follows a dry adiabat de�ned by equation 54, it can be shown that the potential temperature θ is conserved with
altitude:

θ
def
= T (

p0

p
)
Rd
cpd (67)

By de�nition, the dry entropy is also conserved with altitude:

sd
def
= s0 + cpd ln(

T

T0
)−Rd ln(

p

p0
) = s0 + cpd ln(

θ

T0
) (68)

where s0 is the reference entropy at the reference temperature T0 and the reference pressure p0. Note that for a moist atmosphere with
no phase change, we have seen in subsection 4.2 that the ideal gas speci�c constant has to be changed, and the speci�c heat capacity
of the gas at constant pressure also changes. However, the ratio of these two quantities Rdc

−1
pd

is found not to change very much when
water vapor is taken into account, which means that θ is still approximately conserved with altitude if the atmosphere is unstrati�ed.
If the �uid is stably strati�ed, the dry entropy and thus the potential temperature both increase with altitude, which we can quantify
by introducing the Brunt-Vaisala/buoyancy frequency:

N2 def
=

g

θ

dθ

dz
=

g

cp

ds

dz
⇒ [N ] = T−1 (69)

We are now in measure of analyzing the problem of a thermal in an environment of constant strati�cation (ie the buoyancy frequency
does not vary with altitude). Dimensional analysis tells us that the typical vertical scale H is governed by a dimensionless combination
of the two controlling parameters of the problem: the buoyancy frequency and the total buoyancy of the thermal B, de�ned in 65:

[H] = L ⇒ H ∼ (
B

N2
)

1
4 (70)
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Qualitatively, the �uid parcel accelerates up until it has negative buoyancy at a height H, where the thermal will stop accelerating.
We are now going to make progress by applying momentum and heat budgets to the plume, based on the Navier-Stokes equations
integrated over the thermal, and several assumptions:

1. The �ow is steady.

2. The radial pro�les of mean vertical velocity and mean buoyancy are similar at all heights.

3. Based on scaling 58, the mean turbulent in�ow is proportional to the vertical velocity: u = −α|w|.

4. We make the Boussinesq approximation for the �ow, ie we only consider �uid density variations when they are coupled with
gravity.

We write the following conservation laws for the thermal:

� Mass conservation:
D

Dt
(
4π

3
R3) = −4πR2u = 4πR2α|w| (71)

� Momentum conservation:
D

Dt
(
4π

3
R3w) =

4π

3
R3b (72)

where we de�ne the buoyancy based on a constant reference temperature θ0:

b
def
= g

θ − θ0

θ0
(73)

� Heat/Buoyancy conservation:
D

Dt
[
4π

3
R3(θ − θ0)] = −4πR2u(θ − θ0) = 4πR2αw(θ − θ0)

Using :
D

Dt
[
4π

3
R3(θ − θ0)] = (θ − θ0)

D

Dt
(
4π

3
R3) =

D

Dt
[(θ − θ0)

4π

3
R3]− 4π

3
R3 D

Dt
(θ − θ0)︸ ︷︷ ︸
w dθ
dz

we can write the buoyancy conservation as a function of the Brunt-Vaisala frequency de�ned in 69:

D

Dt
(
4π

3
R3b) =

4π

3
R3wN2 (74)

We simplify the problem by introducing the following variables:

M
def
= R3w (75)

V
def
= R3 (76)

F
def
= R3b (77)

The initial conditions for these variables are given by:

M = V = 0 @ T = 0 (78)

F = F0 =
3B

4π
@ T = 0 (79)

We combine (M,V, F, t) with the buoyancy frequency N (controlling parameter) to obtain a set of dimensionless variables:

f
def
=

F

F0
(80)

m
def
=

4π

3

MN

F0
(81)

v
def
= (

πN2

3αF0
)

3
4V (82)

t
def
= NT (83)

z
def
= 4(

πα3N2

3F0
)

1
4 zdim (84)

where zdim is the dimensional altitude. The conservation statements 71, 72 and 74 can then be written in a very simple dimensionless
form:
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� Momentum budget:

dm

dt
= f (85)

� Buoyancy budget:

df

dt
= −m (86)

� Mass budget:

dv
4
3

dt
= |m| (87)

� Velocity de�nition:

dz

dt
= w =

m

v
(88)

The absolute value in the mass budget 87 means that the mass of the thermal can only increase. This is an indirect consequence of
the second principle of thermodynamics, which implies that turbulent entrainment is irreversible. In dimensionless form, the initial
conditions 78 and 79 become:

m = v = 0 @ t = 0 (89)

f = 1 @ t = 0 (90)

For the initial conditions 89 and 90, we �nd the following analytical solution for 0 ≤ t ≤ π:

R = v
1
3 = (1− cos t)

1
4 (91)

w =
m

v
=

sin t

(1− cos t)
1
4

(92)

b =
f

v
=

cos t

(1− cos t)
1
4

(93)

z = 4(1− cos t)
1
4 (94)

To compute the solutions for all t > 0, look at the values of the variables at t = π , solve the equation on ]π, 2π[, and reiterate the
process, giving the solutions plotted on �gure 42.

Figure 42: Plot of dimensionless solutions 91, 92, 93 and 94 vs dimensionless time 83

We can see that the radius of the thermal increases until the air parcel overshoots when its buoyancy becomes smaller than that of
the environment at t ≈ π. We can see that the vertical velocity w and the buoyancy b of the thermal undergo damped oscillations:
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� Before the overshooting happens, the thermal entrains colder air, which decreases the momentum and the buoyancy of the thermal.

� Once it has overshot, the air parcels are less buoyant than the environment, and they entrain warmer air as they sink back in the
�uid, increasing the momentum and the buoyancy of the thermal.

� Because of their inertia, the parcels sink down below the overshooting point, meaning that they are warmer than they environment,
which means that the oscillation can repeat itself.

A concrete application of the plume scaling laws has been to estimate the risk of stratospheric pollution during the Gulf War. Imagine
that oil wells are all set on �re for diverse reasons. Will the resulting plume enter the stratosphere if:

(a) The oil production of the country is 107barrels/day where 1barrel = 160kg.
(b) There are approximately 1000 active oil wells of roughly equal production.
(c) The heating value of gasoline is about 4.7.107J.kg−1.
(d) The surface air density is about 1.2kg.m−3 and its temperature is roughly 300K. The heat capacity at constant pressure of air

is about 103J.kg−1.K−1.
(e) The troposphere extends upwards to about 10kg and has an average buoyancy frequency of 10−2s−1.
If we compute the conservation laws for a plume in a �uid of constant strati�cation, we also get a nonlinear set of equations for

(w, b,R), but this time there are no analytical solutions which means that the equations need to be integrated numerically. From
the left of �gure 41, we can see that the plume ascends and spreads out above the overshooting level. Experiments allow us to get
more insight in the physics of the thermals of the plumes: for instance, we can see on �gure 43 that the thermals are self-similar at a
microscopic scale.

Figure 43: Successive photos of the descending thermal (left) and the same photo turned upside down (right)

Returning the left of �gure 43 gives the right of �gure 43, which is similar to an ascending cumulus cloud. The fact that we can't
deduce the orientation of the photo by looking at it proves the symmetry in thermal ascent/descent. Work has also been done on how
thermals expand with altitude and time: as we can see on the left of �gure 44 and from dimensional analysis we �nd z2 ∼ t. Observing
the motion of the parcels within the thermal shows that they undergo a toroidal motion (cf right side of �gure 44).

Figure 44: Successive outlines of thermals traced from photographs (left) and distribution of radial and vertical velocities in a thermal
obtained by observing the motion of particles within it (right)
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6 The Prandtl problem

6.1 Irrelevance of the Rayleigh-Bénard problem

Another case where dimensional analysis can be insightful is where the dimension of the buoyancy source is chosen to be in�nite. The
Rayleigh-Bénard problem, which has been stated at the very end of the nineteenth century, consists of a �uid of height H heated at
the bottom and cooled at the top, giving to the �uid a buoyancy b (cf left of �gure 45). It is the archetype of convection in classical
�uid dynamics.

Figure 45: Rayleigh-Bénard convection cell (left) not to be confused with Bénard Marangoni cells (right) that rely on the surface
tension of the �uid

Adding the mechanical di�usivity ν and the thermal di�usivity κ, Rayleigh-Bénard convection is governed by four dimensional
parameters in total: (H, b, ν, κ). According to the Pi theorem 55, the dependence of the problem can be reduced to two dimensionless
parameters:

� The Prandtl number:
Pr

def
=

ν

κ
(95)

� The Rayleigh number, proportional to the buoyancy b of the �uid:

Ra
def
=

bH3

νκ
(96)

Linear stability analysis proves that the system will become linearly unstable for Ra ≥ 27π4

4 . Consequently, convection cells will appear

in the �uid. From the most unstable wavenumber, it can be shown that the wavelength of the �rst cell to appear is λ = 2
√

2H. This
problem has received a lot of theoretical, numerical and experimental attention, and its details can be found all over the literature in
�uid dynamics and applied mathematics. However, because the Rayleigh-Bénard problem assumes two �at surfaces, there will always
be di�usive boundary layers, making the problem depend on the di�usivities (ν, κ). Even when experiments are done with Rayleigh
number as high as 1023, the energy dissipation and some scalings in the problem will always depend on those di�usivities. Because
geophysical boundaries are rough (ie fractal), atmospheric convection does not depend on molecular di�usivities in practice, which
explains why the rich literature on Rayleigh-Bénard problem does not necessarily help understanding atmospheric convection better.

6.2 Prandtl convective boundary layer

In 1925, Prandtl introduced a problem more relevant to atmospheric convection: a �uid is cooled at constant rate everywhere and
heated at its lower boundary, which produces a constant �ux of total buoyancy Fb [m2.s−3 ≡W.kg−1] (cf �gure 46).
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Figure 46: Schematic of the Prandtl problem

We make the Boussinesq approximation again, and suppose that the cooling eventually drives the �uid to be unstable. The
instability of the �uid leads it eventually to a statistically steady state where it is fully turbulent, so that the the buoyancy �ux per
unit area balances the vertically integrated sink of buoyancy imposed to the �uid; from the �rst law of thermodynamics:

Q̇ = −cp
Dθ

Dt
= −cpθ0

g

Db

Dt
(97)

where we have used the de�nition of buoyancy 73 and introduced the radiative heating rate of the cooling Q̇ [W.kg−1]. Integrating the
local balance 97 over an atmospheric column, we can relate the buoyancy �ux to the radiative heating rate:

Fb = − g

cpθ0

ˆ +∞

0

Q̇dz (98)

Because of this homogeneous cooling, the Prandtl problem is much more di�cult to set up in a laboratory, which might explain why
experimental studies of it are much less frequent. However, dimensional analysis is simpler in this case, as the rough boundary makes
the turbulence independent of the molecular di�usivities in practice. Dimensionally, we have two controlling parameters (Fb, z), and
two dimensions (L, T ). According to the Pi theorem 55, any variable of the system is controlled by 0 parameter and can once again be
written as a combination of the controlling parameters:

� The turbulent velocity scales like:
q ∼ (Fbz)

1
3 (99)

� The buoyancy scales like:

b ∼ (
F2
b

z
)

1
3 (100)

Similarly to the scaling found for plumes (cf scalings 57 and 60), there is a singularity for z → 0. For plumes, the explanation
was that the source is never a strict point. In the case of a rough surface, the explanation relies in the fact that it is impossible to
precisely de�ne z = 0 as the surface is fractal, and there is no singularity in practice as we always work above the rough surface.

� The buoyancy frequency scales like:

N2 =
g

θ0

dθ

dz
∼ (
Fb
z2

)
2
3 (101)

From the previous scaling 101, we can integrate the environmental potential temperature pro�le:

θ(z) = T0 − C1
θ0

g
F

2
3

b [(z0T )−
1
3 − z− 1

3 ] ⇔ Fb =

√
(z−1

0T − z−1)−1

C3
1

[
g

θ0
(T0 − θ∞)]3 (102)

where we have de�ned the thermal roughness length z0T and the reference temperature T0 such that θ(z0T ) = T0. C1 is an
integration constant.

From the environmental potential temperature pro�le 102, we can see that there is a �nite temperature di�erence between the ground
of temperature T0 and the constant temperature above the surface layer:

θ∞ = θ(z → +∞) = T0 − C1
θ0

g
(
F2
b

z0T
)

1
3 (103)
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we can express the buoyancy �ux above the surface layer:

Fb(z → +∞) =

√
z0T

C3
1

[
g

θ0
(T0 − θ∞)]3 (104)

The previous expression 104 is in a meteorological context to relate temperature di�erences to the surface buoyancy �ux. However, the
result strongly depends on how well the roughness length z0T is measured, making it a key parameter in the problem. The thermal
rough boundary is what makes the physics independent of the molecular di�usivities, which explains why the Prandtl problem is
relevant in a geophysical context. Except for the surface layer, which is quite small, the potential temperature (and thus the entropy)
is conserved with height, which is expected for a neutrally stable convective layer, and con�rmed by model aircraft measurements (cf
�gure 47).

Figure 47: Virtual potential temperature pro�le from aircraft measurements (Renno and Williams, 1995)

We can see that real pro�les are closer to convective neutrality than to radiative neutrality, con�rming the relevance of the Prandtl
problem to the atmosphere.

6.3 Mechanically generated turbulence

Now that we have a basic understanding of thermally generated turbulence, we are going to study shear-generated turbulence. Surface
turbulent �uxes are generally observed to be even more sensitive to shear instability than to convective instability. We adopt a very
similar setting than for the Prandtl problem:

� We consider a rough boundary of roughness length z0.

� We make the Boussinesq approximation for the �uid.

� However, this time, instead of a heat sink, we impose a �nite momentum source everywhere in the atmosphere, which accelerates
the �uid in the x−direction:

Ṁ =

ˆ +∞

0

α0
∂p

∂x
dz ⇒ [Ṁ ] = L2.T−2 (105)

where α0 is the incompressible speci�c volume and p the atmospheric pressure. Fluid accelerates in the x−direction. Because of this
momentum source and the no-slip condition at the ground, we expect the mean �ow u to increase with the height z. In equilibrium,
the momentum transfer to the �uid must be balanced by a downward �ux of momentum towards the ground: u′w′ = Ṁ . Once again,
we only have two controlling parameters (Ṁ, z) and two dimensions (L, T ); the Pi theorem 55 states that the physics are controlled by
zero dimensionless parameters.

� Unlike the case of thermally-generated turbulence, the velocity �uctuations do not depend on altitude:

u′ ∼
√
Ṁ (106)
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� The shear's scaling is given by:

du

dz
∼

√
Ṁ

z
⇒ du

dz
= C3

√
Ṁ

z
(107)

Integrating the previous equation 107 from the roughness length to an altitude z, we obtain a logarithmic velocity pro�le:

u = C3

√
Ṁ ln(

z

z0
) ⇔ Ṁ =

u

C3 ln( zz0 )
(108)

� Now consider a passive tracer ϕ with a source/sink everywhere in the atmosphere and a compensating sink/source at the ground,
given by:

Fϕ =

ˆ +∞

0

ϕ̇dz = Flux of ϕ through surface ⇒ [Fϕ] = [ϕ].L.T−1 (109)

We use dimensional analysis again to �nd the variations of ϕ with height:

[
dϕ

dz
] = [ϕ].L−1 ⇒ dϕ

dz
∼ Fϕ
z
√
Ṁ
⇒ dϕ

dz
= −C4

Fϕ
z
√
Ṁ

(110)

Integrating the previous relation from z′ = z0 to z′ = z:

ϕ = ϕ0 −
C4Fϕ√
Ṁ

ln(
z

z0
) ⇔ Fϕ =

√
Ṁ(ϕ− ϕ0)

C4 ln( zz0 )
(111)

In meteorology, it is hard to measure the very low wind at ground level. We thus measure it at an altitude za, which then allows us to
compute the �ux of any passive tracer ϕ at z = za if we know its mean value at this height ϕa:

u(za) = ua = C3

√
Ṁ ln(

za
z0

) ⇔ Fa =
ua(ϕ0 − ϕa)

C3C4 ln2( zaz0 )
(112)

When using formula 112, meteorologists and oceanographers are usually trying to obtain the �ux of a tracer from the value of the wind.
However, it is important to be cautious with causality. In our case, the wind is generated by the momentum source and the boundary
layer, and wind values not too far from the surface are strongly dependent on the boundary layer in practice, which makes the actual
problem more intricate than taking the wind as a given.

6.4 Competition between thermally and mechanically generated turbulences

In the real world, turbulence is both:

� Thermally generated by buoyancy �uxes Fb with dimensions L2.T−3.

� Mechanically generated by momentum sources Ṁ with dimensions L2.T−2.

From this two sources, it is possible to form a length scale, called the "Monin-Obukhov length":

L
def
= −Ṁ

3
2

Fb
(113)

Note the negative sign in the de�nition 113, so that L > 0 for a convectively stable surface layer where Fb < 0. During the day, we
expect Fb > 0 ⇒ L < 0, whereas we expect Fb < 0 ⇒ L > 0 during the night, so that L → ±∞ at dawn and dusk. Physically,
L allows us to separate between the dominance of thermally/mechanically generated turbulence: For z > L, thermally generated
turbulence dominates whereas shear generated turbulence dominates for z < L. In practice, |L| lies somewhere between the surface
and the top of the boundary layer. As L is usually fairly small, convection mostly feels shear turbulence. As we can see on �gure 48,
the typical pro�le of the physical quantities of interest lie between their thermal and mechanical limits.
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Figure 48: Typical pro�les of quantities in a convective boundary layer

As a consequence, we need to interpolate the quantities between their two limits, based on physical intuition and �eld experiments:

� The velocity �uctuations need to be interpolated between 99 and 106:

u′ ∼
√
Ṁ [1 + (

z

−L
)

2
3 ] (114)

� The buoyancy frequency needs to be interpolated between 101 and the z−derivative of 111:

N2 =
g

θ

dθ

dz
∼ − C4Fb

z
√
Ṁ

[1 + (
C4

C1
)3(

z

−L
)]−

1
3

Fields experiments have been done in the seventies and show that:

N2 ≈ −0.74

κ

Fb
z
√
Ṁ [1 + 9( z

−L )]
(115)

where we have introduced the Von Kármán constant:
κ = 0.41

A dimensionless way to compare the thermally to the mechanically driven turbulence is The gradient Richardson number, de�ned as
the ratio of the thermal to the shear gradient:

Ri
def
=

Thermal gradient

Shear gradient
=

N2

(∂u∂z )2
(116)

Miles theorem states that the �ow becomes unstable when the shear is large enough to make the Richardson number Ri < 1
4 .

In conclusion, dry convection is always turbulent, and except in speci�c cases, the convective boundary layer is driven by shear
instability/turbulence. Note that large scale wind blowing over the surface (measurable by an anemometer) reduces any kind of
turbulence, since it tends to radiate the kinetic energy away as gravity waves.

7 Molecular spectroscopy

7.1 Introduction

We now dig in the details of radiative transfer, and look at how the spectrum is produced by the molecular constituents of the
atmosphere. In particular, we remember the de�nition of the absorption coe�cient 20, which implies a sum on the molecules and the
energy level. From the absorption coe�cient, it is possible to compute molecular lines as precise as on �gure 49.

46



Figure 49: Example of molecular spectral signatures lying within the 8− 12µm atmospheric window

However, most geophysical models don't use such a sophisticated radiative scheme: for instance, the MIT GCM only has �ve bands.
In planetary science, radiation is very important and models such as HITRAN allow researchers to start o� with all the bands. In the
�eld of molecular spectroscopy, the wavenumber of electromagnetic radiation (not to be confused with the angular wavenumber used
in wave equations) is often used:

ν̃
def
=

E

hc
=

1

λ
=
ν

c
⇒ ν̃[cm−1] ≈ 104cm−1.µm

λ[µm]
(117)

For example, the absorption cross-sections are functions of the electromagnetic wavenumber; we have already seen the (CO2,CH4) ones
on �gure 24; other important molecular absorption cross-sections include (CO,H2O) (�gure 50)

Figure 50: Absorption cross-sections for Carbon Monoxide (left) and Water (right)

. If we look at the two bottom lines of the Carbon Monoxide spectrum, it is possible to see rotation features within the vibration
bands (from far they look equally spaced but we will see that they are not). Looking at the water vapor spectrum, we can see that
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molecular spectroscopy can quickly become complicated complicated as soon as the molecule is triatomic, because of all the rotational
and vibrational degrees of freedom. To compute the cross-sections from scratch, you have to take into account the line broadening for
each molecule, before �nding the contributions for each wavenumber, as detailed on �gure 51.

Figure 51: Method to compute the molecular cross-sections

Local thermodynamic equilibrium (LTE 3.2) is generally assumed, allowing us to use statistical mechanics to populate the di�erent
energy levels. However it is important to remember that LTE only applies when collision processes dominate over radiative e�ects,
which is not the case when the temperature is very low, such as for the 3K background radiation in space.

7.2 Preamble of spectra

Molecules have speci�c frequencies at which they rotate and vibrate, which produce the vibrational bands in which rotational lines are
embedded, as visible on the Carbon Dioxide's emission spectra (52).

Figure 52: Spectra of a CO2 atmosphere (left) and absorption cross-sections of O3 and molecular oxygen in the UV spectral region

Electronic transitions are important if one wants to compute the absorption cross-sections in the UV (right of 52).
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Figure 53: Observed IR spectrum displaying all the absorption gases

Looking at spectra from airplanes measurements on �gure 53, we can see that real-world spectra are extremely complex. For a class
of molecules, the complexity of the spectra increase with the size of the molecule:

Figure 54: The ν4 vibration-rotation band of methane (left) and the ν9 vibration-rotation band of ethane (right) recorded at high
spectral resolution

� The Methane (CH4) spectra are already much more complicated than those studied previously, because the molecule is polyatomic
and thus has many vibrational modes. This spectrum can be measured in laboratory.

� Ethane (C2H6) is even more complex, and exhibits a series of regulated branches in the 790− 850cm−1 region.

We now look at planetary spectra on �gure 55.
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Figure 55: Measured and calculated thermal emission spectra of Venus (left) and spectra of Jupiter and Saturn (right)

� Venus spectra show the di�erence between when they are observed and the �nal product where Earth atmospheric lines need to
be removed.

� We can see that the spectra of Jupiter and Saturn look quite similar. From the numerous lines, it is easy to understand why those
spectra are so hard to process/synthesize, which is why so many radiative codes are shared in the planetary science community.

7.3 Molecular energy levels

The Hydrogen energy levels (�gure 56) show that level correspond to a given energy and thus a given spectral series

Figure 56: Energy level diagram for a Hydrogen atom showing the quantum number n for each level and some transitions that appear
in the spectrum (left) and Hydrogen atomic lines (right)

. Molecular energy levels are much more complicated than Hydrogen electronic levels, since they have vibrational and rotational
transitions. If we assume that the electronic energy only depends on the positions of the nuclei, the potential energy distribution
function is a function of internuclear distance alone. Looking at this potential energy on �gure 57, we can see that within electronic
transitions, there are vibrational transitions and within them, there are rotational transitions.
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Figure 57: Potential energy as a function of the internuclear separation

Focusing on the internuclear separation x−axis of the graph, a high value corresponds to unbound electrons. The minimum of
potential energy occurs where attractive electromagnetic forces balance repulsive forces between the molecules. In order to interact
with the radiation �eld, molecules need to have a dipole moment −→p , de�ned by:

−→p def
= q
−−−−−→
M−M+ (118)

where q is the charge of the dipole, M− the barycenter of negative charges and M+ the barycenter of positive charges. That's why
Nitrogen and Oxygen, which are the main components of our atmosphere if you look at their mass concentration, have no radiative
roles because their permanent dipole moment is zero (otherwise the Earth would be very hot). Examples of molecular dipole moments
are given on �gure 58.

Figure 58: Three molecules with permanent dipole moments

Note that the molecule of Carbon Dioxide does not have a permanent dipole moment. However, dipole moment can be induced, as
electronic excitations can lead to asymmetric charge distributions and thus provide a net dipole moment to the molecule. Note that
molecules with �exible bonds such as Hydrogen (H2) can be rearranged by collisions, which can make them absorb radiation at high
pressure, as we can see on Jupiter and Saturn (collision induced absorption and emission which comes from inelastic collisions unlike
collisional broadening). Looking at �gure 59, we are reminded that:

� Molecular nitrogen (N2), the most abundant atmospheric constituent, has neither electric nor magnetic dipole moment and
therefore has no rotational absorption spectrum.

� Oxygen (O2) has no electric dipole moment. However, unlike other diatomic gases, it has a permanent magnetic moment, which
explains why it can have rotational absorption bands at 60GHz and 118GHz.

� Carbon dioxide (CO2) and methane (CH4) have no permanent electric nor magnetic dipole moments, and are therefore radiatively
inactive with respect to pure rotational transitions. However, bending vibrational motions can break the linear symmetry of the
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molecule and introduce an oscillating dipole moment whose presence permits combine vibration-rotation transitions at shorter
wavelengths.

� The vast majority of the other molecules found in Earth's atmosphere exhibit permanent electric dipole moments and therefore
also major rotational absorption bands.

Figure 59: Molecules with permanent electric dipole moment

7.4 Molecular rotational energy levels

To understand the basics of molecular rotational energy levels, we will adopt the rigid rotor approximation, depicted on �gure 60.

Figure 60: Rigid rotor approximation for a diatomic molecule
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A basic mechanics reminder can be found on �gure 61.

Figure 61: Rotational-Linear parallels (left) and Moment of inertia (right)

Following the notations de�ned on �gure 60, we know that the axis of rotation of the rotor will coincide with its center of mass,
which position is such that m1r1 = m2r2. The total distance is given by R = r1 + r2. For a two-body system, it is convenient to de�ne
a reduced mass:

m′
def
=

m1m2

m1 +m2
(119)

The moment of inertia of the system is then given by:

I
def
= m1r

2
1 +m2r

2
2 = m′R2 (120)

A classical rotor has no potential energy, only kinetic energy, given by:

Ec
def
=

m1v
2
1 +m2v

2
2

2
=
Iω2

2
=
L2

2I
(121)

where we have de�ned:

� The angular frequency of the rotor:

ω
def
=

v

R
(122)

� The angular momentum of the rigid rotor:

L
def
= m1ωr

2
1 +m2ωr

2
2 = m′ωR2 = Iω (123)

We now complete our classical mechanics model by adding one element of quantum physics: Via Schrödinger equation, we can prove
that the angular momentum of our rigid molecule can only take discrete values, given by:

L =
hj(j + 1)

2π
| j ∈ N (124)

where h is the Planck constant. Combining equations 121 and 124 gives us the discrete rotational energy levels in our model:

Ej =
Iω2

2
=
j(j + 1)h2

8π2I
⇒ Ej = Bj(j + 1) (125)
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where we have de�ned the rotational constant (in energy units):

B
def
=

h2

8π2I
(126)

There are two selection rules for rotational transitions:

1. A permanent dipole is required.

2. A change in level j is constrained by ∆j = ±1.

As a consequence, from 125 we �nd that the rotational energy levels (and hence the frequency levels) consist of a series of equally
spaced lines (equally spaced in energy/frequency/wavenumber not in wavelength) separated by:

∆E = Ej+1 − Ej = 2B(j + 1) (127)

The equal spacing in wavenumber can be seen on �gure 62, and can be seen within the vibrational bands of the CO on the left of �gure
50.

Figure 62: Rotational lines for a linear molecule

However, looking more closely at �gure 50, the spacing of the rotational lines decreases continuously as the wavenumber increases.
This can be explained by the fact that the centrifugal force between two atoms pulls them apart, increasing the rotor's moment of
inertia, and thus decreasing the value of B. This force increases with the quantum rotational number j, which explains why its potential
energy and thus the spacing between the lines decreases with increasing j/ν̃. To �nd the "envelope of rotational lines", we assume
local thermodynamic equilibrium, which means that the population of each level follows a Boltzmann distribution (see 21). Since there
are 2j + 1 rotational levels, the ratio of the population Nj at level j to the population N0 at the ground state is given by:

Nj
N0

= (2j + 1) exp[−j(j + 1)
B

kBT
] (128)

Figure 63:
Nj
N0

vs j for B
kBT

= 1.5% corresponding to room temperature for a typical linear diatomic molecule
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We can see that the previous ratio 128 is maximal for �nite j:

∂

∂j
(
Nj
N0

) = 0 ⇔ jmax ratio =
1√
2

(

√
kBT

B
− 1) (129)

and the theoretical curve 63 of
Nj
N0

corresponds to the shape of the vibrational-rotational band observed on �gure 50:

� First the ratio starts from 1 (j = 0) and increases until j = jmax ratio and then decreases until it becomes smaller than 1. This is
the part of the vibrational bands where the rotational lines are bigger and bigger.

� Then the ratio becomes smaller than 1, and goes towards 0 as j → +∞. This is the part of the vibrational bands where the
rotational lines are smaller and smaller.

Finally, one last noticeable thing on �gure 50 is that the rotational bands have black lines close to them. It corresponds to di�erent
isotopes of the same molecule which have slightly di�erent rotational wavenumbers.

7.5 Molecular rotational-vibrational lines

In a linear diatomic molecule, all vibratory motions takes place along the line joining the atom: the atoms are in periodic motion with
respect to their center of mass. As the molecules vibrates, rotational modes are also excited. However, we'll ignore rotation for now
and only consider the discrete vibrational levels depicted by regular horizontal lines on �gure 57.

7.5.1 Vibrational energy levels

To have a conceptual understanding of vibrational energy levels, we will once again use a simple mechanical analog: a mass attached
to a spring of sti�ness k (cf left of �gure 64). For a small displacement z, the restoring force of a linear spring is simply given by
Fspring = −kz, corresponding to a potential energy:

V = −
ˆ z

0

Fsping(z′)dz′ =

ˆ z

0

kz′dz′ =
kz2

2
(130)

. Applying Newton's second law to the mass m, its acceleration is given by:

d2z

dt2
=
Fspring + Fgravity

m
= − k

m
z − g (131)

so that the deviation of the spring from its equilibrium position z′ = z + mg
k veri�es the harmonic oscillator equation:

d2z′

dt2
+ (2πν0)2z′ = 0 ⇒ z′ = A cos(2πν0t− φ) (132)

where we have introduced the natural frequency of the oscillator:

ν0
def
=

1

2π

√
k

m
(133)

as well as the amplitude A and the phase φ of the oscillation at the initial time t = 0. A harmonic solution analogous to the one found
in 132 is plotted on the right of �gure 64.

Figure 64: Mass-spring model (left) and simple harmonic motion of angular frequency ω and amplitude A (right)
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To make an analogy with a diatomic molecule, we need to replace k with the bond force constant and m with the reduced mass of
the molecule. Once again, we complete our mechanics model by borrowing one element from quantum physics: the energy levels are
discrete, and their value Ev for a given vibrational level v is given by:

Ev = hνv = h(v +
1

2
)ν0 (134)

The energy levels of the oscillator, depicted on �gure 65, are populated following Boltzmann distribution 21:

Nv
N0

= exp(−v hν0

kBT
) (135)

Figure 65: Potential energy of the harmonic oscillator and vibrational levels

In reality, the potential energy is not strictly a parabola and the oscillator is anharmonic. This changes the selection rules: all the
integral changes of the quantum numbers are allowed. For example, ∆v = 2 gives the �rst overtone band from the ground state v = 0 to
the state v = 2, with twice the frequency of the fundamental mode. Simultaneous changes in two di�erent vibrational quantum numbers
give rise to combination/di�erence bands with frequencies that are the sum/di�erence of the fundamental frequencies. However, these
are small transitions, negligible compared to the strong bands generated by the fundamental transitions.

7.5.2 Vibrational modes

To �nd the number of vibrational energy levels of a polyatomic molecule constituted by N nuclei, we note that each nuclei can move in
the three spatial directions, giving 3N degrees of freedom. However, 6 of those degrees correspond to the molecular motion as a whole
(the three coordinates of the center of mass and the three angles de�ning its orientation in space), so that:

� For N > 2, the total number of vibrational degrees of freedom is 3N − 6.

� For a linear diatomic molecule N = 2, only two angles are needed to specify orientation and the number of vibrational degrees of
freedom is 3N − 5 = 1.

For example, methanol CH4O has 6 atoms and thus 18 − 6 = 12 vibrational modes. Three examples of molecules are given on �gure
66.

Figure 66: Vibrational states of H2O (left), O3 (middle) and CO2 (right)

7.5.3 P and R rotational-vibrational branches

In reality, rotational transitions always accompany vibrational transitions. Imagine that an electron goes from a vibrational level v (the
"ground state") to a vibrational level v+1 (the "excited state") on �gure 7.3, which requires an energy hν0. There are three possibility
for its rotational transition, remembering the constraints on the quantum rotational number j studied in 7.4:

56



� ∆j = +1, ie the rotational number in the ground state is more than the rotation number in the excited branch. This branch is
called the R-branch for " rich" , and the energy transition is given by:

∆ER = hν0 +B[(j + 1)(j + 2)− j(j + 1)] = hν0 + 2B(j + 1) (136)

� ∆j = −1, ie the rotational number in the ground state is less than the rotational number int eh excited state. This branch is
called the P-branch for "poor", and the energy transition is given by:

∆EP = hν0 +B[j(j − 1)− j(j + 1)] = hν0 − 2Bj (137)

� ∆j = 0, ie the rotational number in the ground state is the same than the rotational number in the excited state. This branch is
called the Q-branch (because Q is between P and R) and the energy transition is given by ∆EQ = hν0. For ν0 6= 0, this transition
is not allowed for diatomic molecules and the Q-branch is thus not observable for diatomic molecules in practice.

Note that in wavenumber space, the lines are separated by a distance 2B
hc , allowing us to compute the rotational constant of a molecule

by simply looking at its rotational-vibrational lines. Example of such lines can be found on �gure 67.

Figure 67: Rotational-vibrational lines schematic (left) and for Carbon Monoxide (right)

Those lines can also be observed on the cross-sections of Carbon Monoxide and Water 50. Rotational-vibrational lines of many
molecules can be found on the HITRAN website [http://www.hitran.com/].

7.5.4 Summary

To summarize, the selection rules for vibrational-rotational transitions are reminded below on the left �gure 68 for a given electric
dipole moment −→µ . This gives rise to the P and R branches on the right of �gure 68, which vibrational-rotational frequencies are given
by:

νvib−rot = ν0 +
2B

h


j + 1 [R branch ≡ Vib rise + Rot rise]

0 [Q branch ≡ Vib rise + Rot unchanged]

j [P branch ≡ Vib rise + Rot fall]

(138)
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Figure 68: Selection rules for vibrational-rotational transitions (left) and rotational-vibrational lines (right)

7.6 Line broadening

7.6.1 Cross-section

For a given molecule at a given frequency, the cross-section σ [in m2/molecule] is given by:

σν̃ = Sf(ν̃ − ν̃0) (139)

where:

� ν̃ is the electromagnetic wavenumber and ν̃0 is the wavenumber of an ideal monochromatic line.

� S is the line strength, which normalized the cross-section over all electromagnetic wavenumbers:

S
def
=

ˆ +∞

−∞
σν̃dν̃ (140)

� f is the normalized broadening function, as all the lines are broadened in nature (δ−functions are never observed):

1 =

ˆ +∞

−∞
f(ν̃ − ν̃0)dν (141)

7.6.2 Overview of line broadening

In nature, monochromatic emission is practically never observed: energy levels during energy transitions are changed slightly:

� By external in�uences

� Due to natural, Doppler and/or collisional broadening

Consequently, we always observe spectral lines of �nite width, which position, strength and shape are a�ected by broadening. In
general, line broadening is associated to a loss of information, as rotational lines are at least blurred if not merged.

Figure 69: Three types of broadening (left), transformation of absorption spectrum by broadening (middle)
Right: Absorption coe�cient of O2 near 60GHz at 100mb where the individual lines making up the absorption band are visible and at
1000mb where pressure broadening obliterates the line structure.
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7.6.3 Natural broadening

Natural broadening occurs because of Heisenberg's uncertainty principle applied to the energy of the upper and lower energy levels of
transition. It is a purely quantum e�ect, and can only be observed in the absence of collisions (ie a single molecule). According to the
uncertainty principle, the momentum and position of a particle (or alternatively its energy/frequency and the time of emission) can
not be measured simultaneously because of its wave nature:

∆p∆x ≥ h

4π
⇒ ∆ν∆t ≥ 1

2π
(142)

From relation 142, we can see that there will be a natural spread in frequency ∆ν "the natural broadening of the line", especially
when the time of emission ∆t is small. The time of emission depends on how long the atom/electron stays in the excited state before
emitting a photon, which is determined by quantum physics (cf �gure 70).

Figure 70: Desexcitation of an atom and consequences on natural broadening

For instance, for a strong (allowed) transition in the IR, a typical lifetime is ∆t = 10−1s, corresponding to the following spread in
electromagnetic wavenumber:

∆ν̃ =
1

2πc∆t
∼ 10−10cm−1 (143)

7.6.4 Doppler broadening

Doppler broadening arises from di�erence in thermal velocities of atoms and molecules. We remember the Doppler e�ect, arising when
a wave source is moving away from/towards the observer at a velocity v which decreases/increases the perceived the initial frequency
ν0 of the wave depending on the angle θ between the ray and the motion of the source:

ν = ν0(1 +
v cos θ

c
) (144)

Figure 71: Doppler e�ect distorting the lines of constant phase emitted by the source moving upwards

To quantitatively understand the Doppler broadening using kinetic gas theory, we introduce the Doppler shift 144 in the Maxwell-
Boltzmann distribution of velocities, and normalize the result to �nd the following normalized broadening function:

fD(ν − ν0) =
1√
παD

exp[−(
ν − ν0

αD
)2] (145)
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We have introduced the following frequency:

αD
def
= ν0

√
2kBT

mc2
(146)

which multiplied by
√

2 ln 2 is the half-width at half-max of the pro�le. Roughly speaking, the Doppler broadening broadens the
spectral line to make it Gaussian because the velocity pro�le of the molecules is Gaussian. As the mean speed of the molecule scales
like
√
kBTm−1, the line width increases with temperature and decreases with molecular mass. However, a Maxwellian distribution of

velocity only applies without any external in�uence, and we do not expect it to hold for the troposphere and the stratosphere where
collisions are important.

7.6.5 Collisional or Lorentz broadening

To construct the pro�le resulting from collisional broadening, we assume that the molecular collisions are instantaneous, and that
they change the phase of the molecular wave-train in a random manner, "smearing out" the emitted frequencies about the nominal
frequency ν0. If we assume that the molecular wave-trains are harmonic oscillators, and that the time between collisions has a Poisson
distribution with a given mean t0, it can be shown that the collisional broadening function is given by a Lorentz pro�le:

f(ν − ν0) =
1

π

α

(ν − ν0)2 + α2

where we have introduced the half-width at half-maximum, that can be once again computed from kinetic gas theory:

α = α0
p

p0
(
T0

T
)n

The subscript 0 refers to standard temperature and pressure (p0 = 1013mb, T0 = 273K). The parameters (α0, ν0) are not always
well-measured and understood, especially for atmospheres of other planets. The Lorentz line shape has two notable de�ciencies:

1. The far wings of actual absorption lines (ν small or large) have been found to be poorly represented by this shape.

2. The shape is only valid when α� ν0.

This pro�le works reasonably well in the lower atmosphere, where high pressures make the Lorentz broadening dominant. However,
in the upper atmosphere (20− 50km), Doppler and Lorentz broadenings are both important, leading to a convolution of both pro�les:
the Voigt pro�le:

fVoigt(ν − ν0) =

ˆ +∞

−∞
f(ν′ − ν0)fD(ν − ν′)dν′ =

1

π
3
2

α

αD

ˆ +∞

−∞

dν′

(ν′ − ν0)2 + α2
exp[−(

ν − ν′

αD
)2] (147)

It is possible to simplify the Voigt pro�le 147 by switching to dimensionless variables:

t =
ν − ν′

αD

y =
α

αD

x =
ν − ν0

αD

fVoigt(ν − ν0) =
K(x, y)√
παD

leading to:

K(x, y) =
y

π

ˆ +∞

−∞

exp(−t2)dt

y2 + (x− t)2
(148)

8 Moist convection

8.1 Introduction

Moist convection takes into account the fact that water changes phase in the atmosphere. Two important things to remember are:
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1. That the latent heat of vaporization Lv ≈ 2.5.106J.kg−1 is a very high number, making phase change an important event
energetically. As phase changes generally imply thermodynamic equilibrium, it is possible to rede�ne entropy for a mixture of
air and liquid water, which will make our stability considerations much easier.

2. Precipitation of water is an irreversible phenomenon, as it falls down and not up, creating entropy and drying the atmosphere
down, making it sub-saturated. Fallout of precipitation is very important, as well as the fact that condensation is heterogeneous
in the atmosphere, making it possible for small sub-saturation values.

Moist convection signi�cantly di�ers from dry convection qualitatively and quantitatively, making it a challenging and interesting
atmospheric science problem.

8.2 Moist thermodynamics

8.2.1 De�nitions

We now need to take into account the highly variable water vapor and liquid water content to write the ideal gas law. Combining the
ideal gas law incorporating moisture 45 with the de�nition of density temperature Tρ 47:

α =
RdTρ
p

(149)

where we remember that α is the speci�c volume, p the pressure and Rd the speci�c gas constant of dry air. We introduce the speci�c
humidity, de�ned as the mass concentration of water vapor:

q
def
=

Mv

Md +Mv
=

r

1 + r
=

εe

p− (1− ε)e
(150)

where we have used the de�nition of the mixing ratio 43, the ratio of the molecular weight of water vapor to the molecular weight of
dry air 44 and Dalton's law 42. Another important quantity is the relative humidity, de�ned as the ratio of the water vapor partial
pressure to its saturation value:

H def
=

e

e∗
≈ q

q∗
(151)

We use the subscript ∗ to denote saturated variables.

8.2.2 Thermodynamics of moist but unsaturated air

For a constant volume process, the de�nition of the speci�c heat of dry air cvd and water vapor cvv at constant volume allow us to
write:

(Md +Mv)Q̇ = (Mdcvd +Mvcvv )Ṫ (152)

This leads us to introduce:

� The mass-weighted speci�c heat of air at constant volume:

c′v
def
= (

∂Q

∂T
)α = cvd

1 + r
cvv
cvd

1 + r
(153)

� The mass-weighted speci�c heat of air at constant pressure:

c′p
def
= (

∂Q̇

∂T
)p = cpd

1 + r
cpv
cpd

1 + r
(154)

Neglecting the mass of liquid water in 35 allows us to relate the speci�c volume of air and the speci�c volume of dry air:

α =
αd

1 + r
(155)

so that the �rst and second thermodynamic identities become:

δQ = c′vdT +
p

1 + r
dαd = c′pdT − αdp (156)

According to 156, the natural quantity conserved under adiabatic displacements (δQ = 0) is the potential temperature de�ned by:

θ
def
= T (

p0

p
)
R′
c′p ≈ T (

p0

p
)
Rd
cpd (157)
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where we have generalized the speci�c gas constant for moist air:

R′
def
=

Rd + rRv
1 + r

(158)

It is sometimes more convenient the density potential temperature, which is an adiabatic invariant that can be directly related to
buoyancy:

θρ
def
= Tρ(

p0

p
)
Rd
cpd (159)

8.2.3 Phase transitions

The phase diagram of water substance can be found on �gure 72.

Figure 72: Phase diagram of water substance

Water is one of the few substances where the partial pressure of the liquid/solid equilibrium decreases with temperature, with
important atmospheric consequences. Before proving two fundamental laws in phase transition, we introduce Gibbs free enthalpy aka
Gibbs potential:

g
def
= k − Ts = k + pα− Ts (160)

where we use the notations introduced in paragraph 4.3. Taking the di�erential of de�nition 160 and using the second thermodynamic
identity 49, we derive the fourth thermodynamic identity:

dg = αdp− sdT (161)

Cross-di�erentiating 161 and using Schwartz theorem for partial di�erentials gives another useful Maxwell relation:

[
∂

∂T
(
∂g

∂p
)T ]p = [

∂

∂p
(
∂g

∂T
)p]T ⇒ (

∂α

∂T
)p = −(

∂s

∂p
)T (162)

We now study the energetics of phase transition, and introduce the latent heat of the phase change i→ ii:

Li,ii
def
= kii − ki (163)

where ki and kii are the speci�c enthalpy of the substance in phases i and ii at the equilibrium point. Physically, Li,ii represents the
energy per unit mass that needs to be transferred to the substance at constant temperature and pressure to change from phase i to
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phase ii. The speci�c enthalpy is a thermodynamic state variable and we can write it as k(T, p). According to de�nition 163, the
di�erential of latent heat can be written:

dLi,ii = dT [(
∂kii
∂T

)p − (
∂ki
∂T

)p] + dp[(
∂kii
∂p

)T − (
∂ki
∂p

)T ] (164)

� By de�nition of the speci�c heat at constant pressure:

cp
def
= (

∂k

∂T
)p (165)

� Using the thermodynamic identity 50 and the fourth Maxwell relation 162:

(
∂k

∂p
)T = α+ T (

∂s

∂p
)T = α− T (

∂α

∂T
)p

For an ideal gas verifying the equation of state 39:

T (
∂α

∂T
)p = α ⇒ (

∂k

∂p
)T = 0 (166)

For a more general substance, (∂k∂p )T is not strictly zero but very small.

Combining di�erential 164 with de�nition 165 and equation 166, we obtain Kirchho�'s law for the latent heat:

dLi,ii = dT [cp,ii − cp,i] (167)

Kirchho�'s law is strictly valid for an ideal gas, and approximately valid for a more general substance. Kirchho�'s law 167 tells us
how latent heat varies with temperature; for instance the latent heat of vaporization of water decreases with temperature because
cl > cpv where cl is the speci�c heat capacity of liquid water. To study how the pressure varies with temperature for a phase change
i→ ii, we remember that during a phase change, the system is:

� In thermal equilibrium:
Ti = Tii (168)

� In mechanical equilibrium:
pi = pii (169)

� In chemical equilibrium:
gi = gii (170)

According to the fourth thermodynamic identity 161:

αidp− sidT = αiidp− siidT

(
dp

dT
)i,ii =

sii − si
αii − αi

(171)

Using the de�nition of latent heat 163, the de�nition of speci�c enthalpy, and the thermal equilibrium 168:

Li,ii = kii − ki = T (sii − si) (172)

Combining equations 171 and 172 leads to Clausius-Clapeyron relation:

(
dp

dT
)i,ii =

Li,ii
T (αii − αi)

(173)

Clausius-Clapeyron relation 173 allows us to determine the signs of the lines separating the di�erent phases on the water phase diagram
72:

� As ice is less dense than liquid water (very special property of water) αice > αl ⇒ (de
∗

dT )ice,l < 0 which explains why (DO) has a
negative slope.

� As water vapor is less dense than liquid water αv > αl ⇒ (de
∗

dT )l,v > 0 which explains why the line (OC) has a positive slope.

63



More speci�cally, for the transition from liquid water to water vapor, Clausius-Clapeyron relation 173 yields:

(
de∗

dT
)l,v =

Lv
T (αv − αl)

≈ Lv

Tαv
(174)

where we have introduced the latent heat of vaporization of water Lv and used the fact that αv � αl. The ideal gas law for water
vapor can be written:

e∗αv = RvT (175)

where we have introduced the speci�c gas constant for water vapor Rv. Combining equations 174 and 175, we obtain Clausius-Clapeyron
relation for ideal water vapor:

(
de∗

dT
)l,v =

Lve
∗

RvT 2
(176)

We can integrate the previous relation 176 if we neglect the variations of the latent heat Lv with temperature:

ˆ e∗(T )

e0

de

e
=
Lv
Rv

ˆ T

T0

dT ′

T ′2
⇒ e∗(T ) ≈ e0 exp[

Lv
Rv

(
1

T0
− 1

T
)] (177)

Formula 177 shows that the saturation pressure of water vapor exponentially with temperature. However, it deviates signi�cantly from
observations, not only because we have assumed that the ideal gas law holds and neglected the speci�c volume of liquid water, but more
importantly because we have neglected the variations of Lv with T , which according to Kirchho�'s law 167 is equivalent to making the
false assumption cl ≈ cpv . As a consequence, we need to use semi-empirical expressions for the saturation water vapor pressure e∗ that
require laboratory experiments, such as Bolton's formula:

e∗(T ) = (6.112hPa) exp(
17.67T [°C]

243.5 + T [°C]
) (178)

Bolton's formula implies a doubling of the saturation water vapor pressure every 10°C. The reference pressure 6.112hPa is the triple
point pressure as we can see on �gure 72. The triple point is not too far from Earth standard temperature and pressure, which is not a
coincidence as life on Earth relies on the coexistence of the three phases of water. In the atmosphere, condensation is a subtle process
(responsible of the formation of dew, fog, clouds...), which happens mostly through adiabatic ascent:

� First, the partial pressure e of water vapor, that we can compute using Dalton's law 42:

e
def
= p− pd = p

r

r + ε
(179)

needs to reach its saturation value e∗(T ). As an air parcel ascends in the troposphere, there are two competing e�ects: the total
pressure p decreases, which decreases e through 179. However, the temperature also decreases, which decreases e∗ through 176.
It can be proven that e∗ decreases faster than e as long as the system lies below and on the left of the critical point in the phase
diagram 72 (it is always the case in the atmosphere), so that the water vapor in the parcel eventually condensates.

� Then, the condensation process needs to occur. A certain energy is needed as the surface tension energy of the water droplet needs
to be provided. This energetic barrier requires high level of supersaturation for this process to occur spontaneously (homogeneous
nucleation). However, the atmosphere is full of aerosols, which are very good Cloud Condensation Nuclei (CCN) because of their
physical properties, and heterogeneous nucleation dominates in the atmosphere, which explains why supersaturation is practically
never observed. To be more precise, the CCN decrease the saturation pressure needed to saturation pressure e∗ required to
condensate, which can be quantitatively assessed by looking at Köhler's curves on �gure 73. Whenever the slop is positive, the
droplet is stable whereas it is unstable and grows when the slope is negative, until it reaches its nucleation peak. To summarize,
condensation can indeed be approximated as instantaneous for all practical purposes and the relative humidity is always smaller
than 1: H ≤ 1.
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Figure 73: Köhler's curves: Variations of the relative humidity and supersaturation of the air adjacent to droplets of (1) pure water
and solution droplets containing higher �xed masses of salts (2→ 6)

As a consequence, liquid water and water vapor are very close to equilibrium in the atmosphere. It happens that all these aerosols
which are very good condensation nuclei are very poor freezing nuclei. The good freezing nuclei are scarce in the atmosphere and their
concentration is highly variable from place to place, which explains why liquid water and ice are not in equilibrium in the atmosphere.
As a consequence, liquid water exists below the freezing point in the atmosphere: this phenomenon is referred as supercooling and is
depicted on the phase diagram of water 72. An alternative to adiabatic ascent for condensation is adiabatic mixing of two samples.
Let's consider the example of two unsaturated air samples in (T, q) space, as depicted on �gure 74.

Figure 74: Adiabatic mixing of two unsaturated samples 1 and 2, which approximately mix along the dotted line. The full line represents
the saturation speci�c humidity pro�le q∗(T ).

After they mix adiabatically, the �nal speci�c humidity and temperature of the sample will approximately be the mass-weighted
average of the initial speci�c humidities and temperatures of the two samples (true if e� p). Consequently, the �nal mixture will lay
on the dotted line (1− 2) in (T, q) space on �gure 74. Because of the nonlinearity of Clausius-Clapeyron, the speci�c humidity pro�le
q∗(T ) will approximately be exponential as according to equations 150 and 177:

q∗ =
εe∗

p− (1− ε)e∗
≈ ε

p0
e∗(T ) ≈ εe0

p0
exp[

Lv
Rv

(
1

T0
− 1

T
)] (180)

As a consequence, we can see on �gure 74 that the �nal mixture will most likely be supersaturated, which means that it will condensate.
This is why you can see your breathe condensate on a cold day when the hot air coming from your mouth mixes almost adiabatically
with the environmental cold air. Another problem to understand in the atmosphere is: When the droplets form, how do they get big
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enough to fall out from clouds. The maximal size of a droplet can be obtained from a balance between gravity and surface tension,
leading to the de�nition of the capillarity length:

`c
def
=

√
σ

(ρl − ρd)g
(181)

We have introduced the surface tension σ : For water the typical value at standard pressure and temperature is 0.07N.m−2, which
means that the typical upper bound for a droplet's size will be `c ≈ 3mm, corresponding to a terminal fall velocity of 5 − 10m.s−1.
Several processes can lead to the formation of droplets that will rain:

� The Bergeron-Findeisen process: When the cloud top is cold enough for ice crystals to form, if they fall in supercooled
water, they will grow rapidly. The presence of supercooled water is very common in cold clouds, as we can see on the sounding
depicted on �gure 75, where almost no ice crystals are observed in the −5°C − 0°C range although the temperature is below
the freezing point. The ice crystals will then melt near the ground if the temperature is high enough, and fall out as rain. We
have not considered the ice phase in this class, which is an almost reasonable approximation as the latent heat of fusion is only
one eighth of the latent heat of vaporization. However, it is impossible to accurately understand the physics of the small water
droplets resulting from the Bergeron process without considering the ice phase, making it a crucial microphysical element.

� The stochastic coalescence process: In tropical islands, shallow clouds rains although their cloud-top temperature is above
the freezing point of water. Rain is actually formed by the random collision of droplets; the e�ciency of this process is strongly
dependent on the distribution of the droplets sizes. Near the ocean, the aerosols size distribution has a large variance, which
explains why this process is dominant in warm islands. In the continents where the particles are numerous but mono-dispersed,
this process is much less e�cient and the clouds grow to a much bigger size before raining.

Figure 75: Percentage chance of ice being detected in clouds as a function of the cloud top temperature.

The previous considerations prove that it is impossible to study convection without cloud microphysics if we want to understand
phase changes in the atmosphere.

8.2.4 Adiabatic invariants for moist isobaric processes

Since liquid water can be considered to be in thermodynamic equilibrium with water vapor, we can derive a minimal set of conserved
variables to be used in moist thermodynamics. At constant pressure, the enthalpy is by de�nition conserved for adiabatic (not necessarily
reversible) transformations. In an atmospheric context, it is convenient to normalize variables by using the total mass of dry air, as we
have done in paragraph 4.2:

Mdk = Mdkd +Mvkv +Mlkl

Using the de�nition of the mixing ratio previously introduced in 43, we can write the speci�c enthalpy k as:

k = kd + rkv + rlkl = kd + r(kv − kl) + rT kl = (cpd + clrT )T + Lvr (182)

where we have:

� Introduced the mixing ratio of liquid water:

rl
def
=

Ml

Md
(183)

� Used the de�nition 163 of latent heat:
kv − kd

def
= Lv (184)
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� Used the de�nition 165 of the speci�c heat at constant pressure.

Note that we could have eliminated r instead of rl in equation 182, giving the following expression for the speci�c enthalpy:

k = (cpd + cpvrT )T − Lvrl (185)

From 182, it is possible to derive a set of more simple variables, which are almost conserved and very commonly used. We start by
taking the derivative of the second thermodynamic identity 49 in time:

T
Ds

Dt
= Q̇ =

Dk

Dt
+ α

Dp

Dt
(186)

Here, Q̇ is the diabatic heating, which does NOT include latent heating; in the atmosphere Q̇ is usually dominated by the radiative
heating. In moist thermodynamics, latent heating should not be treated as an external heat source and moisture needs to be incorporated
in the conservation statement. Multiplying 186 by the density ρ = α−1

d and using equation 35 to relate α to the density, we obtain our
moist thermodynamic equation:

ρQ̇ = ρ
D

Dt
[(cpd + rT cl)T + Lvr]− (1 + rT )

Dp

Dt
(187)

We now need to express Dp
Dt using the dynamics of the �uid; we naturally start with the Navier-Stokes equation:

ρ
D−→v
Dt

= −
−→
∇p+ ρ−→g + ρ

−→
F (188)

Taking the dot-product of 188 with the velocity �eld −→v gives an equation for the evolution of the kinetic energy:

ρ
D

Dt

|−→v |2

2
= −−→v ·

−→
∇p− ρgw + ρ−→v ·

−→
F = −−→v · (∂p

∂t
− Dp

Dt
)− ρgDz

Dt
+ ρ−→v ·

−→
F (189)

where we have used the notations introduced in section 4.1. Combining equations 187 and 189 allows to eliminate Dp
Dt and leads to an

equation for the total energy of moist air:

DE
Dt

= Q̇︸︷︷︸
Diabatic heating

+−→v ·
−→
F︸ ︷︷ ︸

Friction

+
1 + rT
ρ

∂p

∂t︸ ︷︷ ︸
Wave radiation term

(190)

where the total energy of moist air is de�ned to be:

E def
= (1 + rT )

|−→v |2

2︸ ︷︷ ︸
Kinetic energy

+ (cpd + rT cl)T + Lvr︸ ︷︷ ︸
Enthalpy

+ (1 + rT )gz︸ ︷︷ ︸
Pontential energy

(191)

Note that the kinetic energy and the wave radiation term are not Galilean invariant quantities, and make it hard to conserve energy in
numerical models of the atmosphere. Thu usual approximation is to neglect the kinetic energy, typically smaller than the other terms
by a factor of 100 (eg lifting a parcel only 5m up in the atmosphere gives a potential energy that corresponds to a kinetic energy of
velocity 10m.s−1, which is the order of magnitude of the wind velocity in the atmosphere). To not generate inconsistent energy, we
often use the Moist Static Energy (MSE) as our energy variable:

h
def
= (cpd + rT cl)T + Lvr + (1 + rT )gz (192)

Neglecting the wave radiation term in 190, the MSE equation reduces to:

Dh

Dt︸︷︷︸
Evolution MSE

≈ Q̇︸︷︷︸
Diabatic heating

+−→v ·
−→
F︸ ︷︷ ︸

Friction

(193)

which means that MSE is conserved for frictionless and adiabatic motion. However, it is not strictly speaking an adiabatic invariant
because we have neglected the kinetic energy and the wave radiation term in equation 190. This has to be taken into account when
studying hurricane physics, where the kinetic energy term is not small. Another common quantity is the Dry Static Energy (DSE),
where condensation is not taken into account, and the mixing ratios are constant (r = rT = Constant):

hd
def
= (cpd + rcl)T + gz (194)
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The de�nition of DSE 194 gives a very straightforward way of computing the dry adiabatic lapse rate 54. Indeed, we simply need to
de�ne the lapse rate as the variation of temperature with altitude at constant DSE:

Γ
def
= (

∂T

∂z
)hd = − g

cpd + rcl
≈ 1°C

100m
(195)

If we de�ne the speci�c enthalpy using equation 185 instead than equation 182, the equivalent of the moist static energy is the liquid
water enthalpy:

hw
def
= (cpd + rT cpv )T − Lvrl + (1 + rT )gz (196)

which involves the liquid water mixing ratio rl rather than r. Note that the moist static energy 192 and the liquid water enthalpy 196
are only approximately conserved for isobaric adiabatic processes. If the process is adiabatic and reversible but not isobaric, enthalpies
are not conserved anymore and it is convenient to introduce entropy-variables.

8.2.5 Adiabatic invariants for moist reversible processes

We have seen that liquid water and water vapor can be assumed to be in thermodynamic equilibrium in the atmosphere to a reasonable
approximation. We want to write the moist entropy s as a function of the (T, p, r, e). In that purpose, we remember that the moist
entropy can be de�ned as the mass-weighted sum of the dry air entropy, water vapor entropy, and liquid water entropy:

s
def
= sd + rsv + rlsl = sd + r(sv − sl) + rT sl = sd + r(s∗v − sl) + r(sv − s∗v) + rT sl (197)

s = [cpd + rT cl] ln(
T

T0
)−Rd ln[

p

p0

1 + rT
1 + r

ε

] +
Lvr

T
− rRv lnH (198)

where we have used:

� Equation 172 to write:
Lv = T (s∗v − sl)

� The de�nition 68 of dry entropy.

� The de�nition of water vapor entropy:

sv
def
= cp ln(

T

T0
)−Rv ln(

e

e0
) (199)

leading to:

sv − s∗v = −Rv ln(
e

e∗
) = −Rv lnH

where we have used the de�nition of the relative humidity H.

� Dalton's law 42 to express pd as a function of p.

From the de�nition of speci�c enthalpy and entropy, it is possible to derive moist Maxwell relations, including the addition and
subtraction of water mass. Di�erentiating 182 and eliminating (dT, dr) for (ds, dp) by using the di�erential of the moist entropy
de�nition 197, we obtain:

dk = Tds+ clT (1− lnT )drT + αddp (200)

Here, we have chosen the entropy constant s0 such as to eliminate the temperature constant T0. By cross-di�erentiating equation 200
and using Schwartz theorem as we have done to prove the dry Maxwell relations 51 and 162, we obtain the moist Maxwell relations:

(
∂T

∂p
)s,rT = (

∂αd
∂s

)p,rT (201)

(
∂T

∂rT
)p,s = −cl lnT (

∂T

∂s
)p,rT (202)

(
∂αd
∂rT

)p,s = −cl lnT (
∂T

∂p
)s,rT (203)

Entropy has to be treated carefully, as many processes are irreversible. The evaporation of water into unsaturated air corresponds to
a �nite jump of the mixing ratio r for a small displacement of air, which is an irreversible source of entropy. If we assume a global
energy balance for planet Earth and do a global entropy budget, the fact that radiation absorbed at a higher temperature than it is
emitted back means that entropy is created. The biggest sources of created entropy on Earth are actually:

1. Mixing in the cloud boundary layers.
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2. Frictional rain dissipation (≈ 10%).

Frictional wind dissipation constitutes less than 1% of the created entropy. From this entropy budget, we can �nd very loose upper
bounds for di�erent types of renewable energy. Solar energy is limited by the solar constant, whereas wind energy would never reach
more than 1% of the incoming solar energy. As frictional rain dissipation constitutes roughly 10% of the entropy budget, the upper
bound of hydrological renewable energy lays between the two previous bounds.

8.3 Stability to motions involving phase transitions

8.3.1 Buoyancy of a moist cloudy sample

We have assessed the stability of a dry sample in 4.3. We now want to assess the stability of a moist cloudy sample ( a sample that
contains water vapor and liquid water). Because of the presence of moisture, the speci�c volume is now a state variable that depends
on three variables. Choosing pressure, entropy, and the total mixing ration as the three variables, we obtain:

α = α(p, s, rT ) ⇒ (dα)p = (
∂α

∂s
)p,rT ds+ (

∂α

∂rT
)p,sdrT (204)

By de�nition (33), the buoyancy of the moist cloudy sample is given by:

b = g
α′

α
=

Γm[(s∗)′ − cl ln( TT0
)r′T ]− gr′T

1 + rT
(205)

where primes denote the di�erence of a variable between an air parcel and the environment. We also have de�ned the moist adiabatic
lapse rate:

Γm
def
= −(

∂T

∂z
)s∗,r (206)

We have introduced a key quantity: s∗ , the saturation moist entropy, de�ned by setting (r, rT ,H) to (r∗, r∗T , 1) in the moist entropy
de�nition 197:

s∗
def
= [cpd + r∗T cl] ln(

T

T0
)−Rd ln[

p

p0

1 + r∗T
1 + r∗

ε

] +
Lvr

∗

T
(207)

8.3.2 Stability of an entropy pro�le

A typical s∗ pro�le is plotted on �gure 76.

Figure 76: Typical entropy s and saturated s∗ pro�les; on the right the LNB, LFC, LCL, CAPE and CIN are indicated.

To evaluate the stability of a sample, we look at the buoyancy 205:

� The two terms on the right can be almost canceled by choosing T0 judiciously.

� The stability thus entirely depends on the saturated entropy s∗: If the saturated entropy of the parcels is larger/smaller than the
environmental entropy, the buoyancy force will be directed upwards/downwards. Unlike the dry stability case 53, the buoyancy is
not related to an adiabatic invariant as s∗ is only conserved for adiabatic saturated motions. This is what makes moist convection
so di�cult. Latent heating only requires to add a term to the entropy. However, the irreversible fallout of convection making the
air sub-saturated, which prevents s∗ from being an adiabatic invariant, making it much harder to assess the stability of a pro�le.
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If we take the example of pro�le 76, when the moist sample (represented by a point) is lifted adiabatically from the ground, its entropy
is conserved and is thus represented by the vertical dotted line. If the displacement is not large enough, the entropy of the sample will
always be smaller than the environmental s∗ and the buoyancy force will be directed downwards, making the sample's displacement
stable. If the displacement is large enough to reach the point where the dotted line and the environmental s∗ intersect (aka the Level
of Free Convection or LFC), then the buoyancy force will be directed upwards and the sample will lift until it reaches the level where
the dotted line and the s∗ pro�le intersect again (aka the Level of Neutral Buoyancy or LNB). Thus, an air sample is unstable to
large enough displacement, which means it is conditionally unstable (or equivalently metastable). Note that an air sample usually
condensates before it reaches the Level of Free Convection; the level at which it condensates is called the Lifted Condensation Level
(LCL). From these levels, it is possible to de�ne:

� The Convective Available Potential Energy (CAPE):

CAPEi
def
=

ˆ LNBi

LFCi

Bdz (208)

Graphically, the CAPE is related to the area between the parcel and the environmental entropy pro�les (cf right of �gure 76).
From the CAPE, it is possible to estimate the maximal vertical velocities available when all the CAPE is used (eg during a very
strong storm):

V 2
max

2
= CAPE ⇒ Vmax =

√
2CAPE (209)

For example, the maximal values observed for a CAPE of a pro�le reach 5000J.kg−1, giving maximal Vmax of order 100m.s−1.
Using the buoyancy of a moist cloudy sample 205, the CAPE 208 becomes:

CAPEi︸ ︷︷ ︸
Potential energy

≈
ˆ LNBi

LFCi

(s∗)′dT︸ ︷︷ ︸
Thermodynamic work

− g(rT )′dz︸ ︷︷ ︸
Work to lift water

(210)

The expression of the CAPE becomes simpler if we use the de�nition of the density temperature 47 and assume that the
atmosphere is an ideal hydrostatic gas:

CAPEi ≈
ˆ LNBi

LFCi

Rd(Tρ)
′d(ln p) (211)

� The Convective Inhibition (CIN):

CINi
def
= −

ˆ LFCi

zi

Bdz (212)

The subscripts i have been added because the CAPE is de�ned for a sample lifted from a given altitude zi. It is thus not unique for a
given pro�le, and if we wanted to rigorously test the stability of a pro�le, we would have to lift air samples from all the altitudes zi of
the pro�le. Usually, air samples are lifted form the surface (p0 ≈ 1000hPa) of from the top of the boundary layer (p1 ≈ 950hPa).

8.3.3 Thermodynamic diagrams

A skew-T diagram is presented on the left of �gure 77.

� The horizontal scale is density temperature, and the isotherm are skewed 45° to the right, in order to make the graph more
compact.

� The vertical scale is the pressure in logarithmic scale, so that according to 208, the CAPE is proportional to the area between
the parcel and the environment's pro�les.

� The dry-adiabats (constant potential temperature θ de�ned in 67) are depicted in blue.

� The pseudo moist adiabats are depicted in red. The pseudo-adiabatic ascent of a sample is one where the liquid water is removed
from the sample as soon as it is formed by condensation. If we de�ne the pseudo-equivalent potential temperature θep as the
potential temperature conserved during a pseudo-adiabatic transformation, Bolton's curve �t yields:

θep ≈ T (
p0

p
)0.2854(1−0.28r) exp[r(1 + 0.81r)(

3376K

T ∗
− 2.54)] (213)

where T ∗ is the saturation temperature.
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Note that it would be impossible to plot a moist adiabat, because its pro�le not only requires the knowledge of pressure but also of the
total mixing ratio.

Figure 77: Skew-T diagram; on the right the pseudo-adiabatic and reversible trajectories of a sample lifted from 950hPa have been
added

On the right of �gure 77, we can see that the sounding (red full line) is very close to the reversible trajectory (blue dots) of an air
sample lifted from 950hPa, which is generally true in the Tropics; it is less close to the pseudo-adiabatic trajectory of an air sample
lifted from 950hPa (red dotted line). A good way to assess the general stability of a sounding is to plot the contours of the buoyancy
for di�erent sample's initial pressures (�gure 78).

Figure 78: Contours of reversible buoyancy (left) and pseudo-buoyancy (right) of an air sample lifted in the sounding in 77

We see that samples are more unstable when lifted from a high pressure (low altitude) point. The LFC can be de�ned as the
altitude where the buoyancy becomes positive, whereas the LNB is the level at which it becomes negative again. We remember the
dry entraining plume model: the mass conservation of a thermal yielded 71. If we had a strictly vertical plume, we could write the
conservation of any conserved variable ϕ (such as heat or buoyancy) using the entrainment parameter α:

dϕ

dz
= −αϕPlume − ϕEnvironment

z
(214)
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Taking entrainment into account brings us even closer to the observed sounding, suggesting that it is neutrally stable to an entraining
plume.

Figure 79: Same sounding as before, but this time taking the entrainment into account

9 Scattering

9.1 Introduction

Scattering plays an important role in the Earth's climatic budget (cf �gure 2) and mainly depends on the radiation �eld (it is only
weakly connected to the local values of the gas thermodynamic properties, such as its temperature). The non locality of radiation
means that scattering over large distances can make the atmosphere feels the presence of boundaries from far away. For example, the
albedos of di�erent surface types can di�er by a factor of 10 (cf �gure 80).

Figure 80: Albedos of di�erent surfaces

We can see that water has the lowest albedo (~8%), making the ocean look very "dark" from space: If Earth looks like a "blue
planet", it is mostly because of Rayleigh scattering in the atmosphere. In satellite meteorology, a quantity called the Bidirectional
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Re�ectance Distribution Function (BRDF) is used:

BRDF(Ωi,Ωr)
def
=

dIr(Ωr)

Ii(Ωi) cos θidΩi
(215)

where Ii is the incident intensity in the incoming direction de�ned by its solid angle: Ωi = Ωi(θi, φi) and Ir is the re�ected intensity
in the re�ected direction de�ned by its solid angle: Ωr = Ωr(θr, φr).

Figure 81: De�nition of BRDF (left) and its causes (right)

The di�erent processes that can shape the BRDF distribution de�ned by 215 are listed on the right of �gure 81. For example, if we
consider the example of leaf/vegetation re�ectance, the albedo is not the most important factor, and the asymmetry of the vegetation
(direction of the leaves, trees...) also plays a big role in shaping the BRDF. Three example of surface's BRDF asymmetry are given
on �gure 82: depending on the position of the sun, the angle Ωi changes and the scattering of the radiation by the vegetation/ground
changes signi�cantly.

Figure 82: Di�erence in light transmission between forward-scattering and back-scattering for three di�erent surfaces

Computing the BRDF distribution has been signi�cantly simpli�ed by the use of Monte-Carlo methods and the possibility of tracing
individual rays. Furthermore, current databases such as the MERL BRDF database [http://www.merl.com/brdf/] includes re�ectance
for more than 100 materials (cf �gure 83), making numerical computations of the BRDF feasible for simple enough surfaces.
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Figure 83: "A Data-Driven re�ectance Model" by Wojciech, Matusik, Hanspeter, P�ster, Matt Brand and Leonard McMillan

9.2 The scattering phase function

9.2.1 De�nitions

The scattering absorptivity εscatter of radiation coming from a direction
−→
Ω ′ and scattered in the direction of interest

−→
Ω is computed

by introducing the dimensionless single scattering albedo ω̃:

εscatter =
κω̃

4π

ˆ
(Ω′)

P(
−→
Ω ′,
−→
Ω )I(

−→
Ω ′)dΩ′ (216)

where we have used the absorptivity κ de�ned in 20. The phase function P determines the contribution from each direction of scattering,
and is normalized over a sphere: ˆ

(4π)

P(
−→
Ω ′,
−→
Ω )dΩ′

def
= 4π (217)

Physically, P is the probability that a photon coming from a direction
−→
Ω ′ is scattered in a direction

−→
Ω . The functional dependence of

the phase function P can be quite complicated, depending on the sizes and shapes of the particles responsible for the scattering. We
will assume:

� That radiation is scattered independently by each particle (particles must be separated by a few times their radius, and the
volume of particles should be small enough that the fractional attenuation of light passing through it is much less than unity).

� That the atmospheric particles are spherical or randomly oriented, so that the phase function only depends on the angle Θ between

the two units vector (
−→
Ω ,
−→
Ω ′), de�ned by:

−→
Ω ·
−→
Ω ′

def
= cos Θ = µ (218)

A metric for the anisotropy of the phase function is the asymmetry parameter, de�ned as the "average value" of µ:

g
def
=

1

4π

ˆ
(Ω)

P(µ)µdΩ (219)

If g > 0 the photons preferentially scatter in the forward direction, whereas if g < 0, the photons preferentially scatter in the backwards
direction.

9.2.2 Examples

Isotropic scattering assumes a homogeneous phase function:

PIsotropic(µ)
def
= 1 ⇔ g = 0 (220)
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For a single photon, it means that it has the same probability of going in any direction, which means it follows a 3D random walk It
"bounces and never escapes" like a photon in an optically thick cloud), as illustrated by �gure 84.

Figure 84: Examples of the random paths of photons in a plane parallel scattering layer of optical thickness 10. Heavy diagonal lines
represent the trajectories of unscattered photons while normal lines represent (a) the scattering of a single photon when scattering is
isotropic (b) the trajectories of three photons when the asymmetry parameter is equal to 0.85, which is typical for a cloud in solar band

Isotropic scattering is never practically observed in nature. From the radiation of the induced electric dipole moment of the
molecules, it can be proven that the phase function for Rayleigh scattering has the following form:

PRayleigh(µ) =
3(1 + µ2)

4
(221)

Figure 85: 3D rendering of the Rayleigh phase function (left) and comparison between the Rayleigh phase function 221 and the
Henyey-Greenstein phase function 222 (right)

Rayleigh scattering is polarized and maximal for the direction of the incident radiation (Θ ∈ [0, π] ⇔ µ2 = 1), and minimal
orthogonally to that direction (Θ = ±π2 ⇔ µ = 0). In general, the phase function is quite complicated and it is not necessary to know
it in detail for radiative transfer calculations. Often, knowledge of the asymmetry parameter g is enough and it is possible to model
the phase function as a Henyey-Greenstein pro�le (a non-negative explicit function of µ and g that resembles realistic phase functions):

PHG(µ, g)
def
=

1− g2

(1 + g2 − 2µg)
3
2

(222)
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The Henyey-Greenstein phase function is plotted on �gure 86 and compared to the Rayleigh function on the right of �gure 85.

Figure 86: The Henyey-Greenstein phase function plotted versus cos Θ (left) and as a log-scaled polar plot (right)

Finally, many particles have a smaller back-scattering peak in addition to the main forward scattering peak. The double Henyey-
Greenstein function is able to capture the two peaks:

PHG2
def
= bPHG(µ, g1) + (1− b)PHG(µ, g2) (223)

where (g1 > 0, g2 < 0, b ∈ [0, 1]) and PHG is de�ned by equation 222.

9.2.3 In�uence of the particle's size and the radiation's wavelength

The scattering regimes mainly depend on a key dimensionless parameter, called the size parameter, and de�ned as:

x
def
=

2πrParticle

λ
(224)

For x � 1, Rayleigh scattering applies and for x � 1, it is possible to use ray tracing or geometric optics, whereas for x ∼ 1, it is
necessary to come back to the primitive equations and use Mie theory. A direct example of the di�erent scattering regimes is given on
�gure 87.

Figure 87: Examples of atmospheric particle types, with representative dimensions and number concentrations (left) and relationship
between particle size, radiation wavelength and scattering behavior for atmospheric particles based on the size parameter 224 (right)
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An important di�erence between the di�erent regimes is that for small x, forward and backward scattering are about equal, whereas
forward scattering prevails for x ≥ 1. This behavior is due to constructive interference in the forward direction by waves scattered by
the di�erent part of the particles. This asymmetry that increases with x can be seen on the phase functions (�gure 87) and the polar
plots of Mie-derived scattering phase functions (�gure 89).

Figure 88: The phase function for single scattering by spherical liquid water droplets (left) and plots of Mie-derived phase functions
for various values of x (right)

Figure 89: Polar plots of the Mie-derived scattering phase functions for selected values of x (left) and same plot but in logarithmic
scale to better accommodate the variations of P(µ) for large values of x (right)

Two applications of the previous phase functions are:

1. The glory: If you stand on a hill overlooking a fog bank with the sun at your back, you will see a bright patch of ring surrounding
the shadow of your head in the manner of medieval paintings of saints (cf left of �gure 90 and right of �gure 89).

2. The rainbow: The primary rainbow can be seen as peaks of the phase functions on the right of �gure 89. It can also simply be
explain by the re�ections and refractions occurring in a droplet (left of �gure 91). The rainbow corresponds to the ray l = 3 with
one internal re�ection.
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Figure 90: A glory (left) and a rainbow (right)

Figure 91: Paths of light rays re�ected, refracted or di�racted by a sphere (left) and normalized functions for cloud droplets, aerosols
and molecules illuminated by a visible wavelength of 0.5µm (right)

Looking at the right of �gure 91, we can see that Mie theory gives complex variations of the phase function for a water droplet,
which we can explain by all the paths the light can take in it (left of �gure 91). As a consequence, we don't expect a simple �t such as
222 to work in this case. Indeed, according to �gure 92, this pro�le is only helpful to understand the phase function of ocean particles,
and the approximate phase function of aerosols.
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Figure 92: Actual phase function compared to the Henyey-Greenstein pro�le for di�erent particle types (left) and eleven ice-crystals
habits commonly occurring in cirrus clouds generated by computer program, along with their associated phase functions patterns for
the 0.63µm wavelength (right)

. The ice clouds phase functions are extremely di�cult to capture because of the complex phase functions of their ice crystals which
have diverse geometries and sizes (right of �gure 92). This explains why it is very di�cult to understand the composition of planetary
atmospheres with ice clouds, as even the use polarized light does not allow to understand them currently.

9.3 Traditional radiative transfer scattering

9.3.1 Single scattering

In the case of a single scattering and a non-absorbing atmosphere, the intensity 25 can be written:

I(µ, φ) = I0δ(µ− µ0)δ(φ− φ0) exp(
τ

µ0
) (225)

where δ is the Dirac Delta function. In that special case, if we assume the phase function to be isotropic (220), the scattering absorptivity
216 becomes:

εscatter

κ
=

ω̃

4π

ˆ 2π

0

dφ

ˆ 1

−1

dµI0δ(µ− µ0)δ(φ− φ0) exp(
τ

µ0
) =

ω̃I0
4π

exp(
τ

µ0
) (226)

9.3.2 Multiple scattering

In the case of multiple scattering, the radiation received by a layer of atmosphere schematically represented on �gure 93 (mathematically,
the right hand side of the radiative transfer equation 9) is a�ected by four processes:

1. A reduction by extinction from attenuation of sunlight: −κ(z)I(z, µ, φ).

2. An increase due to single scattering from direct (unscattered) solar radiation; according to Kirchho�'s law 19: εthermal emission =
κ(z)Bλ(z).

3. An increase from multiple scattering of di�use intensity from direction
−→
Ω ′ to

−→
Ω given by equation 216.

4. An increase from emission in the layer into directions
−→
Ω , given by:

εdirect solar scattering =
ω̃κISun

4π
exp(− τ

µ0
)P(
−→
Ω ,
−→
Ω0) (227)
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Figure 93: Schematic representation of an atmospheric layer

The two �rst terms (absorption and thermal emission) couple the radiation �eld to the local thermodynamic properties of the gas. For
example, an absorbed photon gets destroyed and converted to the kinetic energy of the gas. Conversely, thermal emission can transfer
energy from the thermal pool of the gas directly into the radiation �eld, via collisional desexcitation. The two last terms are scattering
terms, and as we have already seen, they are non-local and make the atmosphere feel remote boundaries.

9.3.3 Radiative transfer in a plane parallel atmosphere with direct solar scattering

For a plane-parallel atmosphere, we can solve the radiative-transfer equation as we had done in section 3.3, but this time we re-

place the blackbody radiance B(τ) = εthermal emissionκ
−1 by the more general source term: S(τ)

def
= (εthermal emission + εscatter +

εdirect solar scattering)κ−1. We can solve the case of single scattering with small optical thickness τ , that occurs in optically thin cirrus
and aerosol atmospheres. Adapting equation 25 to our case and neglecting the additional upward re�ected intensity I(τ) = 0, as well
as the multiple scattering εscatter = 0:

I(0, µ) ≈
ˆ τ

0

S(τ ′, µ)

µ
exp(−τ

′

µ
)dτ ′ =

ω̃κISunP(
−→
Ω ,
−→
Ω0)

4πµ

ˆ τ

0

dτ ′ exp[−τ
′

µ
− τ ′

µ0
] =

ω̃κISunP(
−→
Ω ,
−→
Ω0)µ0

4π(µ+ µ0)
[1− exp(− τ

µ
− τ

µ0
)] (228)

where we have used equation 227 for the direct solar scattering absorptivity. For an optically thin atmosphere τ � 1, equation 228
reduces to:

I(0, µ) ≈ ω̃κISunP(
−→
Ω ,
−→
Ω0)µ0τ

4πµµ0
⇔ BRDF(

−→
Ω ,
−→
Ω ′)

def
=

πI(0, µ)

µ0ISun
=
ω̃P(
−→
Ω ,
−→
Ω0)τ

4µµ0
(229)

where we have used the bidirectional re�ectance introduced in 215. Consequently, under the conditions of an optically thin atmosphere,
the optical depth τ is proportional to the BRDF that can be determined from satellite measurements. This is as far as we can easily go
analytically: the next step is the two-stream approximation of the radiation transfer equation 9 where radiation is only propagating in
two discrete directions. Numerically, it is more straightforward to use the Monte-Carlo methods described in paragraph 2.6. However,
these methods are too computationally intensive in the case of low absorption and high scattering where the photons bounce too much,
or in the case of high absorption where no photons make it to the receptor. They are well-adapted for complex geometries.
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10 Radiative heating

10.1 Introduction

We remember that Radiative equilibrium (3.5) can be de�ned as the balance between total absorbed and emitted radiation (cf equation
29). It can also been expressed as the constancy of the total �ux (integrated over all wavelengths):

dF
dτ

= 0 (230)

If we are not interested in the precise distribution of the radiation among di�erent wavelengths, we can integrate variables over all
wavelengths, which is what we call the "gray atmosphere". We de�ne the three �rst moments of the intensity:

J(τ)
def
=

1

4π

ˆ
(Ω)

I(τ, µ)dΩ (231)

H(τ)
def
=

1

4π

ˆ
(Ω)

µI(τ, µ)dΩ (232)

K(τ)
def
=

1

4π

ˆ
(Ω)

µ2I(τ, µ)dΩ
Isotropic ideal gas

≈ J(τ)

3
(233)

We have used kinetic theory for the second equality of equation 233 and assumes that this relation holds even when the atmosphere is
dense (eg near the surface). Since we have assumed that the gas and its intensity were isotropic, we can expand I in powers of µ:

I(τ, µ) = a0(τ) + a1(τ)µ+ ... ⇒


J(τ) = a0(τ)

H(τ) = a1(τ)
3

K(τ) = a0(τ)
3

(234)

Using this expansion and Stefan-Boltzmann law, it is possible to prove that the e�ective emission temperature and the temperature
are related by:

(
T

Te
)4 ≈ 3

4
(τ +

2

3
) (235)

which means that the e�ective temperature Te equals the absolute temperature T at a depth τ = 2
3 . As a consequence, RE allows us

to compute the temperature pro�le from the radiative transfer equation. Once the temperature are obtained, it is possible to compute
the radiative heating and cooling rates.

10.2 Radiative heating and cooling rates

The absorption of solar radiation by various gases generates heat in the atmosphere. If all the net radiative �ux F [W.m−2] is turned
into heat in each atmospheric layer of thickness dz, speci�c heat capacity cp and density ρ, the heating rate [K.s−1] or [K.d−1] can be
written:

∂T

∂t
= − 1

ρcp

∂F(z)

∂z

Hydrostatic
=

g

cp

∂F(p)

∂p
(236)

Examples of heating rate are shown on �gure 94.

Figure 94: Typical shortwave heating rates (left), longwave heating rates (middle) and heating rates for di�erent model atmospheres

We can see that:
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� Water vapor is the main SW absorber in the troposphere and Ozone the main SW absorber in the stratosphere.

� In the LW, Carbon Dioxide plays a signi�cant role, especially in the lower troposphere.

� There are two separate of peaks in the LW cooling rates of water vapor, corresponding to absorbing bands of di�erent strengths.

� The radiative heating and cooling rates not only depend on the chemical composition of the atmosphere, but also on the insolation,
which explains the observed variations of the heating rates with latitude.

In practice, computing the magnitude of the heating and cooling rates is tedious because it requires the �ux density at each latitude.
Numerically, evaluating the various terms in the �ux density equations requires a suitable "band transmittance model" which is applied
to the atmospheric pro�le of interest (key variables are the temperature, the humidity and the gas composition).

10.3 Opacity treatment

All IR radiative transfer methods are intended to economize the computation of spectral transmittance by circumventing the integration
over the spectral interval and non homogeneous path length (cf 9, 25 and 9.3.3).

10.3.1 Line by line radiative transfer method (LBLRTM)

This method resolves individual spectral lines in the radiative transfer calculation. Absorption cross-section must be computed at
wavenumbers that are smaller than the line half-width. However, there are three big limiting factors:

1. A lot of lines are needed: Taking the example of the CO2 absorption band at ν̃ ∼ 600− 800cm−1 on the Earth IR spectrum (14),
and assuming that the broadened half-widths of each lines is order 0.01cm−1, 2.104 lines are needed just to resolve this band.

2. Because of broadening, it is not obvious to know where to cut o� the wavenumber for a given line (you can see that the lines
have big "wings" on the right of �gure 95).

3. There are a lot of "pollutant" lines (from species other than the molecule of interest) that need to be considered.

Figure 95: Intensity as a function of the wavenumber (left) and Lorentz-broadened lines in a 10cm− 1 interval in the 1.38µm water
band (right)

10.3.2 Correlated K-distribution method

This alternative method is based on the grouping of gaseous spectral transmittances according to the absorption coe�cient κ. The
integration over the wavenumber k is then replaced by an integration over κ, which is possible in a homogeneous atmosphere where
the spectral transmittance is independent of the ordering of κ, signi�cantly reducing the number of integration points (and reducing
the computational time by at least an order of magnitude).
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Figure 96: H2O rotational band: (a) Absorption coe�cient vs wavenumber (b) Probability function of the absorption coe�cient (c)
Cumulative probability function of the absorption coe�cient (d) Absorption coe�cient vs the cumulative probability function

10.3.3 Numerical implementation and in�uence on the heating rate

The numerical implementation of this method is presented on �gure 97.

Figure 97: Developmental strategy of RRTM (a K-distribution method) using an LBLRTM (left) and validation strategy of line-by-line
radiative transfer model (right)

The in�uence of choosing the less precise correlated-K distribution on the heating rates is presented on �gure 98. We can see that
the di�erences in �uxes never exceed 1% whereas the di�erences in cooling rates can go up to almost 10%, making it a good method
for situations where the uncertainty is bigger than 5-10% (eg studying exoplanets).
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Figure 98: Spectrally integrated (a) up (c) down (e) net �uxes and (g) cooling rates for each of bands calculated by LBLRTM.
Di�erences between RRTM and LBLRTM for these quantities are shown in plates (b,d,f,h).
Reference: Mlawer et al. (1997)

10.4 Band models

10.4.1 Introduction

Band models are traditional approaches that simplify the computation of spectral transmittance: the atmosphere is usually assumed
to be homogeneous or to have very simple greenhouse gas distributions so that analytical expressions can be developed.

Figure 99: Left: (a) A single line (b) Period lines with a line spacing of δ (c) H2O lines with Lorentz broadening in a 10cm−1 interval
in the 1.38µm H2O band. 15 lines are shown.
Middle: Absorption coe�cients due to carbon dioxide for a layer in the mid-latitude atmosphere (a) as a function of wavenumber (b)
after being rearranged in ascending order
Right: Absorption Lorentz lines in the SW spectrum of water vapor.

On the left of �gure 99, the single absorption lines is only observed in the case of isolated atoms; whereas the periodic lines (regular
band) remind us of the vibrational-rotational lines observed for Carbon Dioxide (middle) and the entangled Lorentz lines are similar
to the Methane or the Water vapor (right) spectra.
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10.4.2 Transmittance and absorptance

We remember the de�nition of the monochromatic transmittance, which gives the rate of absorption in the simple case where there is
no scattering nor emission into the beam (and Beer-Lambert's law 26 applies):

Tν(
τ

µ
)

def
= exp(− τ

µ
) ⇒ ∂Tν

∂τ
= −Tν

µ
(237)

If we integrate the radiative transfer equation in local thermodynamic equilibrium 24, from the top of the atmosphere τ = 0 to the
Earth's surface τ = τ∗ assuming that the Earth behaves like a blackbody (I(τ∗, µ) = B[T (τ∗)]) and no source of downward emission at
the top of the atmosphere (I(0,−µ) = B[T (0)]), the formal solution for upward and downward intensities are given by:

I↑(τ, µ) = B(τ∗)Tν(
τ∗ − τ
µ

)−
ˆ τ∗

τ

B(τ ′)
d

dτ ′
Tν(

τ ′ − τ
µ

)dτ ′ (238)

I↓(τ,−µ) =

ˆ τ

0

B(τ ′)
d

dτ ′
Tν(

τ − τ ′

µ
)dτ ′ (239)

To discretize in the wavenumber, we consider small enough spectral intervals ∆ν such that the Planck function's variation can be
neglected. The transmittance 237 can be approximated as:

Tν(u) ≈ 1

∆ν

ˆ
(∆ν)

exp(−σνu)dν (240)

where σν is the mass absorption coe�cient and u the path-length of absorbing gases, de�ned as:

u
def
=

ˆ s

0

ρds′ (241)

in usual notations. If we assume that the medium is homogeneous, we can assume that σν is independent of the distance s. The

absorptance de�ned as Aν
def
= 1− Tν can also be discretized by using small spectral intervals:

Aν(u)
def
= 1− Tν(u) ≈ 1

∆ν

ˆ
(∆ν)

[1− exp(−σνu)]dν (242)

10.4.3 Absorptance of a single line

To avoid having to deal with multiple lines, it is helpful to de�ne the equivalent width Wν , which is the width of an in�nitely strong
line of rectangular shape that is the same as the absorption of a single line.

Figure 100: De�nition of an equivalent width

The equivalent width plays a central role in the development of band models, and can be de�ned from the discrete version of the
absorptance 242:

Wν(u)
def
= Aν(u)∆ν ≈

ˆ
(∆ν)

[1− exp(−σνu)]dν (243)

We can compute the equivalent width Wν for di�erent line strengths S (de�ned by 140).
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� In the weak line limit σνu� 1, the discrete absorptance 242 becomes:

Aν(u) ≈ 1

∆ν

ˆ
(∆ν)

σνudν ≈
Su

∆ν
(244)

Regardless of the line shape, the absorptance is directly proportional to path length, and this is called the "region of linear
absorption".

� In the strong line limit σνu� 1, the discrete absorptance 242 can be computed by assuming a Lorentz pro�le of mass absorption
σν = S

πα :

Aν(u) ≈ 1

∆ν

ˆ +∞

−∞
[1− exp(− Sαu

π[ν − ν0]2
)]dν

Su
α �1
∼ 2

√
Sαu

∆ν
(245)

In this "square root absorption" region, the absorptance is proportional to the square root of the path length.

� In the general case σνu ∈ R, the discrete absorptance is given by:

Aν(u) = 2παL(
Su

2πα
)

def
=

Su

π
exp(− Su

2πα
)

ˆ π

0

exp(
iSu cos θ

2πα
)[1− cos θ]dθ (246)

where we have de�ned L, the Landeburg and Reiche function.

To conclude, the equivalent width for a single Lorentz line is given by:

W (u) = 2παL(
Su

2πα
) =

{
Su [weak− line]

2
√
Sαu [strong − line]

(247)

10.4.4 Absorptance of a regular band

If the bands are regularly spaced, the total mass absorption coe�cient can be obtained by summing over all the Lorentz lines:

σν =

+∞∑
k=−∞

Sαπ−1

(ν − kδ)2 + α2

where α is the half width at half maximum and δ is the spacing between the Lorentz lines. It can be proven that the discrete absorptance
242 in this case can be written:

Aν(u) = erf(

√
πSαu

δ
)

def
=

2√
π

ˆ √
πSαu
δ

0

exp(−x2)dx

For
√
πSαu � δ, we recover the "region of square root absorption" 245. Other analytical band models exist, in particular statistical

band models and models for non-homogeneous atmospheres, that we will not cover here.
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11 Radiative-convective equilibrium

11.1 Introduction

11.1.1 De�nition

We remember that RE (de�ned as the equilibrium state of the atmosphere in absence of non-radiative enthalpy �uxes in 1.2) is unstable
to both moist and dry convection. This instability triggers convection, and leads to RCE in a one-dimensional setting, where all the
�uxes are carried by convection and radiation, and the lateral �uxes are ignored (cf 1.4). Unlike RE, RCE is an equilibrium in the
statistical sense because convection is intermittent and turbulent. Energetically, RCE is a balance between radiative cooling driving
the atmosphere towards state of RE (even if it is tempting to think of it as a Newtonian relaxation, atmospheric ways to relax towards
RE are nonlinear), and convective heating that re-stabilizes the entropy pro�le wherever it is unstable.

11.1.2 Simple models of RE

We remember how radiation is transmitted through the atmosphere (cf �gure 3) and the simple analytical one-layer model of RE
developed in section 1.2. The models can be easily generalized to two layers (cf left of �gure 101). To solve it we write the energy
balance of the:

� TOA:
σT 4

2 = σT 4
e ⇒ T2 = Te (248)

� First atmospheric layer:
2σT 4

1 = σT 4
2 + σT 4

s = σ(T 4
e + T 4

s ) (249)

� Surface:
σT 4

s = σT 4
e + σT 4

1 (250)

Combining equations 249 and 250 leads to Ts = 3
1
4Te ≈ 336K and T1 = 2

1
4Te ≈ 303K.

Figure 101: Two-layers model of RE (left) and temperature discontinuities introduced by thin layers (right)

We can see that the lapse rate in RE is strongly negative in the troposphere: T2 > T1 > Ts. The previous model can be generalized
to n opaque layers and gives a surface temperature Ts = (n + 1)

1
4Te. We can take absorption and emission into account by making

the gray atmosphere approximation, which assumes that layers have a constant absorptivity ε (equal to their emissivity according to
Kirchho�'s law 19) in the IR. In that case, it is important to understand that a discontinuity in emissivity implies a discontinuity in
temperature because we do not take heat di�usion into account in this model. For instance, the discontinuity between the ground
that almost absorbs like a blackbody (high ε) and the near surface air with much lower absorptivity (low ε) creates the near-surface
temperature disequilibrium in RE, which triggers convection. Quantitatively, we can estimate this discontinuity by introducing very
thin layers that do not change the layer temperatures in the previous two-layers model. Following the notations on the right of �gure
101, we introduce:

� A near-surface thin layer of emissivity εA � 1 and temperature TA.

� A stratospheric (or top of the troposphere) thin layer of emissivity εt � 1 and temperature Tt.

The very low emissivities of these this layers allows to neglect their in�uence on the global energetic budget, meaning that we can
evaluate their temperature by simply considering their individual energetic balance:

2εAσT
4
A = εAσT

4
1 + εAσT

4
s ⇒ TA = (

5

2
)

1
4Te ≈ 321K ≈ Ts − 15K (251)

2εtσT
4
t = εtσT

4
2 ⇒ Tt = 2−

1
4Te ≈ 214K ≈ Te − 41K (252)

We can immediately see the large temperature discontinuities introduced by those thin layers that do not behave like blackbodies.

87



11.1.3 1D models of RCE

In RCE, we need to add convective �uxes to the previous two-layers model, as done in �gure 260.

Figure 102: Two-layers model of RCE

We enforce convective neutrality in this model by assuming a constant (positive) lapse rate. Assuming that the layers are equally
spaced, this assumption gives T1 = T2 + ∆T and Ts = T1 + ∆T = T2 + 2∆T . From the two previous equations, it is very easy to
compute the temperatures of the system from the TOA energetic balance:

σT 4
2 = σT 4

e ⇒ T2 = Te ⇒ T1 = Te + ∆T ⇒ T2 = Te + 2∆T (253)

The surface and mid-tropospheric convective �uxes can be determined from the energetic balance of:

� The surface:
Fs + σT 4

s = σT 4
e + σT 4

1 (254)

� The second atmospheric layer:
2σT 4

e = σT 4
1 + Fc (255)

yielding:
Fs = σT 4

e [1 + (1 + x)4 − (1 + 2x)4] (256)

Fc = σT 4
e [2− (1 + x)4] (257)

where we have de�ned the dimensionless number:

x
def
=

∆T

Te
(258)

Note that x (and thus ∆T ) must be such that (Fs, Fc) > 0. In the case where (Fs, Fc) = (0, 0), we recover RE. In reality, even
simple models of RCE are much more complex because the layer do not behave like blackbodies and their emissivities ε depend on the
greenhouse gas concentrations, especially the water vapor concentration. The full calculation using a band-averaged model has been
described in section 1.4 and leads to the graphs presented on �gure 10. This full calculation is done by assuming greenhouse gases
pro�les depicted on the left of �gure 103. Gases such as NO2,CH4,CO2 are homogenized in the troposphere which explains why their
concentrations do not vary with altitude. O3 (which is a greenhouse gas even if it absorbs more in the UV than in the IR) is mostly
present in the stratosphere, unlike CO, which has signi�cant chemical sinks there. The water vapor pro�le decreases exponentially
with altitude, which comes from the assumption of constant relative humidity H and the consequences of Clausius-Clapeyron relation
on the saturation speci�c humidity pro�le (cf 180). The radiative consequences of these greenhouse gases can be seen on the right of
�gure 103. For example, we can see that the presence of water vapor warms the troposphere the most, consistently with the fact that
it is the main greenhouse gas in the atmosphere, and we also observe that removing Carbon Dioxide warms the stratosphere a lot as
it is the main IR emitter there.
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Figure 103: Pro�le of the main greenhouse gases in the troposphere and stratosphere (left) and contributions of various absorbers to
the temperature in RCE (right)

Water vapor has very little e�ect on the stratosphere, mainly because its concentration is so small there: it is advected through the
tropopause by the Brewer-Dobson circulation (that cools the troposphere) and its main chemical source in the stratosphere is the slow
oxidation of methane. We also remember that removing Ozone cools the stratosphere because it has strong absorption bands in the
UV. Finally, the two e�ects of Carbon Dioxide (warming the troposphere, cooling the stratosphere) is a good proxy for the e�ects of
anthropogenic climate change: In the past century, the troposphere has been warming but the stratosphere has been cooling.

11.1.4 Vertical velocities in RCE

Bjerknes (1938) had already observed that precipitating convection favored widely spaced clouds (cf �gure 104).

Figure 104: A cartoon of moist RCE

Air rises rapidly within clouds, approximately conserving moist static energy (de�ned by 192). The clouds cover a very small
fractional area σ � 1, so that the return �ow is weak. The clear, subsiding air covers a large fractional area (1−σ) and approximately
follows a moist adiabat (implying a moist adiabatic lapse rate 206). Since mass conservation requires the average vertical velocity of
the domain to be zero:

0 = (1− σ)wclear︸ ︷︷ ︸
≈wclear

+σwcloud︸ ︷︷ ︸
Mu

⇒ wclear ≈ −σwcloud (259)

where we have introduced the net convective updraft velocity Mu. As σ is not larger than a few %, equation 259 explains why the
vertical velocity observed in clouds is typically two orders of magnitude above the vertical velocity of the subsiding air. However, even
if (wclear,Mu) are easy to estimate and are orders a few m.s−1, it can be hard to estimate σ and wcloud individually. For example, in
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computational �uid dynamics, it is important to resolve the turbulent cascade to convert potential energy to kinetic energy in numerical
simulations. In the case of RCE, this means a resolution of 10m or better. However, with cloudy updrafts that can be spaced up
to 50km apart, the domain size of a cloud resolving simulation needs to be of order 1000km, leading to 105 grid points in only one
direction (and three dimensions are needed to model convection)! That's why current cloud resolving models have no more than one
or two nods per cloud, and processes such as entrainment need to be parametrized, which explains why it is hard to estimate σ and
wcloud precisely, even using computationally intensive simulations. Understanding the physical processes that set wcloud to its observed
value (∼ 5m.s−1) is still an open research topic; Parodi and Emanuel (2009) have argued that wcloud scales like the terminal velocity
of the largest possible size of droplets before they become hydrodynamically unstable. Energetically, the convective updrafts balances
the radiative cooling. Using the �rst law of thermodynamics (or more directly the second thermodynamic identity 49):

Q̇rad = cp
DT

Dt
− 1

ρ

Dp

Dt

Ideal gas
= cpT (

1

T

DT

Dt
− R

cpp

Dp

Dt
) =

cpT

θ

Dθ

Dt
(260)

where we have used the de�nition 67 of potential temperature and introduced the radiative heating per unit mass Q̇rad (negative since
RCE temperatures are larger than RE temperatures). Using the fact that the majority of the area is covered by the dry subsiding air
following a moist adiabat (constant saturated entropy s∗), we can estimate the subsidence vertical velocity from the RCE energetic
balance 260:

Dθ

Dt
≈ wclear(

dθ

dz
)s∗ =

Q̇radθ

cpT
⇒ wclear =

Q̇radθ

cpT (dθdz )s∗

Typical values
≈ −1cm.s−1 (261)

If we look at an entire air column in RCE, the surface enthalpy �ux (sum of the latent heat �ux and the sensible heat �ux) balance
the vertically integrated radiative cooling. Finally note that the radiation and convection are highly interactive in RCE, which adds
another layer of complexity to this equilibrium. For instance, convection forms clouds, which will have a signi�cant in�uence on the
net SW and LW �uxes above and below the cloud. In return, these �uxes will have consequences on the convection, and this two-way
interaction can lead to positive or negative feedbacks depending on the situation.

11.2 Stable perturbations from RCE

11.2.1 Introduction

It is never trivial to think about perturbations from RCE, because of the interactions between temperature and radiation and convection:
for example, the vertical structure of the perturbation is very important, and approximating the relaxation to RCE as Newtonian is
always a crude approximation. We make experiments to estimate the time scale of approach to equilibrium by initiating the MIT single
column model (the same that gives �gure 10) with a constant 0°C temperature pro�le, and letting it relax to RCE on �gure 105.

Figure 105: Relaxation of a constant temperature pro�le to RCE for a week (left) and half a year (right)

Note that the troposphere adjusts within a month whereas it takes almost half a year to the stratosphere to adjust, because there
is almost no convection in the stratosphere.
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11.2.2 A simple model of RCE

Following Einstein's quote stating "that everything should be as simple as it can be, but not simpler", we try to come up with an
analytically tractable model that captures the essence of this timescale, presented on �gure 106.

Figure 106: Simple model of RCE; temperature pro�le (left) and MSE pro�le (right)

On the left, the temperature pro�le starts from the warm surface temperature Ts; it then decreases sharply with altitude because of
the strong near-surface disequilibrium. Above the boundary layer, the temperature pro�le follows a moist adiabat until the tropopause.
We introduce the e�ective emission temperature Te and the pressure pe at which the environmental temperature equals Te, corresponding
to an optical thickness close to unity. According to its de�nition 3, Te is set by the solar constant and the planetary albedo, which
we assume to be constant in this model. pe can also be approximated as steady as the pro�le of greenhouse gases/clouds do not vary
much in time. Fc is the total non-radiative heat �ux, which is the sum of the latent heat �ux LHF and the sensible heat �ux SHF ,
which are both carried by turbulence. We introduce a thin slab ocean of thickness ∆zml; however it has a high total heat capacity as
the speci�c heat capacity/density of liquid water are much higher than these of water vapor. Physically, it is easier to think about the
saturated MSE, de�ned as:

h∗
def
= (cpd + r∗T cl)T + Lvr

∗ + (1 + r∗T )gz ≈ cpT + Lvr
∗(p, T ) + gz (262)

The saturated MSE is approximately conserved along a moist adiabat (explaining the vertical pro�le of h∗ on the right of �gure 106),
and can be looked as a proxy for temperature as it does not depend on the mixing ratio r. This model thus relies on several assumptions:

� The enthalpy is constant in the boundary layer, and the saturated MSE is constant in the free troposphere, and equal to the MSE
at the top of the boundary layer: henv = h∗ where henv is the MSE in the boundary layer and h∗ is the saturated MSE in the
free troposphere. This assumption comes from the convective neutrality assumption. Indeed, if we lift a parcel dry-adiabatically
throughout the boundary layer, its saturated MSE will be constant and equal to the boundary layer environmental MSE. Then,
it will keep its saturated MSE through the free troposphere, which means that it will only be stable if henv = h∗.

� The boundary layer is assumed to be nearly opaque, consistently with observations in the Tropics, which means there is no net
IR �ux at the surface.

� We neglect the atmospheric absorption of SW.

Remembering the scaling of mechanically/thermally generated turbulences 6.4, we know that below the Monin-Obukhov length
−L de�ned by 113, mechanically generated turbulence dominate and the surface �uxes are dominated by the e�ect of the wind.
From dimensional analysis, we can estimate the latent heat �ux and the sensible heat �ux by using the following bulk formulas:

LHF = ρsCk|
−−−→
Vwind|Lv(q∗0 − qenv) (263)

SHF = ρsCk|
−−−→
Vwind|cp(Ts − Tenv) (264)

where ρs is the density of the surface, Ck the dimensionless enthalpy transfer coe�cient that we can measure during �eld experiments,

|
−−−→
Vwind| is the typical amplitude of the wind at the surface, and q∗0 the saturation speci�c humidity of the surface. Adding equations
263 and 264, and using de�nition 262, we obtain the non-turbulent heat �ux at the surface:

Fc = LHF + SHF = ρsCk|
−−−→
Vwind|(h∗0 − henv) = ρsCk|

−−−→
Vwind|(h∗0 − h∗) (265)
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We have used the convective neutrality assumption for the last equality on the right hand side of equation 265. From the simpli�ed
energy balance at the top of the atmosphere Fc = σT 4

e , which we can combine with 265 to �nd the saturated MSE at the surface:

h∗0 = h∗(Te, pe) +
σT 4

e

ρsCk|
−−−→
Vwind|

(266)

The control balance of this steady state (RCE) are thus (Te, pe, |
−−−→
Vwind|) that we will hold �xed as we perturb this system from RCE.

11.2.3 Relaxation timescales

We now slightly perturb the entire temperature pro�le and study how the system relaxes back to RCE. The evolution of the free
tropospheric saturated MSE's perturbation is directly related to the variations of the convective and radiative �uxes:

dMatm

dS

∂(h∗)′

∂t
≈ ∆p

g

∂(h∗)′

∂t
= F ′c − F ′rad = F ′c −

∂Frad

∂h∗
(h∗)′ (267)

where dMatm

dS is the mass of the free troposphere per unit surface, that we can approximately relate to the pressure thickness ∆p of the
free troposphere through the hydrostatic relationship. In the slab ocean, the evolution of the surface temperature perturbation is only
related to the perturbation of the turbulent surface �ux because we have assumed that the near-surface atmosphere was opaque:

clρl∆zml
∂T ′s
∂t

= −F ′c (268)

The perturbation of the surface saturated MSE is by de�nition 262 given by:

(h∗0)′ = cpT
′
s + Lv

∂q∗0
∂Ts

T ′s ≈ cpT ′s(1 +
L2
vq
∗
0

cpRvT 2
s

) (269)

where we have linearized the Clausius-Clapeyron relation for water vapor 176. We introduce the climate sensitivity B [W.m−2.K−1] to
evaluate how the radiative �ux evolves with the surface temperature:

B
def
=

∂Frad

∂Ts
(270)

and assume it is a given property of the system. Combining 269 and 270 allows to evaluate how the radiative �ux evolves when the
saturated MSE of the free troposphere changes:

∂Frad

∂h∗
=
∂Frad

∂Ts

∂Ts
∂h∗

=
B

1 +
L2
vq
∗
0

cpRvT 2
s

(271)

We are now in measure of expressing the evolution of (h∗, h∗0) as a function of (h∗, h∗0). We simplify this linear system of ordinary
di�erential equations by introducing:

� The variation of the dry turbulent �ux with temperature for a steady atmosphere:

x
def
= (

∂Fc
∂Ts

)q∗0 ,h∗ = ρsCk|
−−−→
Vwind|(

∂h∗0
∂Ts

)q∗0 ,h∗ = ρsCk|
−−−→
Vwind|cp (272)

� The dimensionless variation of surface saturated MSE with surface temperature:

y
def
=

1

cp

∂h∗0
∂Ts

= 1 +
L2
vq
∗
0

RvcpT 2
s

(273)

� The combination of the two previous sensitivities to surface temperature changes:

χ
def
=

xy

B + xy
(274)

� The atmospheric timescale (corresponding to an ocean of �xed temperature/in�nite heat capacity):

τatm
def
=

cpy∆p

g(B + xy)
≈ 10d (275)
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� The oceanic timescale (corresponding to a �xed atmosphere):

τoce
def
=

clρl∆zml

xy
≈ 100d (276)

leading to the following evolution equation:

τatm
d(h∗)′

dt
= −(h∗)′ + χh′s (277)

τoce
∂h′s
∂t

= (h∗)′ − h′s (278)

The linear system of equations (277,278) has two eigenvalues λ±, corresponding to two timescales τ± = −λ−1
± :

τ± =
2τoce

1 + τoce
τatm
±

√
(1 + τoce

τatm
)2 − 4(1− χ) τoceτatm

(279)

We are especially interested in the longest timescale τ−, that govern how long the system takes to relax back to RCE when perturbed.
Formula 279 is not very transparent; it is thus useful to look at the two limits where:

� τoce � τatm:

τ− ≈ τatm +
τoce

1− χ
(280)

� τoce � τatm:

τ− ≈
τatm

1− χ
(281)

As χ is very close to 1, the longest timescale is much bigger than the sum of the atmospheric and oceanic timescale: the coupling of
the system considerably increases its relaxation time. It is possible to estimate B from the MIT single column model, which allows us
to compare our theory to the MIT single column model relaxation time (cf �gure 107).

Figure 107: Relaxation time (days) as a function of the surface temperature and the mixed layer depth, given by the theory (left) and
the MIT single column model (right)

However, it should be noted that we have �xed the greenhouse gas concentration, which is unrealistic on Earth, given that the high
variability of water vapor, the main greenhouse gas. For example, if the precipitation e�ciency (the fraction of liquid water of a sample
falls out as precipitation in the model) is changed, the relative humidity pro�le varies strongly, as we can see on �gure 108.
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Figure 108: Dependence of the relative humidity pro�le on the precipitation e�ciency

For example, for low precipitation e�ciency (ep = 0.1), all the water vapor stays in the atmosphere, which makes it very humid.
If the precipitation e�ciency is maximal (ep = 1), the atmosphere becomes very dry, except very close to the surface where all the
rain evaporates, and near the tropopause because of the upwards �ux of water vapor. If models are poorly resolved in the vertical,
numerical experiments make the water vapor behave di�usively, and this nonlinear e�ect of precipitation e�ciency can not be observed,
underlying the importance of high vertical resolution and precise microphysical schemes in global circulation models.

11.3 Shallow convection

11.3.1 Observation of clouds

We de�ne shallow convection as cumulus convection that does not go all the way through the troposphere (ie typically doesn't go above
the top of the boundary layer, cf top left of �gure 109). Observing the middle of �gure 109, we can see that clouds are envelopes of
multiple complex convective structures, with new thermal emerging from the top of the "cloud" because their water vapor concentration
is higher. Consequently, clouds are always loosely de�ned. Shallow convective clouds are common around a deep cumulus cloud, such
as the one on the top right of �gure 109. The �brous cloud on the bottom left of �gure 109 is typical of a cloud containing ice crystals.
As the saturation water vapor over ice is smaller than the saturation water vapor pressure over liquid water (cf �gure 72), the "ice
cloud sucks water vapor out of the supercooled cloud around it", explaining the "hole of clear air" around it. Another example of this
physical phenomenon is presented on the bottom middle of �gure 109. We remember that the sea aerosols tend to be very hygroscopic
(they attract and hold water vapor molecules from the environment very easily), which explains why the relatively small cloud on the
bottom right of �gure 109 is precipitating.
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Figure 109: Pictures of clouds produced by shallow convection

An important noticeable feature when we watch movies of cumulus cloud convection (snapshots of such movies are presented on
�gure 110) is the importance of downwards motion in moist plumes. After the thermals ascend, they go down as we can see from
looking at the cloud tops, because entrainment of dry air makes them too diluted. As the day progresses, two processes help the clouds
reaching a higher and higher altitude:

1. The surface temperature gets warmer and warmer.

2. The entrainment makes the environment surrounding the cloud moister and moister.

Figure 110: Snapshots of cumulus convection movies

Another question is understanding why clouds preferentially form over the mountain. A �rst thought would be that the mean air
currents are up-slope because of the no-normal �ow condition along the topographic slopes, which explains why the air ascends and
condensates above the mountain. However, in the case of �gure 110, the clouds form above the peak of the mountain. An interested
thermodynamic interpretation is based on how RCE is a�ected by the presence of topography. First, it should be noted that the
surface temperature at the top of a mountain is colder because there is a smaller mass of atmosphere above the surface, meaning that
it receives less IR radiation. Since the air still follows a dry and then a moist adiabat, we can see on �gure 111 that it implies that the
entire temperature pro�le is colder.
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Figure 111: RCE temperature pro�le over the sea (black line) and over topography (red line)

Coming back to the right part of �gure 110, once an air parcel reaches the tropopause, it overshoots and its buoyancy become
negative, initiating a downdraft. This is only possible for moist thermals as we had seen that for dry thermals, the buoyancy was
always positive, and that it never went below the value b = 0 that represents the "top of the plume" (cf paragraph 5.3).

11.3.2 Thermodynamics of shallow convection

To understand shallow convection, it is helpful to introduce the appropriate thermodynamic invariant. We start from the virtual
potential temperature θv, which is a special case of the density potential temperature θρ (de�ned by 159) where we neglect the presence
of liquid water and ice in the sensible heat budget of the air parcel. However, we do take into account the latent heat coming from the
condensation of water vapor in the heat budget:

Tcpd
dθv
θv
≈ dQ+ Lvdrl ⇒ cpdT

dθlv

θlv
≈ dQ (282)

where we have introduced our new adiabatic invariant, namely the liquid water virtual potential temperature:

θlv
def
≈ Tv(

p0

p
)
Rd
cpd︸ ︷︷ ︸

θv

exp(−Lvrl
cpdT

)︸ ︷︷ ︸
Latent heating

(283)

θlv is conserved during reversible adiabatic processes, as long as precipitation does not fall. When two samples containing liquid water
mix adiabatically, their liquid water virtual potential temperature almost linearly mixes. As a consequence, following the left of �gure
112, when a reversibly lifted sample mixes with its environment, its θlv will be less than that of the uncontaminated environment.
Physically, the mixing evaporates water into the entrained dry environmental air, making the net buoyancy of the mixture negative,
which explains why the presence of downdrafts is only possible for moist air.
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Figure 112: Typical vertical pro�le of liquid water in the environment of non precipitating cumulus clouds (left) and liquid water
content (g.m−3) on successive traverses through cumulus clouds at altitudes of 2000, 2350, and 2650 meters (right)

The conservation of θlv yields:
Dθlv

Dt
= 0 ⇒ ∂θlv

∂t
= −w∂θlv

∂z
(284)

Using the mass conservation statement 259 in steady state ( ∂∂t = 0), integrating 284 over the volume (Vcloud) of a cloud and its lifetime
(tcloud), we obtain: ˆ

(Vcloud)

ˆ
(tcloud)

Mu
∂θlv

∂z
dV dt = 0 (285)

The constraint 285 on non-precipitating convective clouds means that over the lifetime and volume of each cloud, there can be no
net heating by condensation. Consequently, there must be signi�cant downward motion somewhere over the lifetime and volume of a
non-precipitating cloud.

11.3.3 Observations of shallow convection

Observationally, using aircrafts, it is possible to measure the liquid content of a cloud and its neighbors (cf right of �gure 112). On the
left of �gure 113, vertical velocity data are presented; they have been obtained through the technique of inertial navigation, which is
based on measuring the acceleration and the rotation using accelerometers and gyroscopes to obtain the velocity and the position of
the airplane by integration.

Figure 113: Filtered vertical velocity data from successive penetrations of a cumulus cloud (left) and measurements in Montana cumuli
plotted on a θe − rT diagram
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IR imaging shows that it is hard to �nd a place in the Tropics where there is no shallow convection (114), con�rming the importance
of taking it into account when we study RCE or deep convective systems.

Figure 114: Open cellular cumulus convection over the sea (left) and space-based observations of clouds produced by shallow convection
(right)

Coming back to RCE, shallow convection help balance out the net increase in MSE produced by deep convection that brings water
vapor (and thus latent heat) in the troposphere. Because they help producing downdrafts and entrain dry air around them, they indeed
have a net cooling e�ect on the system. If we look at a pro�le of θlv, the trade cumuli can be found below the trade inversion (sharp
increase of θlv), approximately located at an altitude of 2km in the Tropics.

11.4 Deep, precipitating convection

11.4.1 Introduction

From observations of cumulus cloud tops, the distribution of cumulus heights is continuous but bimodal, with a lot of shallow clouds
(1-2km) and a lot of clouds reaching the tropopause, hence the distinction between "shallow" and "deep" convection. On �gure 115,
we can see that there are clearly more storms in the Tropics where the climate is warmer and moister.

Figure 115: Average number of thunderstorms days in a year (left) and annual lightning frequency from satellite (right)

It would seem that there are much more storms on the land (of course the left of �gure 115 does not give any information because
storms happening over the ocean are under-reported), or at least that storms are more violent and produce more lightning over land
(even if they still rain a lot over the ocean in the Tropics). The main di�erence between sea and land-surface temperatures is the
strong diurnal cycle over land. As the convection is lagged and typically happens �ve hours after the peak in solar radiation, MSE (or
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the CAPE for a parcel released at ground level) has time to build up before it is released, explaining the intensity of observed storms.
A higher value of CAPE leads to higher updrafts values (according to 209), allowing for the interaction between snow crystals and
supercooled droplets that creates graupel. Flying aircrafts through deep convective clouds has allowed to study their time evolution,
that can be (arti�cially) divided in three phases, as we can see on �gure 116.

Figure 116: Three stages of "air-mass" showers

The evolution of a cumulus cloud typically lasts 45min: �rst, deep convection leads to strong updrafts and builds a cumulus tower,
then the clouds spreads out as it reaches the tropopause (creating what is called a "cloud anvil") and water starts raining out of the
cloud after it has condensed by being lifted; �nally, the cold, low-entropy air chokes o� the potentially warm air and creates strong
downdrafts leading to the dissipation of the cumulus tower. Note that the average droplet loses half of its mass before it reaches the
ground because of partial re-evaporation. Once the cold downdraft hits the ground, it propagates laterally as a density current (called
a "cold pool"), which can be simulated in laboratory (cf �gure 117).

Figure 117: Laboratory experiment of a density current (the denser water is �uorescent)

Figure 118: Photo of deep convective clouds, spreading as they hit the tropopause
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Figure 120: Arcus clouds (air mechanically lifted from the cold pools and condensing as thin clouds)

Figure 119: Convective shower observed from space

Figure 121: Mammatus clouds

Mammatus clouds (121) form on the bottom of ice clouds, on the underside of the cloud anvil. They are believed to form when the
liquid water enthalpy (196) of the cloud hw,cloud is smaller than the liquid water enthalpy of the environment hw,env. Then, if it the
cloudy air mixes with the environmental air and its liquid water evaporates, its buoyancy will be negative and it will undershoot, and
then go back up, explaining the form of the Mammatus cloud.
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11.4.2 Mesoscale organization of convection

Figure 122: Left: Schematic of a multi-cell thunderstorm (red arrow≡warm updraft; blue arrow≡cool downdraft). The new cell forms
downshear. The rain falls down relatively to the mean current, which means it will not actually fall down if the updrafts are strong
enough (right).

An important form of organized convection is the squall line. It is a set of individual intense thunderstorms cells arranged in a line.
They occur along a boundary of unstable air, such as a cold front. Strong environmental wind shear causes the updrafts to be tilted
and separated from the downdraft, which dense cold air forms a "gust front".

Figure 123: Left: The squall line propagates to the left because of the mechanism of formation of new cells.
Right: Schematic diagram showing how a buoyant updraft may be in�uenced by environmental wind shear and/or cold pool (RKW
theory: the sign of −ξ is indicated by purple arrows)
(a) With no environmental wind shear and no cold pool, the axis of the updraft produced by the thermally created symmetric vorticity
distribution is vertical.
(b) With a cold pool, the distribution is biased by the positive vorticity of the underlying cold pool, causing the updraft to tilt over
the cold pool.
(c) With environmental shear and no cold pool, the distribution is biased toward negative vorticity, causing the updraft to lean
downshear.
(d) With both a cold pool and shear, the two e�ects may negate each other and promote an erect updraft, and thus create a squall
line.

Dynamically, we can understand squall lines by studying the evolution of the meridional component of the relative vorticity:

ξ
def
= −→ey · (

−→
∇ ×−→v ) =

∂w

∂x
− ∂u

∂z
(286)

Using the Boussinesq equations with a given environmental buoyancy pro�le benv, we can see that the zonal gradient of environmental
buoyancy is responsible for the evolution of ξ:

Dξ

Dt
=
∂benv

∂x
(287)
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Figure 124: Squall lines seen from space (left), appearing on radar (middle left) and clouds formed by gust fronts (right)

A less understood form of organized convection is the Mesoscale Convective Complex (MCC), which are circular, as we can see
from radar observations on �gure 125.

Figure 125: Radar images of mesoscale convective complexes

A MCC is composed of multiple single-cell storms in di�erent stages of development; the individual thunderstorms must support
the formation of other convective cells. In order to last a long time, a good supply of moisture is required at low levels in the
atmosphere. As a consequence, MCC over land only occur in the middle of the Summer. They are recognizable as large areas of low
e�ective temperature, which is indicative of a thick cloud, and many convective cells (with a typical aggregated radius of 300km). The
streamlines of a MCC have a strong anticyclonic motion, unlike the eastwards mean �ow observed normally (the individual clouds are
chaotic so it is impossible to predict them individually). The aggregation of moisture will have a strong in�uence on the external �ow,
and large collections of clouds interact in a non trivial way with the radiation, in�uencing the TOA infrared emission and the local
climatology. In some rare cases, even bigger aggregates of thunderstorms called super-cells can be observed. The required conditions
are a low-level wind shear and a large amount of CAPE. In speci�c regions of the world, such as the "tornado alley" of the United
States, a lot of CAPE can be climatologically built. First, we need to introduce a useful approximate adiabatic invariant, starting from
the virtual potential temperature θv, and taking into account the potential energy due to the water vapor content of a parcel that can
be potentially released as latent heat; the �rst law of thermodynamics can be written in this case:

Tcpd
dθv
θv

+ Lvdr ≈ dQ ⇒ cpdT
dθe
θe
≈ dQ (288)

where we have introduced the equivalent potential temperature θe:

θe
def
≈ Tv(

p0

p
)
Rd
cpd︸ ︷︷ ︸

θv

exp(
Lvr

cpdT
)︸ ︷︷ ︸

Potential latent heating

(289)

Note that in this de�nition, because θe only increases linearly with the virtual temperature Tv but exponentially with the water vapor
mixing ratio r, a moist and cold air mass is likely to have a higher equivalent potential temperature than a dry and hot air mass,
because of all the latent heat it can release by condensing its water vapor content. Coming back to the "tornado alley" and following
the schematic on the left of �gure 126, the high temperature but dry lowθe air mass coming from the West will go above the moist cold
highθe air mass coming from the Gulf of Mexico, allowing to build a CAPE by creating a temperature inversion (visible on the middle
of �gure 126). The temperature inversion creates some CIN, which prevents deep convection from happening and allows to build up
a lot of CAPE. Using equation 209, we can see that the values of CAPE listed on the right of �gure 126 correspond to velocities of
100m.s−1! In practice, updrafts of 80m.s−1 can be observed in those regions in the case of a strong storm. Forming a super-cells is
one way of releasing this CAPE, which explains why they are observed in the Great Plains during Spring. We have seen that the wind
shear ∂U

∂z is another important factor in the genesis of supercells; it is by de�nition an invariant Galilean quantity, which means that
the curvature of the wind shear has a physical meaning.
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Figure 126: Intersection of two air masses leading to CAPE build-up (left), sounding of Norman, Oklahoma during a tornado event
(middle), and CAPE in Norman, Oklahoma at the same time (right)

Figure 127: Wind shear constructed by �nite-di�erencing a hodograph; straight (top) and curved (bottom) wind shear vector

If the wind shear is straight, like on the top of �gure 127, squall lines are more likely to be generated, whereas if the wind shear is
curved, like on the bottom of �gure 127, supercells are more likely to be generated.
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Figure 128: Supercell cloud images

From the visible and the infrared images of a supercell (�gure 129), a qualitative understanding of the conditions for their formation
and their schematic can be deduced (�gure 130).

Figure 129: Visible (left) and infrared (right) images of a supercell

Figure 130: Schematic of a supercell (left) and the conditions for its formation (right)

. The reason why supercells rotate is tightly linked to the conservation of meridional relative vorticity in the absence of environmental
buoyancy gradients, according to equation 287.
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Figure 131: Production of vorticity within a supercell: Tilting of vortex lines (left), pressure perturbations (middle) and vorticity
production (right)

According to �gure 131, if the supercell rotates clockwise, it strengthens the cyclonic and weakens the anticyclonic air �ows within
it. If the pressure gradients are properly aligned, vorticity can be produced, by the environmental air �ow, reinforcing the supercell.

Figure 132: Supercell cloud images

Figure 133: Supercell cloud images

Figure 134: Supercell cloud images
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Figure 135: Supercell cloud images

The tilting of vorticity within a supercell can produce tornadoes, which only happen in very speci�c places on Earth (US Great
plains, Bangladesh, Argentina pampas...). Looking at the distribution of tornadoes in the US in the second half on the twentieth
century, we can clearly see that they mostly happen in the "tornado alley", East from the Rockies.

Figure 136: Tornado count in the US per county between 1950 and 1996

Often, waterspouts that form on the ocean because of low level cut-o�s will be counted as tornadoes, which explains their presence
in Southern California on �gure 136,for instance.

11.5 Interaction of radiation and convection

11.5.1 Numerical simulation of RCE

We remember that it is possible to explicitly simulate the details of RCE using cloud resolving models (CRM). Unlike what their names
suggest, CRM are not actually able to simulate clouds; however, they can resolve convection and the physical processes associated to
it. An example of a CRM is the system for atmospheric modeling, presented on �gure 137.
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Figure 137: Characteristics of SAM (left) and snapshots of condensed water in RCE using SAM for di�erent values of �xed sea surface
temperature (right)

The vast majority of comprehensive simulations of RCE have been done using a �xed sea surface temperature, as it would be very
computationally expensive to run CRM with an interactive slab ocean (for instance, the relaxation timescales to RCE shown of �gure
107 can become very long as soon as the heat capacity of the slab ocean decreases a little). Simulating RCE con�rms the general
characteristics described in section 11.1.4, including the chaotic aspect of convection, making it seem random (although rigorously a
cloud is less likely to appear in a place where convection just happened because of the presence of cold pools). It is very insightful
to study the total precipitation, which can be written as a product of the rainfall velocity and the area of the domain over which
precipitation is happening:

Precipitation = Rainfall velocity︸ ︷︷ ︸
Vt

·Rainfall Area︸ ︷︷ ︸
σ

(290)

Determining which physical processes are associated to Vt and to σ and how they a�ect the total precipitation is still an open area of
research. The rainfall terminal velocity Vt plays a central role in RCE:

� If the mean precipitation is held constant (for instance by specifying the radiative cooling), according to 290, the rainfall intensity
will increase with the terminal velocity. This e�ect is shown on �gure 138.

� Because of that e�ect, and noticing that the rainfall area is not a�ected, an increase in Vt will cause an increase in the updraft
velocity wcloud = Muσ

−1, which explains why it can be argued that wcloud scales like Vt.
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Figure 138: Daily rain accumulation (left) and rainfall intensity vs terminal fall speed (right)

According to simulations of RCE, the rainfall area itself seems to be determined by the large-scale circulation, or by the radiative
forcing/cooling, as we can see on the left of �gure 139, whereas the rainfall intensity seems not to be a�ected in this case.

Figure 139: Comparison of large-scale moisture convergence to radar-derived convective quantities (left) and cloud top temperature
and precipitation in the case where convection has self-aggregated (right)

11.5.2 Self-aggregation of convection

When run under speci�c conditions, we can see on the right of �gure 139 that convection can spontaneously self-aggregate. First, a dry
patch forms, which forces all the convection to cluster in a random area of the domain. As there is no characteristic physical horizontal
length, the cluster scales like the domain size, and does not disaggregate easily once it has formed. The self-aggregation phenomenon
can be seen by looking at any variable related to convection, especially water vapor, as we can see on �gure 140.
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Figure 140: Evolution of vertically integrated water vapor during self-aggregation

Good examples of convective clusters are mesoscale convective systems (de�ned in 11.4.2). The left of �gure 141 shows a good
example of self-aggregation in nature: on the top of the picture, convection is seemingly random, as expected in classical RCE. In the
center of the picture, a dry patch has formed around a moist precipitating cluster surrounded by gust fronts.

Figure 141: Monsoonal thunderstorms, Bangladesh and India, July 1985 (left) and surface temperature dependence of the domain
averaged outgoing longwave radiation (right)

On the right of �gure 141, we can see that the amount of outgoing longwave radiation increases when the system has self-aggregated,
as the area of the moist blob is much smaller than the area of the dry region. Thus, self-aggregation tends to dry out the system, which
can also be seen by looking at the average water vapor in the domain. By noting that all the simulations that have an increase in the
outgoing longwave radiation have self-aggregated, we can see that the system does not aggregate for too small sea surface temperatures
(because the system is then too dry) or for too high temperature. We remember that for high sea surface temperatures, the moist
adiabatic lapse rate (dθdz )s∗ increases, since the upper tropospheric temperature stays the same. According to 261, the updrafts w then
become weaker, which means that the moist cluster extends further in the domain, since you need a bigger area σ to maintain the same
convective mass �ux Mu. As a consequence, we can hypothesize that the non-occurrence of self-aggregation for high temperatures is
an artifact of a too small domain, which is con�rmed by the fact that when the 310K case is re-run in a larger domain, we observe
self-aggregation in the simulation (red curve). A good metric of self-aggregation is based on the vertically integrated moist static energy
(192):

ĥ
def
=

ˆ
(Column)

ρhdz ≈
ˆ

(Column)

hdp

g
(291)

If neglect export of kinetic energy by the wave �eld, 291 cannot be changed by convection. Thus the budget of 291 only involves the
surface turbulent �uxes and the net radiative �uxes:
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Figure 142: Budget of vertically integrated MSE for an air column

Dĥ

Dt︸︷︷︸
Evolution MSE

= LHF + SHF + NetLW + NetSW︸ ︷︷ ︸
Diabatic terms

(292)

When the RCE is nearly random, the water vapor is nearly homogeneous in the domain (as well as the temperatures), so the same

thing can be said for ĥ. However, when the system self-aggregates a very moist cluster (zone of high ĥ) is surrounding by dry subsiding

air (small ĥ). As a consequence, the spatial variance of ĥ increases when the system self-aggregate. To �nd out how the spatial variance

of ĥ evolves, we take a domain-average {} and denote the deviation from this average by primes. Subtracting the average of 292 to 292

and multiplying the resulting equation by ĥ′, we obtain a budget for the time-evolution of the spatial variance of ĥ:

1

2

∂(ĥ′)2

∂t︸ ︷︷ ︸
Increase MSE variance

= ĥ′LHF′ + ĥ′SHF′ + ĥ′NewLW′ + ĥ′NetSW′︸ ︷︷ ︸
Correlation between MSE perturbations and diabatic terms

− ĥ′
−→
∇ · (−̂→u h)︸ ︷︷ ︸

Convergence of MSE variance

(293)

Each term on the right hand side of equation 293 can be seen as a feedback term: if the perturbation of the vertically integrated MSE
has the same sign as the spatial perturbation of a diabatic term, then the feedback is positive, and vice-versa. The Hovmuller plots of
the feedback terms are shown on �gure 143.
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Figure 143: Hovmuller plots of the feedback terms. From left and right and top to bottom:
Total diabatic feedback term; Column SW �ux convergence; Column LW �ux convergence;
Total surface �ux feedback term; Surface �ux - Wind feedback term; Surface �ux - Air sea disequilibrium feedback term.

For example the LW feedback is positive everywhere (ĥ′NetLW′ > 0) during the process of self aggregation: in the dry zones (ĥ′ < 0),
the net LW �ux (directed towards the surface) decreases (NetLW′ < 0) because there is less water vapor, and vice-versa for the moist
zones. It then becomes negative everywhere when the cluster is formed because of the cloud cover above the moist zone which has the
opposite e�ect. We remember the bulk formulas for the latent heat �ux (263) and the sensible heat �ux (264). The perturbation of
the surface enthalpy �ux, which is the sum of both turbulent �uxes (following 265), can be partitioned in di�erent �ux anomalies:

F ′c
ρs
≈ (Ck|

−−−→
Vwind|)′(Lv{∆q}+ cp{∆T})︸ ︷︷ ︸

Wind feedback term

+ Ck|
−−−→
Vwind|(Lv∆q′ + cp∆T

′)︸ ︷︷ ︸
Air−sea disequilibrium feedback term

(294)

that are plotted on �gure 143. The wind feedback, called WISHE (Wind Induced Surface Heat Exchange) is always positive because
of the absence of background winds in the simulation: In that case the amplitude of the wind at the surface is directly related to the
intensity of downdrafts, so that when it increases, the surface �uxes increase, increasing the intensity of convection, increasing the
intensity of downdrafts to �rst order, which explains the positive feedback. It is even possible to make the MIT Single column self-
aggregate. We rely on the Weak Temperature Gradient (WTG) approximation: In the Tropics, the Coriolis force is low, and it is thus
very hard to sustain horizontal temperature gradients because the thermal wind relations would imply a too strong atmospheric �ow;
the temperature can then be approximated as horizontally homogeneous to a good approximation. We compensate the thermodynamic
disbalance between radiative cooling and convective heating by a large-scale ascent/descent in the atmospheric column. The experience
is the following: We run the MIT Single Column Model into RCE state with �xed sea surface temperature, and then reinitialize it
in WTG mode with temperature �xed above 850hPa. We then introduce a small water vapor perturbation in the system and see if
the model signi�cantly drifts from RCE state or not. The system e�ectively migrates towards a state with mean large-scale ascent or
descent for sea surface temperatures above 32°C. On �gure 144, we show the time-evolution of the system when the experience was an
initial 20% drying of the atmospheric column.
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Figure 144: Left: Time-evolution of the speci�c humidity, vertical velocity, radiative heating and convective pro�les of the system when
it was initialized in WTG mode with a 20% dry perturbation for a �xed sea surface temperature of 40°C.
Right: Perturbation SW (red), LW (blue) and net (black) radiative heating rates in response to an instantaneous reduction of speci�c
humidity of 20% from the RCE state for �xed surface temperatures of 25°C (left) and 40°C (right).

11.5.3 Radiative-convective instability

For low SSTs, the response to an instant drying is a local response: because the concentration of water vapor is decreased, there is
less radiative cooling which corresponds to a LW heating, and there is less absorption which corresponds to a SW cooling. As the
role of water vapor as a greenhouse gas is more important than its role as an absorber energetically, the net perturbation is a heating.
For warmer SSTs, something very unexpected happens, which is the key of radiative-convective instability: the LW response to a dry
perturbation is a net cooling! This is due to the non-local e�ect of radiation. We can think of the bottom of the atmosphere as so moist
at this temperature that it is almost opaque: a dry perturbation will not change that, and so it will not change the local radiative
cooling of the lower troposphere. However, the drying of the upper layer means that less of the LW radiation emitted by the lower
troposphere will be trapped by the upper troposphere and radiated back (there will be less greenhouse e�ect, or more radiation escaping
to space, explaining the cooling perturbation). If we repeat this experiment for di�erent �xed sea surface temperatures (�gure 145),
we can see that the transition between the local stable e�ect and the non-local unstable e�ect occurs at a sea surface temperature of
roughly 32°C (between 30°C and 35°C in this experimental setting).

Figure 145: Perturbation net radiative heating rates in response to an instantaneous reduction of speci�c humidity of 20% from the
RCE states for SSTs ranging form 25°C to 40°C

Since this instability relies on the non-local e�ect of radiation, a simple atmospheric model of this instability requires at least two
layers. The temperatures are held constant (WTG approximation), the IR emissivities εi depend on the speci�c humidities qi, and the
convective mass �uxes are calculated from the boundary layer quasi-equilibrium, while the large-scale vertical velocities are computed
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from the WTG approximation (to compensate the extra cooling/heating and allowing for the vertical advection of water vapor from
layer to layer).

Figure 146: Two-layer model of RCE and radiative-convective instability

The criterion for instability in the case of equal layers can be mathematically written:

→0 for opaque lower layer︷ ︸︸ ︷
Q̇1

ε1

∂ε1

∂q1︸ ︷︷ ︸
(<0) Local lower layer

+

Small for large εp︷ ︸︸ ︷
(1− εp)

Q̇2

ε2

∂ε2

∂q2︸ ︷︷ ︸
(<0) Local upper layer

+

Can be large if upper layer not opaque︷ ︸︸ ︷
εp
S2

S1

σε1T
4
2

ρ

∂ε2

∂q2︸ ︷︷ ︸
(>0) Non−local term

> 0 (295)

where Q̇i are the radiative heating/cooling in RCE, Si the dry static stabilities and εp the precipitation e�ciency (the proportion of
the updrafts that falls out as rain). From equation 295, we can see that RCE becomes linearly unstable when the IR opacity of the
lower troposphere becomes su�ciently large, and when precipitation e�ciency is large.
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Figure 147: Physical interpretation of radiative convective instability

Once the cluster forms, it is strongly maintained by the intense negative outgoing LW anomaly associated with the central dense
cloud overcast. However, cloud feedbacks are not important when the instability is developing, and thus they are not important in
instigating the instability. This leads to a strong hysteresis in the radiative-convective system. From the behavior of radiative-convective
instability, it seems that there is a critical SST above which the system is always unstable. Under that critical SST, the system will be
unstable to large enough �nite amplitude perturbation.

Figure 148: Hypothesized subcritical bifurcation. The vertical axis is a clustering metric, eg large-scale vertical velocity.
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11.5.4 Climatic consequences of self-aggregation

Because the dry part of this instability is larger than the moist part, self-aggregation is observed to dry out the atmosphere, in
simulations and in nature.

Figure 149: Left: Drying of the domain averaged humidity through self-aggregation in a cloud resolving model.
Right: Variations of tropical relative humidity pro�les in nature with a simple convective aggregation index.

This leads to a possible hypothesis on how self-aggregation drives the climatic system to a critical humidity:

1. At high temperature, convection self-aggregates.

2. The horizontally averaged humidity then drops dramatically.

3. The reduction of the greenhouse e�ect then cools the system.

4. The convection thus disaggregates.

5. Without aggregated convection, the humidity increases and the system warms.

If the climatic system followed that cycle, it could be quali�ed of self-organized. The self-organized criticality theory means that the
sea surface temperature would be regulated by self-aggregation, implying power-law distributions for quantities such as the convective
cluster sizes (more precise assumptions are required for this theory to apply rigorously).
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11.5.5 Self-aggregation on a f-plane and cyclogenesis

Figure 150: Cloud resolving simulations of self-aggregation on a f-plane

CRM simulations of self-aggregation on a f-plane make vortices form spontaneously (�gure 150), and the physics of self-aggregation on
a f-plane are believed to be very similar to those of cyclogenesis. If we approximate the energy production of a cyclone as a Carnot
cycle, following the left of �gure 151, we can obtain the surface turbulent �ux and thus the maximal wind amplitude (through bulk
formulae similar to 265) as a function of the surface temperature Ts and the out�ow temperature To:

|
−−−−−−→
Vwind,max|2︸ ︷︷ ︸

Square potential intensity

≈ Ck
CD︸︷︷︸

Ratio exc coef enthalpy momentum

Ts − To
To︸ ︷︷ ︸

≈Carnot efficiency

(k∗0 − k)︸ ︷︷ ︸
Air−sea enthalpy deseq

(296)

Figure 151: Carnot cycle for the energy production of a cyclone (left) and world map of the annual maximum potential intensity

|
−−−−−−→
Vwind,max| (right)

Because we have introduced an external frequency, the Coriolis parameter f , the cluster size (here the vortices sizes) are not self-

similar anymore, and scale like the external parameter of the system; the radius of maximal winds scales like |
−−−−−−→
Vwind,max|f−1. Since

the distance between storm centers scales like the moist deformation radius f−1
√
Lvq∗, the number density n of storms scales like

f2(Lvq
∗)−1. Furthermore, it is also possible to obtain a scaling for the potential intensity of the cyclones |

−−−−−−→
Vwind,max| from:

� The modi�ed Carnot thermodynamic e�ciency εC = Ts−To
To

.

� The net TOA upward radiative �ux FTOA.
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� The net surface radiative �ux Fs.

� The momentum exchange coe�cient CD.

|
−−−−−−→
Vwind,max|3 ∼

εC(FTOA −Fs)
CD

(297)

Figure 152: Snapshots of near-surface wind (in m.s−1, left) and pressure (in mbar, right) in RCE for three di�erent values of the SST

12 Introduction to remote sensing

12.1 Exoplanet atmospheres

12.1.1 Introduction

On the left of �gure 153, we can see the impressive diversity among the few dozens of exoplanets, which atmospheres are observable in
a broad sense.

Figure 153: Accessible exoplanet atmospheres in di�erent parameters spaces (left) and hierarchy of analysis to go from observations to
exoplanetary processes (right, Madhusudan 2014)

"Observing" an exoplanet's atmosphere generally means inferring atmospheric properties from how the atmosphere alters the
di�erent electromagnetic �uxes passing through it. More generally, the graph on the right of �gure 153 shows how speci�c properties
can be deduced from observing exoplanets; everything below the gray blocks is very uncertain given the current precision of astronomical
measurements. The common tools/approximations used to understand these processes include the radiative transfer equation 9, global
conservation of energy (cf 2), hydrostatic equilibrium 31, the ideal gas law 39 and photo-chemical simpli�ed equillibria. From these tools,
we want to approximate the pro�les of the radiative �uxes, the temperature, the pressure, the density and the chemical composition
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of exoplanetary atmospheres. However, there are many sources of uncertainties, for example clouds. Strong variations in chemical
compositions and in temperatures generate many di�erent types of clouds, which can be either gaseous or liquid, as we can see on
�gure 154. Common unknowns about clouds include the aerosol size distribution, composition, and shape, the fraction of condensed
gas, the vertical extent of the cloud...

Figure 154: Di�erent types of clouds on di�erent planet's types

There are also large chemical, radiative and dynamical uncertainties as the only known inputs are the surface gravity and the
radiation coming from the star.

12.1.2 Exoplanet atmosphere observation methods

Direct imaging Let's consider the HR8799 solar system, which is a very expanded solar system because some of its planets are very
far from its star (it is assumed that its formation resulted from the instability of a disk).

Figure 155: HR8799 solar system compared to the Solar system (left) and observations of it at near-IR wavelengths (right)

To study it, the starlight is blocked out in order to see the planets directly. The result is shown on �gure 156: although it is
really hard to obtain the molecular absorption from the spectrum, some thin rotational lines are well-modeled by the knowledge of the
planet's temperature and the assumption that Carbon and Oxygen are major radiative elements of its atmosphere.
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Figure 156: Monochromatic �ux as a function of wavelength obtained from direct imaging: on the left λ
∆λ ∼ 50 whereas λ

∆λ ∼ 4000 on
the right

High spectral resolution cross-correlation When the planets orbit very close to their stars (for instance some planets can reach
velocities as high as 100km.s−1), their radiation will be Doppler-shifted (144 shows why the Doppler shift in frequency is positive when
the planet is "approaching the satellite" - blue shift - and negative when the planet is "moving away" from the satellite - red shift -).

Figure 157: In�uence of the orbit of a planet on the detected radiation (left) and resulting CO signal in black (right)

From analyzing the Doppler shifts of the di�erent frequencies of the radiation received from the exoplanet as a function of its orbital
velocity, it is possible to detect the main gas composing this atmosphere (eg CO and H2O).

Transits Because the atmospheric opacity depends on the radiation's wavelength, the atmosphere of a planet will be visible or not
from a satellite depending on its orbital position, as we can see on �gure 158.
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Figure 158: In�uence of the planet's orbital position on its thermal emission (left) and resulting spectrum [black dots] compared to an
isothermal model [red line] (right)

The order of magnitude of the signal can be obtained by comparing the surface of the atmosphere (approximately obtained from
the radius rp of the planet and the scale height H of its atmosphere) to the surface of the star of radius rstar:

π(rp + 5H)2 − πr2
p

πr2
star

≈ 10rpH

r2
star

∼ 10−4

However, since planets such as gas giants contain Hydrogen and Water Vapor, the presence of clouds causes huge uncertainties in this
method as discussed in 38 and 39.

12.1.3 Earth as an exoplanet

We've already discussed how Earth's spectrum would look like if we would observe the Earth as an exoplanet (�gure 35).

Figure 159: Galileo's view of Earth (left), Earth's star-shade in the Solar system (zoom on Earth in the middle, complete view of the
Solar system on the right)

It is possible to "detect signs of life" on Earth by noticing the e�ect of vegetation on the emission spectrum. On �gure , we can see
that the chlorophyll bump is detectable, but minor compared to the red edge, which is the strong absorbing feature of the vegetation
in the IR.
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Figure 160: Left: Spectra for a gently sloping spectrum representative of rock or soil (a), and intermediate spectrum (b) the typical
spectrum (c) is believed to be associated with photosynthetic pigments
Middle: Earth's annotated thermal emission spectrum
Right: Vegetation red edge

If Earth is observed as an exoplanet through measuring the something close to the disk-integrated spectra or using the Earth shine
(scattered line re�ected from the Moon), we obtain the spectra shown on �gure 161.

Figure 161: Spectra from Earth shine measurements (top) the NASA's Extrasolar Planet Observation (middle), and the Mars Global
Surveyor (bottom)

From Earth brightness, it is possible to estimate the land-sea distribution (left of �gure 162) as land has a much higher albedo
than the very dark oceans (in a radiative sense). For example, the Sahara has a very high albedo, which makes it a signi�cant pattern
of Earth's outgoing radiation. It is also possible to reconstruct the diurnal cycle and measure Earth's rotation period as the ocean
currents and continents result in relatively stable averaged global cloud patterns (right of �gure 162).
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Figure 162: Aito� projection showing the land distribution on Earth in a cloud-free map (top left) and the latitudinally-averaged
distribution of land from the telescope EPOXI's observations (bottom left) and diurnal light curves from the Earth's re�ectivity as a
function of time (right)

As we have seen in 33, the di�erence between the re�ected and transmitted spectra can also give crucial information about the Earth
as an exoplanet. To summarize, from observing Earth as an exoplanet, we can obtain information about the chemical composition of
its atmosphere (Water vapor, oxygen, ozone, and carbon dioxide), detect its vegetation, observe the presence of continents and darker
spots (which correspond to oceans, but oceans are unlikely to be detectable form specular re�ection), detect �xed large-scale cloud
patterns which give the Earth's rotation rate.

12.2 Temperature sounding

12.2.1 Introduction

We remember the concept of optical depth (2.4). Because of the di�erence of absorption for each sounded wavelength, we will always
preferentially "see" a zone looking from above the atmosphere. If the atmosphere is transparent, this zone will be the surface of the
Earth; if the atmosphere is perfectly opaque it will be the top of the atmosphere. For intermediate cases, such as the spectrum of
CO2 shown on �gure 163, this zone will be at di�erent pressure levels in the atmosphere.

Figure 163: Left: Outgoing radiance in terms of blackbody temperature in the vicinity of 15µm CO2 band observed by the IRIS on
Nimbus 4. The arrows denote the spectral regions sampled by the VTPR instrument.
Right: The weighting function and transmittance of each region sampled by the VTPR instrument.
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In principle, this zone would be marked by an ideal delta weighting function. In practice, the weighting function has a �nite width,
and must be constructed using known line-by-line absorption data and a program for transmittance calculations. Note that there is
a slight temperature dependence of the weighting function. One can select spectral bands to achieve an array of weighting functions
that span the atmosphere and are distributed in a reasonable manner.

12.2.2 Computing the weighting functions

From equation 238, we can write the intensity at the top of the atmosphere as a function of the transmittance Tν :

I(0, µ)︸ ︷︷ ︸
Upwelling radiance

= B[T (τ∗)]Tν(
τ∗
µ

)︸ ︷︷ ︸
Radiance surface

+

ˆ 0

τ∗

B[T (τ∗)]
∂Tν(τ ′)

∂τ ′
dτ ′︸ ︷︷ ︸

Absorption by atmosphere

(298)

In remote sensing, the radiance equation 298 is usually written in terms of altitude or pressure as the independent variable. Using the
de�nition 11 of optical depth, the de�nition 43 for the mixing ratio of any gas and the hydrostatic balance 31, 298 becomes:

I(0, µ)︸ ︷︷ ︸
Upwelling radiance

= B(Ts)Tν(ps)︸ ︷︷ ︸
Radiance surface

+

ˆ 0

ps

Bν [T (p)]
∂Tν(p)

∂p
dp︸ ︷︷ ︸

Absorption by atmosphere

(299)

where the subscript (s) refers to the surface. The e�ective spectral interval for the instrument response's function is usually small
enough that the variation of the Planck function is insigni�cant. We can thus integrate and replace the quantities in 299 by averaged
quantities over small wavenumbers ranges. The upwelling radiance is a product of the Planck function B(T ), the spectral transmittance
Tν and the weighting function ∂Tν

∂p . The temperature T is encoded in the Planck function while the density pro�les of the relevant

absorbing gases are involved in the transmittance (however recall that the absorption coe�cient Tν depends weakly on the temperature
T . Extracting the relevant information about the atmospheric state and composition from observed IR radiances is the essence of
remote sensing from space. In practice, to determine atmospheric temperatures from measurements of thermal emission, the source of
emission must be a relatively abundant gas of known and uniform distribution, otherwise uncertainties will make the determination
of temperature from the measurement ambiguous. In the Earth's atmosphere, Oxygen O2 and Carbon Dioxide CO2 are greenhouse
gases that can be considered to have a uniform abundance below 100km. They also show emission bands in spectral bands that are
convenient for measurement. However, recall that low concentration of a gas does not necessarily mean weak spectroscopic features,
for example if the corresponding molecule has strong absorption cross-sections. In general, the weighting function ∂Tν

∂p can be used in
two ways:

1. Using a well-mixed gas with known concentration, derive the temperature vs pressure T (p) pro�le.

2. Using the T (p) pro�le, derive the concentration of a gas (eg H2O).

12.2.3 GOES weighting function

http://cimss.ssec.wisc.edu/goes/wf/viewwf.php?day=T0&5me=00&sat=GE&band=ir

� Compare weighting functions from:

1. High altitude(s) to low altitude(s).

2. Cloudy scenes to clear scenes.

3. Dry scenes to wet scenes.

4. Pay attention to where the di�erent bands peak during these situations (this may tell you a lot about the amount of water vapor
in the atmosphere or where vertically it appears).

� Which molecules are absorbing in the following bands?

1. Sounder Bands: 10 (7.4 μm) 11 (7.0 μm) 12 (6.5 μm).

2. Imager Bands: 2 (3.9μm) 3 (6.5 μm) 4 (11.0 μm) 6 (13.3 μm).

123



12.2.4 Retrieval theory

Example 1: Surface temperature determination In the window region where the atmospheric e�ect is at a minimum, the
upwelling radiance at the top of the atmosphere must be closely associated with emission from the surface. De�ning a mean temperature
Ta for the atmosphere, the retrieval equation 299 can be approximately integrated to yield:

Iν(0, µ) ≈ B(Ts)Tν(ps) +B(Ta)[1− Tν(ps)] (300)

The goal is to solve for the surface temperature Ts, which we do by using a "split-window" technique, using observations at two channels
(ν, 1) (ν, 2) to eliminate the term involving the atmospheric temperature Ta; following the approximation 300:

Ii = Bi(Tbi) = Bi(Ts)Tν,i +Bi(Ta)[1− Tν,i] for i ∈ {1, 2} (301)

where Tbi are the brightness temperatures for the frequency ranges (ν, i). Ta generally varies by less than 1K in the window region
10.5µm− 12.5µm, in which the surface emissivity's variability is insigni�cant, which justi�es the use of the "split-window" technique.
Taylor-expanding the Planck functions Bi to �rst order about Ta and eliminating the temperature dependence yields:

B2(T ) = B2(Ta) +
∂B2

∂T
(
∂B1

∂T
)−1[B1(T )−B1(Ta)] + O[(T− Ta)2] (302)

Combining 302 applied for T = {Ts, Tb2} with 301 leads to:

B1(Tb2) ≈ B1(Ts)Tν,2 +B1(Ta)(1− Tν,2) ⇒ B1(Ts) = B1(Tb1) + η[B1(Tb1)−B1(Tb2)] (303)

In this window region, the atmospheric transmittance is primarily produced by the continuous absorption of water vapor and can be
approximated as Tν ≈ exp(−σνu) ≈ 1− σνu. We can thus write:

η
def
=

1− Tν,1
Tν,1 − Tν,2

≈ σν,1
σν,2 − σν,1

(304)

where σν,i are the mass absorption coe�cients. In practice, the Planck functions in equation 303 are replaced by the brightness
temperatures, since a local linear relation can be established between the two in a small spectral temperature:

Ts ≈ Tb1 + η(Tb1 − Tb2) (305)

Sea surface temperatures have routinely be inferred from satellites using two narrow spectral band channels (such as the NOAA AVHRR
10.9µm and 12µm channels. The SST may be expressed by a general form of regression as:

SST = aTb1 + b(Tb1 − Tb2)− c (306)

where (a, b, c) are empirical coe�cients derived from in situ observations obtained from drifting buoys.

Example 2: Inference of temperature pro�les The goal is to solve for the Planck function B[T (p)] given a set of observed
radiances corresponding to di�erent wavenumbers ν and the "known" weighting functions ∂Tν

∂p .

� We start from the main retrieval equation 299.

� We assume that the transmittance at the ground is zero: Tν(ps) ≈ 0.

� We can eliminate the Planck dependence on wavenumber by considering it is smooth and in a small spectral interval can be
approximated in a linear form:

Bν(T ) = cν0Bν0(T ) + dν (307)

where the 0 subscript refers to a �xed reference wavenumber and c and d are �tting coe�cients.

We obtain a Fredholm equation equation of the �rst kind with K(p) the weighting function and f(p) the function to be recovered from
a set of g:

g =

ˆ 0

ps

f(p)K(p)dp (308)

where we have de�ned:

g
def
=

Iν − dν
cν

(309)

f(p)
def
= Bν0 [T (p)] (310)

K(p)
def
=

∂Tν(p)

∂p
(311)

For this equation to work in order to determine atmospheric temperatures from measurements for thermal emission, the source of
emission must be a relatively abundant gas of known uniform distribution. Otherwise, its uncertainty will make the determination of
temperatures from the measurements ambiguous.
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Example 3: Non-linear temperature retrieval based on iteration Note that:

� The retrieval procedures we have discussed so far are linear and empirical.

� The problem we face is that the radiative transfer equation may not always have a solution.

� Atmospheric gases for retrieval may be inhomogeneously distributed.

� The measurements and the calculated transmission contain experimental uncertainties.

� We have approximated integrals by sums, again introducing an error.

We will now outline a non-linear approach. We start by measuring the intensity at the top of the atmosphere given by equation 299 in
di�erent channels i and switch the independent variable to lnp:

Ii,obs = Bi(Ts)Tν,i,obs(ps) +

ˆ −∞
ln(ps)

Bi[T (p)]
∂Tν,i,obs(p)

∂ ln p
d ln p ≈ Bi(Ts)Tν,i,obs(ps) +Bi[T (pi)][

∂Tν,i,obs(p)

∂ ln p
]pi∆i ln p (312)

where we have approximated the integral using the mean value theorem at the pressure level where the maximum of the weighting
function is located for each channel (ν, i). If the guessed temperature pro�le is Tguessed(p), the expected radiance is:

Ii,guessed ≈ Bi(Ts)Tν,i,guessed(ps) +Bi[Tguessed(pi)][
∂Tν,i,guessed(p)

∂ ln p
]pi∆i ln p (313)

Dividing equation 312 by equation 313, we obtain:

Ii,obs −Bi(Ts)Tν,i,obs(ps)

Ii,guessed −Bi(Ts)Tν,i,guessed
≈ Ii,obs

Ii,guessed
≈ Bi[T (pi)]

Bi[Tguessed(pi)]
(314)

where we have used frequencies (ν, i) where the surface contribution to the upwelling radiance is small. Approach 314 was pioneered
by M. Chahine and is referred to as the relaxation equation; a number of variants of this procedure have been developed and are used
operationally today. The iteration works as follows:

1. Make an initial guess for the temperature pro�le: T (0)(pi) = 0.

2. Substitute in equation 312, using an accurate quadrature formula to compute the expected upwelling radiance I
(n)
i for each

sounding channel.

3. Compare the computed radiance values I
(n)
i with the measured data Ii,obs. If the residuals:

R
(n)
i

def
=
|Ii,obs − I(n)

i |
Ii,obs

(315)

are less than a tolerance threshold, such as 10−4, then T (n)(p) is a solution. Otherwise, the iteration must be continued.

4. Apply the relaxation equation 314 as many times as the number of spectral channels to generate a new guess T (n+1)(p) for the
temperature pro�le. We go from T (n)(p) to T (n+1)(p) by inverting the Planck function 12:

T (n+1)(pi) =
hc

k ln{1− [1− exp( hcνi
kT (n)(pi)

)]
I
(n)
i

Ii,obs
}

(316)

5. Carry out the interpolation between the temperature values at each pressure level pi to obtain the desired pro�le.

6. Finally, go back to step 2 and repeat until the residuals 315 are less than the preset criterion.

12.3 Remote sensing

12.3.1 Introduction

The interaction of radiation with a medium M leaves a signal S that depends on the composition and the thermal structure of the
medium that we want to retrieve. We can symbolically write this interaction using a non-linear function f :

S = f(M)
goal⇒ M = f−1(M) (317)

f relates to absorption (depends on composition), emission (depends on composition and temperature) and scattering & polarization
(depend on the size, the shape and the orientations of the particulates). Furthermore, the computation of f−1 presents mathematical
problems (f might not be an injective function, ie several physical processes have the same radiative signature; the inverse method
might not be stable...). There are two types of remote sensing:
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1. Active: Use of a radiation source generated by arti�cial means (eg lasers used for LIDAR or microwaves used for RADAR); a
beam of radiation is sent out and a backscattered signal is measured.

2. Passive: Use of natural radiation sources, such as the sun or the emission of the surface and the atmosphere of the Earth.
Wavelengths from UV to IR are accessible for scattered radiation (for example, the thermal emission by the Earth atmospheric
system is available for a wavelength of about 4µm to the far IR and microwave region).

Figure 164: The Earth Observing System is a coordinated series of polar-orbiting and low inclination satellites for long-term global
observations of the land, surface, biosphere, solid Earth, atmospheres and oceans.

12.3.2 Vegetation remote sensing

Figure 165: Left: IR photography of vegetationRight: Re�ectance spectra of di�erent vegetation types

We've already mentioned the importance of vegetation for remote sensing in section 9.1. Live plants are dark at visible wavelengths
and bright at near IR; no other gas or mineral behaves exactly in this way, making this property extremely useful in practice.
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Figure 166: Left and middle: Radiation budget for a leaf.Right: Spectra of di�erent vegetation types.

A useful quantity is the normalized di�erence vegetation index (NDVI): it is a simple numerical indicator used to assess whether
the observed target contains vegetation or not, and is de�ned as:

NDVI
def
=

NIR− RED

NIR + RED
(318)

RED (typically 0.5-0.7) and NIR (typically 0.7-1.3) are the spectral re�ectance measurements (ratio of re�ected over incoming radiation
in an individual spectral band) acquired respectively in the red and near IR regions, making NDVI range from (-1) to (+1). It works
well because of the sharp transition between IR and near IR observed on the spectrum of live vegetation (cf right of �gure 166). More
subtle indicators exist, such as where plants are thriving and where they are under stress, and even what type of crop is growing.

Figure 167: Left: Examples of NDVI for live (left) and decaying (right) vegetation.
Right: Earth Observatory: Measuring vegetation from space.

Little dips are due to water vapor; nothing is that re�ective (except snow) on planet earth; if plant absorbed everything by
photosynthesis would it overheat; whole �eld pas=sun act=radar to understand vegetation remote sensing.

12.3.3 Remote sensing by transmitted sunlight

We start by de�ning the "airmass factor" as the inverse of the solar zenith cosine m
def
= cos−1 θ, which allows us to write the solution

of the radiative transfer equation 9 without emission as:

I(λ) = Isun(λ) exp[−mτ(λ)] = Isun(λ) exp[−m(τaerosol + τRayleigh + τO3
+ τNO2

)(λ)] (319)
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where we have considered a speci�c example where the main absorbing gases are Ozone and Nitrogen dioxide. Equation 319 can be
used to retrieve the Ozone concentration in the atmosphere, for example using two wavelengths windows centered at λ1 and λ2.

Figure 168: Left: Ozone measurements throughout the atmosphere with instruments on the ground and on board aircraft, high-altitude
balloons and satellites.
Right: Measurements techniques rely on the UV absorption cuto� due to ozone.

If we assume the Ozone absorption coe�cient σO3
(λ) to be homogeneous along the ray's path, we can write τO3

(λ) ≈ ΩσO3
(λ),

where Ω is the integral of the Ozone's concentration along the ray's path:

Ω
def
=

ˆ
(s)

ρO3ds (320)

Using this approximation and equation 319 in the two wavelength windows gives:

ΩmσO3
(λi) ≈ ln[

I(λ1)

Isun(λ1)
]−m(τaerosol + τRayleigh + τNO2

)(λi) for i ∈ {1, 2} (321)

We need to choose two pairs of wavelengths so that the optical depth of aerosols can be subtracted out: the standard wavelength pairs
for O3 are (1) ≡ (0.3055, 0.3254)µm and (2) ≡ (0.3176, 0.3398)µm; at these wavelengths there is signi�cant Rayleigh scattering, but as
it makes the sky blue and not opaque, it can either be neglected (very rough approximation) or parametrized and included in τRayleigh.
Combining the two equations 321 leads to:

Ω = ∆−1
i σO3m

−1 ln[
I(λ1)Isun(λ2)

I(λ2)Isun(λ1)
]︸ ︷︷ ︸

N

−m(∆iτaerosol + ∆iτRayleigh + ∆iτNO2
) ≈ N (2) −N (1)

(σ
(2)
O3
− σ(1)

O3
)m(θ)

− Ctps (322)

where in our speci�c case (σ
(2)
O3
− σ(1)

O3
) ≈ 1.388atm−1.cm−1 and Ct ≈ 0.009. Usually, for Ozone, the Dobson unit (DU) is used: it is

the vertical thickness of the atmosphere in thousands of cm that is occupied by the Ozone when it is concentrated into a uniform layer
of pure gas at the standard temperature and pressure. The total column ozone concentration normally ranges from 200 to 500 DU.

Figure 169: Schematic explaining the de�nition of the Dobson unit
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We now try to retrieve the aerosol concentration. Its optical depth:

τaerosol(λ) = m−1 ln[
Isun(λ)

I(λ)
]− τRayleigh(λ)− τO3(λ)− τNO2(λ) (323)

can be determined if:

� The other optical depths are evaluated (either measured or parametrized).

� The position of the sun (and thus m(θ)) is known.

� A measurement of the direct solar intensity is taken.

τaersol(λ) in equation 323 is referred to as the turbidity (the "haziness" of a �uid or air), which is a measurement of atmospheric
aerosols, both natural and man-made. We remember the expression of the bidirectional re�ectance in the case of direct solar scattering
229, which can be determined from satellite measurements. We also remember that from Mie theory (cf section 9.2.3), one can input
the complex index of refraction and the particle size distribution, which are necessary to calculate the scattering e�ciency (and cross-
section), the extinction e�ciency (and cross-section), and the phase function, all as a functions of wavelength vs particle size. Not only
do aerosol scatter radiation, but they also form clouds, which cover more than half of the Earth's surface. Despite the complexity of
aerosol's scattering, three general principles hold:

1. At visible wavelengths, scattering is primarily a function of optical depth.

2. In the near IR, scattering largely depends on the particle's size.

3. Polarization measurements helps separate the e�ect of the size distribution, the refraction index, the particles phase and shapes,
and the cloud optical depth.

Figure 170: Left: Theoretical relationship between the re�ectance at 0.664µm and 1.621µm for various values of the optical depth at
0.664µm and e�ective droplet radii.
Right: Same �gure for the re�ectance at 0.664µm and 2.142µm.

To retrieve the aerosol size distribution, we recognize that the turbidity depends on the cross-section which itself depends on the
particle's size:

τaerosol(λ) =

ˆ
(Path length)

ˆ a2

a1

n(a, z)σ(a, λ)dads (324)

where n(a, z) is the distribution of the aerosol radii a that we are trying to retrieve and σ(a, λ) is their cross-sections. A typical
distribution for the aerosols is the Junge size distribution:

nJunge(a, z)
def
= C(a, z) · a−(ν∗+1) (325)

where C is a scaling factor proportional to the aerosol concentration and ν∗ represents a shaping constant, usually between 2 and 4.
In general, we separate the column aerosol size distribution in a slow varying function f(a) and a rapidly function h(a):

ncolumn(a)
def
=

ˆ TOA

0

n(a, z)dz = f(a)h(a) (326)
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For instance, for a Junge-pro�le, f(a) =
´ TOA

0
C(a, z)dz and h(a) = a−(ν∗+1). Combining equations 324 and 326, we obtain:

τaerosol(λ) =

ˆ a2

a1

f(a)h(a)σ(a, λ)da =

ˆ a2

a1

f(a)h(a)πa2Qe(m,
a

λ
)da (327)

where we have introduced the extinction e�ciency Qe from Mie's theory. Note that equation 327 is a Fredholm equation of type 308
and can be solved by using classical mathematical methods.

Figure 171: Left: Aerosol model size distributions for the four aerosol types discussed.
Right: Weighting function as a function of aerosol radius for seven sun photometer wavelengths, using the Junge distribution.

In conclusion, there are many di�erent retrieval techniques, all relying on the radiative transfer equation. They often involve
complex numerical approaches as there is no exact direct linear inversion.

13 Cloud microphysics

13.1 Climatic importance of clouds

Coming back to the radiative balance of the planet, the left of �gure 172 shows the radiative forcing of di�erent agent categories on the
climate. Note that anthropogenically produced particles can produce a positive forcing (like greenhouse gases) as well as a negative
forcing (scattering agents, cf net e�ects of aerosols and clouds).
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Figure 172: Left: Global average radiative forcing estimates and ranges for various drivers and three successive time periods (1750-1950;
1750-1980; 1750-2011)
Right: Cumulative energy budget for the Earth since 1950 (a) Mostly positive and mostly long-lived forcing agents from 1950 through
2004 (b) The positive forcings have been balanced by stratospheric aerosols, direct and indirect forcing, increased outgoing radiation
from a warming Earth and the amount remaining to heat the Earth.

In the balanced large-scale circulation, a large part of the cloud formation can be explained by dynamical e�ects, but microphysical
considerations are key when it comes to link the anthropogenic forcing, the cloud cover, and the radiative forcing. On the right of
�gure 172, we can see how much extra terrestrial energy there is in the atmosphere because of the extra anthropogenically introduced
greenhouse gases. The direct and indirect e�ects of aerosols can help explain that a big part of this energy has been lost to space, and
corresponds to a negative forcing of roughly 1W.m−2.

Figure 173: Cirrus cloud re�ectance

Figure 173 shows the amount of radiation re�ected back by cirrus clouds. Cirrus clouds have a very important role because of their
high position: they are the �rst ones to re�ect the SW back to space and the last one to re�ect the LW terrestrial radiation; they
cover one third to one half of the Earth's surface. Their coverage is very sensitive to forcing, as we can see by the important e�ects of
ships (ship tracks can be seen in the cirrus's re�ection map we considerably zoom in). As we have seen in section 8.2.3, condensation
is not automatic when the relative humidity hits 100%: it strongly relies on the atmospheric aerosols concentration. The homogeneous
nucleation process has a strong energy barrier and requires a relative humidity of 400%, which is never observed in practice. Even
homogeneous ice nucleation, which only requires 160% relative humidity, only very rarely happens.
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Figure 174: Di�erent nucleation modes

Ice nucleation is thus mostly heterogeneous as long as the atmosphere contains ice freezing nuclei (cf �gure 174). As there are many
di�erent ways of heterogeneously condensing water vapor, it is very important to understand the corresponding relative humidity and
temperature conditions to know which "mode" of condensation happens in a given atmosphere.

Figure 175: Di�erent "modes" of condensation

Because of the speci�c conditions for heterogeneous condensation, the local aerosol concentration can strongly a�ect the cloud
coverage and thus the direct radiative forcing, as we can see on the left �gure 176.
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Figure 176: Left: E�ect of the concentration of black carbon on the cloud covering and thus on the SW and LW radiative forcing.
Right: Discrepancies between the di�erent aerosol forcings in General Circulation Models.

On the right of �gure 176, we can see that even within the "good" microphysical schemes that include ice-condensation and
convection, there are very large relative uncertainties on the aerosol forcing (typically of order 100%) in current climate models.

13.2 How to �nd a cloud

Flying through a cloud is the easiest way to observe it. However, many of the particles contained in the cloud are not good condensation
nuclei. To separate the condensation nuclei from the other particles, we rely on the fact that the condensation nuclei have a water
phase in formation which typically makes them a million times heavier.

Figure 177: Top left: Counter-�ow Virtual Impactor (CVI) used to physically obtain the condensation nuclei.
Top right: Mass spectrometer, used to analyze the chemical composition of the collected particles.
Bottom: Steps to analyse the size, morphology and composition of the condensation nuclei.

The left of �gure 177 gives the details of the process, relying on a strong counter-�ow ejecting the lighter particles, which have less
inertia than the condensation nuclei. For modeling purposes, it is impossible to follow every condensation nuclei and its radiative e�ect
(there is typically a million of particles per cm3 of air), and the aerosol are classi�ed into a few categories which are each attributed a
given radiative forcing.
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Figure 178: Categories of aerosol particles for modeling purposes

13.3 How to make a cloud

The problem with observing clouds is that you can only �y a cloud once you see it, which means that you will always miss the
initial conditions of its formation (and be biased towards relative humidity already very close to saturation values etc). Consequently,
laboratory experiments that allow you to form clouds play a central role in microphysical research.

Figure 179: Spectrometer for ice nuclei (left), condensation in supersaturation vs temperature space (middle) and relationship between
the saturation vapor pressure over ice and temperature (right)

We remember from 74that the non-linearity of Clausius-Clapeyron relation allows condensation by mixing of two air samples. In a
spectrometer for ice nuclei such as on �gure 179, by establishing a constant temperature gradients between two points, it is possible to
test di�erent domain and "modes of condensation". An interesting �nding is that during the �rst phase of heterogeneous condensation,
metallic particles play an important role as well as mineral dust, which are both strongly in�uenced by human activities. Indeed, even
if mineral dust is a natural aerosol, human activities such as land usage (overgrazing). Using these particles in the laboratory (�gure
180) allows to exactly determine the relative humidity and temperature conditions for this heterogeneous nucleation to happen.
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Figure 180: Nucleation condition determination

13.4 Conclusion

� Field studies are so important, because they are the only way to know what really " makes" clouds in the atmosphere. For
instance, it is not because a material is a good ice nuclei that it is what happens in the atmosphere.

� Lab studies are really important, because it is important to understand the context of what is being observed, such as the activation
relative humidity as a function of temperature and/or size, or the in�uence of minor chemical components on microphysics.

To conclude, we show the example of lead forcing on the ice nucleation on �gure 181.

Figure 181: Atmospheric properties with and without the in�uence of anthropogenic lead. (a) Ice water path and (b) outgoing LW
radiation di�erence between the present day and the per-industrial time

Lead was unintentionally introduced in the 1970s (more than 99.5% of the atmospheric lead at that time was anthropogenically
introduced), and is believed to have been responsible to as much as 80% of the ice clouds formation at that time. It is possible that
because of this strong anthropogenically induced negative forcing (1 W.m−2), the greenhouse gas e�ect was less noticeable at that time.
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