
12.801 Large Scale Ocean Dynamics

Problem set 1: due date: March 1, 2016

1. Consider an ocean of uniform density subject to a time dependent surface wind
stress of the form (τx, τy) = A cos(ω(t − t0)), where A is the amplitude of the
wind stress, ω the frequency of the wind fluctuations, and t0 is some initial time.
Solve for the Ekman spiral that develops in this problem.

2. Consider an ocean with a surface mixed layer of constant buoyancy b1 and
depth h overlying an abyss of constant buoyancy b2 and depth H. The ocean is
horizontally homogeneous. Discuss the temporal evolution of the mixed layer
buoyancy and depth, if the mixed layer is subject to a buoyancy loss B.

3. Consider a two dimensional eddy field given by the streamfunction,

ψ = Ψ sin(kx) sin(ky), u = (u, v) = (−ψy, ψx), (1)

i.e. a periodic array of eddies of size l × l (k = 2π/l). You can think of this
pattern as a simple representation of convecting cells in the mixed layer. You
will be asked to compute the eddy diffusivity for a tracer stirred by this eddy
field. You can obtain the eddy diffusivity using a simple trick. Suppose that
a large scale uniform gradient G is externally imposed on the tracer, you can
then proceed to calculate the tracer eddy flux F which is associated with G.
In terms of the notation used in class, the linear gradient represents the large
scale tracer gradient, the eddy field represents the turbulent velocity field, and
there is no mean velocity field, i.e. 〈u〉 = 0.
The procedure of assuming a steady large scale gradient is used to bypass the
initial value problem and deal with a simpler steady state problem,

J(ψ, c) = κ∇2c. (2)

The first step is to make the simple substitution,

c = G · x + c′(x, y), (3)

which separates c into the large-scale uniform gradient and a periodic flow-
induced perturbation c′. Throwing (3) into (1) one obtains,

J(ψ, c′)− κ∇2c′ = −G · u. (4)

(a) Using appropriate scaling parameters (l, κ, Ψ), show that eq. (4) takes the
nondimensional form,

P J(ψ, c′)−∇2c′ = −Γ · u. (5)

where P is the Péclet number, P ≡ Ψ/κ, and Γ is the nondimensional
linear gradient.
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(b) It is impossible to solve eq. (5) exactly. However approximate solutions in
the limit P � 1 (diffusive limit) can be found by perturbation expansion
techniques. Express the solution as c′ = c0 + Pc1 + P 2c2 + . . . and solve
for each order in P . Then compute,

F = −κΓ + 〈uc′〉, (6)

where the average is carried over a periodic cell of dimension l×l. The main
point of this exercise is to show that F is directed down the large scale gra-
dient Γ. Calculate the solutions to second order in the small P−expansion
(i.e. compute two terms in the expansion of the eddy diffusivity).

4. Look for a paper that describes how to compute neutral density and read it.
Explain how neutral density is computed. Your answer cannot exceed half a
page.

5. Download the data set ADELIE.mat from the class website. This is a short hy-
drographic section off the coast of the Antarctic Peninsula obtained in February
2007 by Andy Thompson, an oceanographer from Caltech. if you do nbot al-
ready have them, download the Matlab seawater routines. For this problem you
will need to use (at least) the following seawater commands: sw alpha, sw beta,
sw dens, sw dist, sw pden, sw ptmp. You should calculate the buoyancy fre-
quency without using sw bfrq.m.

(a) From the in situ temperature and salinity data, plot sections of θ, σ0, σ2
and σ4 as a function of pressure and distance along the section (Note that
the sections are not equally spaced; be sure to account for this in your
figures. Hint: use sw dist).

(b) Estimate the isopycnal slope at station 12 as a function of depth (be sure
to explain how you made this calculation). How does the slope depend on
the choice of reference pressure? Calculate the slope of the neutral density
surfaces for the same station. How do they compare to the potential density
slopes referenced at different levels?
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12.801 General Ocean Circulation

Problem set 2: Wind driven circulation and single
layer models

Due date: March 16, 2016

1. Doctor Kludge knows that the typical size of the Ekman pumping velocity in a
subtropical gyre is W = π × 10 meters per year. Kludge wants to estimate the
order of magnitude of the gyre-scale North-South velocity, V. She looks at the
mass conservation equation

ux + vy + wz = 0.

and makes the following scale analysis

V ∼ WL

H
(1)

where L is the meridional length-scale of V . Kludge plugs the numbers using
L = 5 × 105 meters and H = 500 meters as horizontal and vertical length
scales. Mindlessly follow Kludge and get a numerical estimate for V using (1).
Briefly discuss any additional considerations that Kludge, as a proud graduate
of the Joint Program, should be aware of. Is Kludge’s answer likely to be in
the ballpark, or will the estimate of V change by an order of magnitude if one
accounts for these factors? If you believe that Kludge is significantly in error
make your own numerical estimate of V .

2. The meridional Sverdrup transport VS is the depth-integrated transport over
the entire water column. The meridional Ekman transport VE is the velocity
integrated over the frictional Ekman layer only. Splitting the flow field in its
geostrophic and Ekman components, u = uG + uE, and using the barotropic
vorticity equation for the interior geostrophic flow and the known expressions
for the meridional transports VS and VE, show that VS = VG +VE. What is the
ratio of VE/VG?

3. In class we showed that the barotropic streamfunction ψ in a flat ocean at
leading order in Ro satisfies the equation,

βψx = sinπy/L− r∇2ψ

where β is the planetary vorticity gradient, sin πy/L is the curl of the wind
stress, L is the zonal extent of the ocean basin, and r is the drag coefficient.
First write the full analytical solution to this equation, which satisfies the ψ = 0
(no normal flow) boundary conditions at y = ±L and x = 0,±L. Then expand
your solution in the limit r/Lβ → 0. Show that the solution in this limit reduces
to the boundary layer solution we derived in class.

1



4. Munk suggested that lateral friction, instead of the bottom Ekman drag, may
be an alternative way to close the wind-driven gyre problem. Show that the
streamfunction equation for a barotropic wind-driven gyre with lateral friction
satisfies the equation,

βψx = sin 2πy + ν∇4ψ,

where 0 < (x, y) < 1. Assume that ν is small. (i) State the boundary conditions
in terms of ψ and its derivatives. (ii) Give a complete account of the boundary
layer which occurs in this problem; construct the solution using boundary layer
theory.

5. Consider the barotropic quasi-geostrophic vorticity equation in shallow water:

D

Dt

[
∇2ψ − Fψ + (f0 + βy)

]
= 0,

where

F ≡ f 2
0L

2

gD0

and
D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
=

∂

∂t
− ∂ψ

∂y

∂

∂x
+
∂ψ

∂x

∂

∂y
.

Consider Rossby wave solutions on a mean zonal flow U =const.

(a) Derive an equation for the wave streamfunction.

(b) Assume a single plane wave solution and derive the dispersion relationship
and the phase speed. Can you relate them to the dispersion relationship
and phase speed of Rossby waves in a motionless ocean? What is the effect
of the mean flow?

(c) Discuss the case of westerly flow U = +1 > 0 (i.e. flow coming from the
west) and of easterly flow U = −1 < 0. Is a sattionary solution possible
and, if so, when?
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12.801 General Ocean Circulation

Problem set 3: Wind driven circulation and single
layer models

Due date: April 6, 2016

1. Read chapter 5 of John Marshall’s notes on the wind driven circulation.

2. The equation for the depth-averaged flow with lateral friction in a square ocean
(Munk’s problem) is,

β
∂ψ

∂x
= W (y) + ν∇4ψ

where W (y) is the wind stress curl, which does not vanish at the northern and
southern boundaries.

(a) What terms in the above equation are important in each boundary layer?

(b) What terms in the above equation are important in the interior of the
square ocean away from boundary layers?

(c) Assuming that boundary layers are needed at all four coastal boundaries,
what is the thickness of each one as a function of β, ν, and the length
L of the sides of the square? Show how you derive the boundary layer
thickness, without deriving the full solution to the problem, for:

i. thickness of the western boundary layer

ii. thickness of the eastern boundary layer

iii. thickness of the northern boundary layer

iv. thickness of the southern boundary layer

3. Use Sverdrup theory and the idea that only western boundary currents are
allowed, to sketch the pattern of ocean currents you would expect to observe in
the basin sketched overleaf in which there is an island. Assume a wind pattern
of the form sketched in the diagram.
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to observe in the basin sketched overleaf in which there is an island.
Assume a wind pattern of the form sketched in the diagram.
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4. Consider the Atlantic Ocean to be a rectangular basin, centered on 35◦N, of
longitudinal width Lx = 5000km and latitudinal width Ly = 3000km. The
ocean is subjected to a zonal wind stress of the form

τx(y) = −τs cos

(
πy

Ly

)
; τy(y) = 0; (1)

where τs = 0.1Nm−2. You may assume a constant value of β = df/dy appropri-
ate to 35◦N, that the ocean has uniform density 1000 kg m−3 and adopt local
Cartesian geometry.

(a) From the Sverdrup relation determine the magnitude and spatial distribu-
tion of the depth-integrated meridional flow velocity in the interior of the
ocean.

(b) Using the depth-integrated continuity equation, and assuming no zonal
flow at the eastern boundary of the ocean, determine the magnitude and
spatial distribution of the depth-integrated zonal flow in the interior.

(c) If the return flow at the western boundary is confined to a width of 100
km, determine the depth-integrated flow in this boundary current.

(d) If the flow is confined to the top 500m of the ocean (and is uniform with
depth in this layer), determine the northward components of flow velocity
in the interior, and in the western boundary current.

(e) Compute and sketch the pattern of Ekman pumping implied by the ideal-
ized wind pattern, Eq. (1).

5. From your answer to question 3, determine the net volume flux at 35◦N (the
volume of water crossing this latitude in units of Sverdrups: Sv = 106m3 s−1).

(a) for the entire ocean excluding the western boundary current
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(b) for the western boundary current only.

(c) Assume again that the flow is confined to the top 500m of the ocean.
Determine the volume of the top 500m of the ocean and, by dividing this
number by the volume flux you calculated in part (a), come up with a time
scale. Discuss what this time scale means.

(d) Assume now that the water in the western boundary current has a mean
temperature of 20◦C, while the rest of the ocean has a mean temperature
of 5◦C. Show that Hocean, the net flux of heat across 35◦N, is

Hocean = ρrefcpV∆T,

where V is the volume flux you calculated in part (c), and ∆T is the tem-
perature difference between water in the ocean interior and in the western
boundary current. Given that Earth’s energy balance requires a poleward
heat flux of around 5×1015W, estimate and discuss what contribution the
Atlantic Ocean makes to this flux.

6. For this exercise you will need to run Bryan’s solver of the one layer QG equa-
tions. Setup a wind-driven gyre problem in a closed rectangular box with the
following parameters: τ (x) = 0.2 sin(πy/L) N m−2, H0 = 1000 m, f0 = 10−4 s−1,
β = 2 × 10−11 m−1s−1, r = 5 × 10−6 s−1, L = 5000 km. These standard set of
parameters are set in the ”qg1l basin.jl” provided with the homework–please
download the latest version. You may notice that Bryan added a small lat-
eral friction to keep the solution stable. Ignore this in your discussion of the
solutions.

(a) Run a simulation with the suggested parameters for friction and wind
stress. Wait until the simulation comes to an equilibrium. Look at the
streamfunction. Describe the solution you obtain. Is the interior solution
consistent with Sverdrup’s theory for the wind stress you are using? If
so, explain how the interior transport reflects the wind stress pattern. Is
there a frictional boundary current? On what boundary? What sets its
thickness?

(b) Change the value of β to 2×10−13m−1s−1 leaving all other parameters
unchanged. How does the solution change? Discuss these changes in terms
of what you know about Stommel’s model of the wind-driven gyre.

(c) Set β back to its midlatitude typical value of 2×10−11m−1s−1. Decrease the
frictional parameter to 3.0×10−7 s−1. Wait until the solution equilibrates.
How did the solution change compared to case (a)? Are there frictional or
inertial boundary layers? Where?
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12.801 General Ocean Circulation

Problem set 4: Wind driven circulation and multi
layer models

Due date: April 25, 2014

1. Gyre spinup. Consider the planetary-scale two-layer QG model. Suppose that
the two layers have equal depth, H1 = H2 = H, and that the reduced gravity
is g′ � g. The QG equation is

∂tq1 + J(ψ1, q1) =
f0w0

H
sin

(
πy

L

)
H(t),

∂tq2 + J(ψ2, q2) = 0,

where the potential vorticities are

qn = βy + F (−1)n(ψ1 − ψ2), F ≡ f 2
0 /g

′H.

Notice that H(t) is the step-function, not the depth of the ocean. The domain
is a rectangle 0 < x < L and −L < y < L. The wind-stress is switched on
suddenly at t = 0 and before that ψn = 0.

(a) Show that the barotropic mode

ψB ≡
ψ1 + ψ2

2
,

adjusts instantly to Sverdrup balance:

ψB(x, y, t) = −Ψ
(

1− x

L

)
sin

(
πy

L

)
H(t).

Determine Ψ in terms of L,w0, β etcetera. Instant adjustment is obvi-
ously an approximation; say a little about the time-scale over which the
barotropic mode comes into Sverdrup balance (twenty words or so).

(b) Eliminate ψ1 and obtain a single equation for the lower layer flow, ψ2:

∂tψ2 − J(cy + ψB, ψ2) = ∂tψB.

Give the constant c in terms of F and β. Physically interpret c in terms
of the properties of the baroclinic mode.

(c) Draw the lower-layer geostrophic contours, cy + ψB , using various values
of the nondimensional ratio cL/Ψ. Using these figures, discuss the time
evolution of ψ2 . Does this initial value problem unambiguously determine
the vertical structure of the Sverdrup flow i.e. the partitioning of ψB into
ψ1 and ψ2?
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2. Ventilated thermocline. Consider the ventilated thermocline model de-
scribed in class. The domain is contained in 0 < x < L and 0 < y < L,
the wind forcing is described by τ = −τ0 cos(πy/L), the lower layer outcrops
at a latitude y2 = 0.8L and the depth of layer 2 is equal to He on the eastern
boundary north of y2.

(a) Find an expression for the curve that marks the boundary of the shadow
zone. You can leave your answer in terms of the function D2

0(x, y) intro-
duced in class. (Hint: You should find an expression for D2

0(x = xS(y), y),
where xS is the longitude position of the shadow zone boundary and is a
function of latitude).

(b) Imagine there is a third, motionless, layer below layer two. Its depth on the
eastern boundary is equal to layer 2, i.e. on the eastern boundary h2+h3 =
2He. What is the potential vorticity distribution in this lowermost layer.
Indicate where the meridional PV gradient changes sign. What does this
physically correspond to?

3. Baroclinic instability. Show that the two-layer QG equations on a β-plane
and a bottom topography at z = −H2 + hb are:

∂tq1 + J(ψ1, q1) = 0, q1 = ∇2ψ1 + βy + F1(ψ2 − ψ1), (1)

∂tq2 + J(ψ1, q2) = 0, q2 = ∇2ψ2 + βy + F2(ψ1 − ψ1) + f0
hb
H2

, (2)

(3)

where F1 = f 2
0 /g

′H1, F2 = f 2
0 /g

′H2 are the squared inverse deformation wave
numbers and hb. Consider a basic state with a zonal constant flow U1 in the
upper layer and a zonal constant flow U2 in there lower layer.

(a) Set hb = 0 and assume (H1, H2) = (1000, 3000) m and (U1, U2) = (0.1, 0) m s−1,
representative values for the Antarctic Circumpolar Current (ACC). Is the
ACC baroclinically stable?

(b) Set hb = sy. Determine what is the minimum shear, U1−U2, for which the
mean flow goes baroclinically unstable. Does the bottom slope s increase
or decrease the minimum shear compared to the flat bottom problem? How
large a slope do you need to stabilize the ACC based on the parameters
given above? Is this a slope you may expect to find in the bottom of the
Southern Ocean on scales of thousand of kilometers?
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