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Introduction
The aim of this paper is to present several generations of land-
scape reconstructions from the same site in southeastern Sweden 
and in this way illustrate the development of palynology for land-
scape reconstruction over the last half century. The classical refer-
ence site Lake Färskesjön (core 1956, Berglund, 1966b) was 
revisited, and the original pollen record was complemented with 
a new record from the top sediments, representing the last 
3000 years (core 2013; Åkesson, this paper). The Regional Esti-
mates of VEgetation Abundance from Large Sites (REVEALS) 
model (Sugita, 2007a) was applied to both pollen records in order 
to obtain a quantitative reconstruction of the vegetation develop-
ment of the region, so that we can not only characterize but also 
quantify the changes in the landscape. Pollen-based REVEALS 
estimates of plant abundance opens up for new possibilities to 
further explore and understand the processes and drivers behind 
the landscape development during the Holocene.

Recent studies have suggested that past land-use changes may 
also have affected – besides terrestrial ecosystems and biodiver-
sity in general – the marine environment of the Baltic Sea (Fun-
key et al., 2014; Zillén and Conley, 2010). In order to study the 
links and to assess the possible impact of human land use on the 
sea in a long time perspective, the project ‘Managing Multiple 
Stressors in the Baltic Sea’ (MULTISTRESSORS) was initiated 

at Lund University (Stadmark and Conley, 2013). The project 
focuses on reconstructing land-cover changes in coastal regions, 
and nutrient status in coastal waters of the same regions, based on 
terrestrial and marine palaeoecological records, respectively. Two 
of the project’s study regions are northeastern Småland, where 
land-cover changes reconstructed based on a new pollen record 
from Lake Storsjön (Åkesson, 2013) are being compared with 
marine proxies from the nearby bay Gåsfjärden (Ghosh et al., 
2012; Nielsen et al., 2013), and southeastern Blekinge, which is 
the focus area of the present study. In this paper, we present a 
regional scale landscape reconstruction for the coastal region of 
southeastern Blekinge, based on the combined pollen records 
from Lake Färskesjön. This reconstruction will, in an ongoing 
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related study, be used in the interpretation of changes in the 
coastal environment studied in a core from nearby Karlskrona.

Pollen analysis – From description to quantification
Pollen records extracted from lake sediments or bog deposits 
have the potential to provide continuous information on past veg-
etation changes. When pollen analysis was introduced as a pal-
aeobotanical method, the aim was concentrated on forest history, 
since pollen identifications were restricted to tree pollen (see pio-
neer works by Erdtman (1921), Firbas (1949), Nilsson (1935), 
and von Post (1916, 1924)). Iversen’s (1941) ‘landnam study’ in 
Denmark was a breakthrough for more complete microscopical 
analyses by identifying even herb and grass pollen. This made it 
possible to trace land-use types such as forest clearing, cultiva-
tion, and grazing. The first textbooks with pollen flora descrip-
tions (Erdtman, 1943) and identification keys (Fægri and Iversen, 
1950) were also produced at this time. In south-central Sweden, 
Florin (1957) and Fries (1951, 1958) were the pioneers of the 
interpretation of farming history based on pollen analyses, later 
followed by Berglund (1966b, 1969) in the province of Blekinge 
and Königsson (1968) on the island of Öland (Figure 1).

Interpretation of pollen records in terms of forest composition 
was rather superficial in the early studies on Holocene forest his-
tory, because they were based on original pollen percentages. 
However, it was well understood that pollen production and dis-
persal varied between species. Iversen (1964) proposed correction 
factors for north European trees, and applied these in a study of the 
long-term history of Draved Forest in Denmark, and Andersen 
(1970, 1974) revised these factors based on experimental field 
studies in the same forest area. These have been widely applied in 
studies of local forest dynamics in other regions of northwestern 
Europe, for example, in southern Sweden (e.g. Berglund, 1991). 
Davis (1963) introduced the concept of the R-value model, that is, 
a first mathematical expression of the relationship between a plant 
taxon’s pollen percentage and related vegetation percentage. The 
main conclusions from those early studies were that (1) trees are 
generally overrepresented and herbs underrepresented in pollen 

percentage diagrams, in relation to their share in the vegetation, 
which implies that forest and open-land cover tend to be inter-
preted as too large, respectively too small, when pollen percent-
ages only are used in the interpretation of vegetation history, and 
(2) pollen from certain trees, such as Betula and Pinus, are over-
represented, while those from, for example, Tilia, Ulmus, and 
Fraxinus, are underrepresented, which implies that actual forest 
composition is very different from tree pollen composition.

A comprehensive review of the developments of pollen analy-
sis in the field of human impact and land-use history and quanti-
fication of human-induced landscape openness is found in 
Gaillard (2013). Early studies of human impact on the landscape 
were based on the ‘indicator species approach’ (Behre, 1981; 
Birks and Birks, 1980). The identified pollen taxa were ascribed 
to modern human-induced and natural plant communities and 
their ecological characteristics. The presence/absence of these 
indicator taxa was used to describe the land-use history, and the 
percentages of the ‘pollen land-use groups’ were applied to infer 
relative changes in land use in relation to forest cover. Gaillard 
(2013) lists c. 200 pollen taxa related to five vegetation types 
within a traditional farming landscape. This method was applied 
in the so-called Ystad Project in southernmost Sweden, a palaeo-
ecological/archaeological project focused on the long-term his-
tory of the cultural landscape (Gaillard, Göransson, Hjelmroos, 
Kolstrup, and Regnéll in Berglund, 1991). The indicator species 
approach using ‘pollen land-use groups’ may be described as a 
semi-quantitative method and is useful in particular when it is 
combined with skilled pollen-morphological identifications and 
botanical knowledge. However, it does not quantify the degree of 
human impact in terms of actual landscape openness, that is, the 
cover of human-induced open land.

A complementary method for analyzing the relationship 
between pollen assemblages and vegetation and/or land use is the 
‘comparative approach’ (Birks and Birks, 1980; Birks and Gordon, 
1985) in which contemporary pollen assemblages from different 
plant communities, for example, in ancient cultural landscapes are 
numerically compared with fossil pollen assemblages in order to 
identify modern analogues for the past assemblages, and in this 

Figure 1. Map of southern Sweden showing the location of the study area Lake Färskesjön and the locations of the two bogs Ageröds Mosse 
and Storemosse. The provinces of Skåne, Blekinge, and Småland, as well as the island Öland are also shown in the map. The nemoral/boreo-
nemoral forest border according to Sjörs (1965) is illustrated.
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way provide a description of the past vegetation/land use from the 
modern analogue landscape. A case study with pollen data from 
traditional farming landscape in southern Sweden (Berglund et al., 
1986) was followed by other studies resulting in a large database 
of modern pollen assemblages and related vegetation, land-use, 
and soil chemical characteristics from ancient cultural landscapes 
in southern Sweden. This database was used in reconstructions of 
past anthropogenic landscapes and land use, and related grazing 
pressure and soil characteristics using the pollen record from Lake 
Bjäresjö (within the Ystad project, mentioned above; Gaillard 
et al., 1992, 1994, 1997). The comparative approach has also been 
applied in other countries including Finland (Hicks and Birks, 
1996), Norway (Hjelle, 1999), and Denmark (Odgaard and Ras-
mussen, 1998, 2000).

Another, parallel development in the theory of pollen analysis 
has been the attempts at formulating the pollen-vegetation rela-
tionship mathematically/mechanistically with the objective of 
getting a reliable model to ‘translate’ pollen assemblages into 
quantitative estimates of vegetation composition. It has long been 
understood that the relationship between vegetation abundance 
and pollen proportion in sediments is non-linear (Fagerlind, 
1952), which made it difficult to quantify vegetation cover based 
on pollen data. However, a theoretical framework gradually 
developed from the R-value model of Davis (1963), through the 
relative R-values or correction factors of Andersen (1970) – men-
tioned above – to the Extended R-Value (ERV) model (Parsons 
and Prentice, 1981; Prentice, 1985; Sugita, 1994) that takes the 
non-linear relationship between vegetation and pollen percent-
ages into account. Apart from inter-taxonomic differences in pol-
len productivity, the representation of vegetation by pollen 
assemblages is also affected by differences in the properties of 
pollen dispersal and deposition. The latter was already studied by 
Tauber (1965, 1977) in Denmark, who applied the relatively sim-
ple Sutton equations (Sutton, 1953) to describe wind dispersal. 
This was later incorporated in the ERV-model framework to 
obtain a mechanistic model of the pollen-vegetation relationship 
(Prentice, 1985; Sugita, 1993). This model could then be used to 
simulate pollen dispersal and deposition to a pollen site (i.e. pol-
len assemblages in lakes and bogs) within a given landscape, 
which significantly improved the understanding of fossil pollen 
records in terms of past vegetation and landscapes (e.g. Bunting, 
2008; Bunting et al., 2004; Caseldine et al., 2007; Gaillard et al., 
1998; Nielsen, 2004; Nielsen and Sugita, 2005; Sugita, 1994; 
Sugita et al., 1999).

Based on this theoretical framework, combined with simula-
tions and empirical studies of the relationship between surface 
pollen assemblages and modern vegetation (e.g. Broström 
et al., 1998, 2004, 2005), Sugita (2007a, 2007b) developed the 
Landscape Reconstruction Algorithm (LRA), designed to cor-
rect for pollen representation and dispersal biases and quantify 
vegetation composition based on fossil pollen assemblages. 
The LRA includes two models, REVEALS to estimate regional 
vegetation composition (within an area of c. 50–100 km radius) 
using pollen assemblages from large (c. 100–500 ha) lakes, or 
alternatively from multiple smaller sites (Sugita, 2007a), and 
the LOcal Vegetation Estimation (LOVE) model to estimate 
local vegetation composition using smaller sites, combined 
with regional vegetation estimates from REVEALS (Sugita, 
2007b). The background for using mainly large lakes for 
regional vegetation reconstruction with REVEALS is that both 
simulations and empirical studies have shown that between-site 
differences in pollen composition within a region are small for 
large lakes, but large for small lakes (Berglund, 1973; Jacobson 
and Bradshaw, 1981; Sugita, 1994). Therefore, REVEALS esti-
mates based on pollen records from several small sites gener-
ally exhibit larger error estimates than those using records from 
one or more large lake(s).

The REVEALS model has been empirically validated in, for 
example, southern Sweden and Switzerland (Hellman et al., 
2008a, 2008b; Soepboer et al., 2010), and taxon-specific pollen 
productivity estimates (PPEs) needed for REVEALS-based 
vegetation reconstruction are now available for several areas of 
Europe (reviews in Broström et al., 2008; Mazier et al., 2012). 
So far, REVEALS estimates of Holocene land cover are avail-
able from southern Sweden, Denmark, and Switzerland 
(Nielsen and Odgaard, 2010; Soepboer et al., 2010; Sugita 
et al., 2008). In the project LANDCLIM (Holocene LAND-
cover-CLIMate interactions in Europe; Gaillard et al., 2010), 
REVEALS has been applied for selected Holocene time win-
dows to networks of sites within northwest Europe (Fyfe et al., 
2013; Mazier et al., 2012; Nielsen et al., 2012; Trondman et al., 
2012), and for the entire Holocene at selected sites (Marquer 
et al., 2014). The major objective of the LANDCLIM project is 
to assess the potential influence of human-induced land-cover 
change on the past climate of Europe (Strandberg et al., 2014). 
Land-cover effects on carbon release to the atmosphere have 
also been studied by combining REVEALS-based land cover 
with ecosystem modeling (Olofsson et al., 2013). At a more 
local scale, the LRA has been applied in southern Sweden to 
address long-term impact of land use on floristic diversity 
(Fredh, 2012; Fredh et al., 2013), fire dynamics (Cui et al., 
2013), and dissolved organic carbon in lakes (Bragée, 2013). 
This use of pollen records allows the study of long-term pro-
cesses in terrestrial and aquatic ecosystems, and the knowledge 
gained, such as the rate, amplitude, and frequency of changes in 
the past, has great potential to be useful for management of the 
environment today and in the future.

Material and methods
Description of the Lake Färskesjön area
Lake Färskesjön is situated in the province of Blekinge, south-
eastern Sweden, c. 16 km east of the city Karlskrona (Figures 1 
and 2). The lake is located on the Torhamn Peninsula at an alti-
tude of c. 14 m.a.s.l., c. 2 km east of the Baltic Sea bay Hallar-
umsviken and 3 km west of the open Baltic Sea. The lake lies in 
a depression within the Subcambrian peneplane, composed of 
gneiss, dipping gently eastwards towards the sea (Kornfält, 
2007). A bedrock plateau at 25–35 m.a.s.l. west of the lake sep-
arates the basin from the Baltic Sea bay Hallarumsviken. The 
bedrock is covered by a thin layer of wave-washed, sandy till 
(Persson and Malmberg Persson, 2014). East of the lake, the till 
is covered by eolian sand.

The hydrological catchment area of Lake Färskesjön is c. 
2.5 km2, and the lake is drained by a brook running southwest 
towards the sea. The lake area is 0.5 km2 (Berglund et al., 2008), 
and the water depth in the central part is 3–4 m (Figure 3). The 
lake was dammed off in 1964 to be used as a water reservoir. 
Within a shallow bay northwest of a small island in the lake, pine 
stumps occur which have been dated to c. 4000 BP (Berglund, 
1966b). The lake is oligotrophic, and the limnic vegetation is 
described in Berglund (1966b). The western part of the lake is 
included in the Färskesjön nature reserve that comprises the bed-
rock plateau west and southwest of the lake.

Several grave cairns from the Bronze Age occur within a radius 
of 1.5 km from the lake. A grave field with stone settings dated to 
the Iron Age is located close to the eastern shore (Figure 4). Small-
scale farming still occurs north and southeast of the lake. The sand 
field east of the lake is covered with planted pine wood. The bed-
rock-dominated area west of the lake has been used for grazing 
until the mid-19th century. It was an open Calluna heath, now 
characterized by a woodland succession with birch, pine, oak, and 
some beech.
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Field work and laboratory analyses

Core 1956. The first geological field work was performed in the 
summer of 1956. A sediment core (core 1956) was obtained by 
using a Hiller sampler in the southern part of the lake (Figure 3) 
at a water depth of 2.85 m. The sampling technique at that time 
made it impossible to perform a reliable subsampling of the top 
sediments (uppermost c. 20 cm).

The stratigraphy was as follows:

•• 2.85–8.69 m. Dark green, fine detritus gyttja, slightly 
clayey below 8.0 m.

•• 8.69–8.75 m. Grayish green, clayey fine detritus gyttja.
•• 8.75–10.50 m. Gray clay.

The sequence was pollen analyzed in 1956–1957, with some 
complementary identifications made in 1963. The lower bound-
ary for the Holocene (tundra/forest) was identified at the layer 
8.69–8.75. Two pollen diagrams were constructed, one for the 
Late Weichselian and one for the Holocene, both published in 
Berglund (1966a, 1966b). Later versions based on the same pol-
len data are discussed in Berglund et al. (2008) and in this paper. 
All details on pollen preparation and identification of pollen-mor-
phological types are found in Berglund (1966a, 1966b).

Core 2013. In September 2013, a new sediment core (core 
2013) with high time resolution for the last millennium was col-
lected, sampled, and analyzed within MULTISTRESSORS and 
the project ‘Linking land-use change to coastal ecosystems in 
the recent past’, to supplement the Lake Färskesjön record with 
special focus on the uppermost part of the core, which could not 

be reliably sampled in 1956. The sampling location was situated 
180 m from the nearest shore and 120 m southeast of a small 
island in the lake at a water depth of 3.0 m (Figures 3 and 4). 
Core 2013 has a total length of 2.8 m (3.0–5.8 m). The loose 
surface sediments (41 cm) were collected using a gravity corer 
(Kajak, Renberg, 1991) and sectioned in 1-cm intervals in the 
field, where the material was sealed in plastic bags. The remain-
ing sediment sequence (3.20–5.80 m) consisted of three overlap-
ping cores (FS1: 3.2–4.2 m; FS2: 4.0–5.0 m; FS3: 4.8–5.8 m), 
which were retrieved from two holes c. 1.5 m apart using a Rus-
sian corer (length: 1 m; diameter: 75 mm) and sealed in plastic 
film in the field. All of the material was stored in a cold room at 
5 °C until further analyses.

The stratigraphy is as follows:

•• 3.0–5.15 m. Dark brown, fine detritus gyttja, some silt par-
ticles below 4.80 m.

•• 5.16–5.18 m. Brown gray, fine sand with a sharp upper 
and lower boundary.

•• 5.18–5.26 m: Dark brown, silty fine detritus gyttja, transi-
tion zone.

•• 5.26–5.80 m. Light gray, silty sandy gyttja-clay, sharp 
upper boundary.

Subsamples of 1 cm3 were collected from the Kajak core and 
the uppermost Russian core for pollen analysis and loss on igni-
tion (LOI) at an interval of 1 cm. The correlation between the 
cores was based on the LOI results, which showed similar val-
ues and corresponding peaks in both cores (see Figure 8). The 
subsamples for pollen analysis were prepared and analyzed in 
2013 according to standard pollen methodology (Berglund and 

Figure 2. The distribution of farm village infield areas in the coastal area surrounding the city Karlskrona and on the Torhamn Peninsula, where 
Lake Färskesjön is located. The mainland west of Karlskrona has not been considered. The map is based on enclosure maps from the 18th 
century.
Source: Land survey documents at the Land Survey Office in Karlskrona, now at the national office in Gävle. From Berglund (1966b).



182 The Holocene 25(1)

Ralska-Jasiewiczowa, 1986). Pollen grains were counted and 
identified to species or family level using a light microscope 
(Olympus BX41) at 400 times magnification, pollen keys, and 
illustrations from Beug (2004), Fægri and Iversen (1989), and 
Moore et al. (1991) and the reference collection at the Depart-
ment of Geology, Lund University. At least 1000 pollen grains 
were counted in each sample and the total pollen sum was used 
for the calculation of the pollen percentage. A P/E ratio of 1.25 
was used in order to distinguish Secale t. (>1.25) from the other 
cereals (<1.25; in an equatorial view of a pollen grain, P is the 
distance between the polar areas and E the size of the grain at the 
equator). The outer annulus diameter was used in order to distin-
guish Triticum/Avena t. (>12 µm) from Hordeum t. (10–12 µm). 
For REVEALS analysis, Triticum/Avena and Hordeum types 
were combined into Cerealia t.

The subsamples extracted for LOI analysis were weighted, oven 
dried at 50 °C for approximately 12–24 h, and weighted again in 
order to determine the dry weight of the samples. The samples were 
then heated to 550°C in a muffle furnace and after cooling weighted 
again in order to estimate the organic content of the samples.

Chronology
The chronology of core 1956 is based on the pollen-stratigraphi-
cal correlation between the pollen record from Färskesjön and the 
14C-dated pollen record from Ageröds Mosse in Skåne (Figure 1; 
Nilsson, 1964) using numerical zonation methods (Birks and  
Berglund, 1979; for more details, see Berglund et al., 2008).

From core 2013, sediment samples from the Kajak core were 
freeze-dried and submitted for 210Pb dating at the department of 

Figure 3. Bathymetric map of Lake Färskesjön based on measurements from the ice in the winter of 1941, by Bergdahl (Berglund, 1966b). 
Sediment coring sites are indicated with the year for the sediment sampling, 1956 and 2013, respectively.
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Geology at Lund University. The age–depth relationship calculated 
using the constant rate of sedimentation model (CRS; Appleby and 
Oldfield, 1978) showed that the sedimentation rate was 1.74 mm/yr 
in the top 11.5 cm of the sediment (after c. ad 1951), and 0.80 mm/
yr from 16.5 to 11.5 cm depth (c. ad 1882–1951).

Sediment samples from selected levels below 41 cm were 
sieved through meshes of 500 and 250 µm. Macroscopic plant 
remains from terrestrial taxa, mostly consisting of Betula fruits 
and catkin scales, Alnus bud scales, and unidentified leaf frag-
ments, were carefully extracted from the sieve residue using a 
binocular microscope at 15 times magnification (Olympus 
SZX12). Three samples were submitted for dating at the 14C-lab-
oratory, Department of Geology, Lund University (Table 1). An 
additional date was used to construct the age–depth model of core 
2013, namely, the 14C age of the increase of Fagus pollen from c. 
1% to 5% in the pollen diagram from Storemosse (Berglund, 
1966b) in Blekinge, located 45 km northwest of Lake Färskesjön 
(Figure 1), a pollen-stratigraphical level also found in core 2013.

The age–depth model (Figure 5) was established based on the 
calculated 210Pb dates and the 14C dates, using the IntCal09 cali-
bration curve (Reimer et al., 2009) to convert the radiocarbon 
dates into calendar years, and applying a smoothing spline model 
using the R-code CLAM (Blaauw, 2010).

Pollen diagrams from Lake Färskesjön – 
Methodological approaches
The first pollen diagrams from Lake Färskesjön (Berglund, 
1966a, 1966b) were constructed in the traditional manner, inspired 

by the ‘Copenhagen Troels-Smith school’. In a special diagram, 
correction factors were applied – Betula, Pinus, and Corylus were 
divided by 4; Tilia, Acer, and Sorbus were multiplied by 2. Such 
corrections have not been applied in later versions. A revised and 
simplified diagram was published together with similar diagrams 
from other regions in southern Sweden in a survey paper discuss-
ing the human impact on the landscape in late Holocene (Ber-
glund, 1969). The Holocene pollen diagram from Lake Färskesjön 
(core 1956) has more recently been revised for different purposes 
(e.g. Berglund et al., 1996; 2006).

The high standard of pollen identifications (stratigraphic reso-
lution, number of identified taxa, pollen sum in most samples c. 
2500) made it suitable for calculation of palynological diversity 
as a proxy method for plant diversity (Berglund et al., 2008).  
Berglund et al. (2008) determined the palynological richness in 
the 1956 core using the rarefaction technique (Birks and Line, 
1992) that estimates the expected number of terrestrial pollen taxa 
(E(Tn)) at a given pollen sum n. A base pollen sum of n = 2099 
was used. Five ‘diversity events’, that is, periods of increased 
palynological richness, were identified and discussed in relation 
to anthropogenic deforestation and land-use disturbance. 
Although the relationship between palynological and plant-spe-
cies richness is known to be complex (Odgaard, 1999, 2001), 
palynological richness can provide a general measure of diversity 
changes at the landscape scale (Berglund et al., 2008).

A slightly more simplified diagram, showing 22 key taxa 
(see below), is presented in this paper (Figure 6b), together with 
the new pollen diagram of core 2013 (Figure 6a), showing the 
same 22 taxa. The pollen diagrams were constructed using the 

Figure 4. (a) Kajak sampling of top sediments. (b) View towards northwest from the sampling raft with the island and bay in the background. 
(c) View towards southwest from the eastern, sandy beach of the lake. (d) Iron Age grave field in the pine wood situated east of the lake.
Source: Photo BE Berglund, (a) and (b) in September 2013, (c) and (d) in May 2013.
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computer program Tilia (Version 1.5.12; Grimm, 1992), and the 
percentages are based on the sum of terrestrial pollen.

REVEALS reconstructions
REVEALS estimates of vegetation cover for 22 selected taxa 
using the pollen records from core 1956 and core 2013 are pre-
sented in Figure 7a and b, respectively. The taxa selected are pre-
dominantly wind-pollinated taxa which are common in the pollen 
record and for which reliable estimates of pollen productivity 
(PPEs) are available (Broström et al., 2008; Mazier et al., 2012). 
The REVEALS reconstruction was carried out using the program 
REVEALS.v4.2.2 (Sugita, unpublished; see Sugita, 2007a for 
details on the REVEALS model). The values of pollen productiv-
ity and fall speed used follow Fredh et al. (2013). The Sugita 
(1993) lake model for pollen dispersal and deposition was applied, 
with a wind speed of 3 m/s. The maximum extent of the regional 
vegetation was set to 50 km (Mazier et al., 2012).

The REVEALS estimates (Figure 7a and b) are expressed in 
percentage vegetation cover within the spatial scale of the 
REVEALS model, that is, a c. 50–100 km radius. The percentages 

in the REVEALS diagram are based on the sum of the cover of 
the 22 selected taxa. However, as the 22 taxa represent >95% of 
the total sum of terrestrial pollen types, most of the differences 
seen between the pollen (Figure 6) and REVEALS (Figure 7) dia-
grams are caused by the correction for the taxon-specific differ-
ences in pollen productivity and dispersal function applied by the 
model. The percentage of the terrestrial pollen sum represented 
by pollen types not included in the REVEALS analysis is shown 
for the 2014 core in Figure 8. As seen, this varies slightly over 
time, and increases in the topmost part of the core. The most com-
mon taxa excluded from REVEALS are Myrica gale with up to 
0.5% pollen and Chenopodiaceae, Empetrum, and Achillea type 
each with up to 0.3%. Polypodiaceae spores (up to 0.3%) are also 
included in this group.

The REVEALS model provides standard error estimates on the 
estimated percentage cover of each taxon based on the counting 
errors of the pollen data and the standard deviations of the PPEs 
(Sugita, 2007a). In Figure 8, the sum of the open-land REVEALS 
pollen taxa are plotted with their combined standard error.

Results and discussion
Chronology of the pollen diagrams from Lake 
Färskesjön
When the Holocene pollen diagram from Lake Färskesjön was 
prepared (1957–1963), it was difficult to obtain radiocarbon 
dates, and dates based on lake sediments were regarded as less 
reliable than dates based on bog peat. Nilsson (1964) selected 
the ombrotrophic peat bog Ageröds Mosse (Figure 1) for a care-
ful stratigraphic study and 33 samples from a 6 m long core cov-
ering the entire Holocene were 14C dated. A detailed pollen 
diagram from the same core was produced, and ages for the 

Table 1. 14C dates.

Sample Depth Uncalibrated 14C date

LuS10863 329–330  220 ± 40
LuS10864 349–351  780 ± 40
LuS10865 415–416 2845 ± 45
U447a 378–382 1580 ± 80

aDate of the increase of Fagus pollen at Storemosse (for more explana-
tion, see text).

Figure 5. Age–depth model for core 2013 based on 14C dates (Table 1) and 210Pb measurements. The IntCal09 calibration curve and 
smoothing spline was applied using CLAM (Blaauw, 2010).
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pollen-zone boundaries (Figure 5 in Nilsson, 1964) of the clas-
sical zone system for the province of Skåne were inferred from 
the 14C-dated levels (Håkansson, 1971; Nilsson, 1935).  
Berglund (1966a, 1966b) focused on the vegetation history of 
eastern Blekinge and correlated the pollen zones between Skåne 
and Blekinge (with a distance of c. 150 km between the sites) in 
order to apply the chronology from Ageröds Mosse to the pollen 
records from eastern Blekinge (Figure 58 in Berglund, 1966b). 
This chronology was also supported by radiocarbon dates of 
peat from bogs in Blekinge. Moreover, a comparison of  
three selected Holocene pollen diagrams from lakes in Skåne 
(Bjäresjöholmssjön) and Blekinge (Lösensjön and Färskesjön) 
was later improved by applying four independent numerical 
zonation methods described by Gordon and Birks (1972): CON-
SLINK, SPLITINF, SPLITSQ, and PCA (Birks and Berglund, 
1979). The zone system from Ageröds Mosse was also included 

in this comparison, which strengthened the time-space correla-
tion between the two regions.

For the last 3000 years covered by core 2013, it has been pos-
sible to establish a chronology based on AMS dates of plant mac-
rofossils (thus overcoming the problems with dating lake 
sediments), supplemented with one date transferred from the 
nearby Storemosse. Correlation between the two Färskesjön pol-
len records indicates that the age of the topmost sample of core 
1956 had an age of c. 350 cal. BP, that is, slightly older than previ-
ously thought (Birks and Berglund, 1979). The chronology for the 
last 1000 years of core 1956 was adjusted accordingly.

Long-term forest dynamics
The Holocene pollen diagram of Lake Färskesjön core 1956 was 
subdivided into 10 pollen zones (Berglund, 1966b) comparable 
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(b) FÄRSKESJÖN 1956 core (pollen, uncorrected)
Analysis: B. Berglund, 1956-1957 and 1963
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with the traditional pollen zones in the province of Skåne (Nils-
son, 1964). The numerical zonation resulted in nine pollen 
assemblage zones (PAZ, Birks and Berglund, 1979), and we 
have transferred these into the new version of the diagram pub-
lished in this paper (Figure 6b). For the top sediment of core 
2013, we have added an additional zone, PAZ 10, covering the 
time span 350 cal. BP to the present (Figure 6a), which means 
that this diagram comprises the uppermost part of PAZ 6b, and 
PAZ 7–10. The pollen diagram from core 1956 exhibits three 
main phases, which can be correlated with Iversen’s classical 
subdivision of Quaternary interglacials (Berglund, 1966b; 
Iversen, 1958, Birks, 1986):

•• The protocratic stage, PAZ 1–2, 12,500–10 500 cal. BP, 
with dominance of herbs, grasses, and bushes, interpreted 
as a vegetation of steppe-tundra character. Climate and soils 
favored calciphilous, heliophilous, and low-competitive 

plants. Pioneer woodlands with Betula, Pinus, and some 
Corylus and Ulmus expanded at the end of this period.

•• The mesocratic stage, PAZ 3–6, 10,500–3000 cal. BP, 
with dominance of broadleaved forests, expansion of Cor-
ylus, Ulmus, Quercus, Tilia, Fraxinus, and Acer, in wet-
lands Alnus. This expansion occurred at the expense of 
Pinus and open-land vegetation as indicated by the retreat 
of grasses, herbs, and juniper bushes. During the later 
part, after 5000 cal. BP (PAZ 6b), there are traces of open-
ings in the forest, as indicated by some decrease of broad-
leaved trees and expansion of grasses, herbs, and some 
cereals, altogether interpreted as the introduction of small-
scaled farming.

•• The telocratic stage, PAZ 7–9/10, 3000 cal. BP to present. 
During this stage, the broadleaved trees as well as Pinus 
decreased in favor of Betula and the immigrating new tree 
species Carpinus and Fagus, and during the last 200 years 
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even Picea. The expansion of Pinus 150 years ago is 
partly caused by pine plantations near the lake. Open-land 
vegetation related to expanding farming characterizes this 
stage with Calluna heaths, grass-juniper heaths, croplands 
with cereals, and weeds.

When comparing the two diagram types, that is, the uncor-
rected (Figure 6b) and the REVEALS calibrated (Figure 7b), it is 
obvious that forests are overrepresented in relation to the open 
land in the uncorrected diagram. This difference varies over 
time, with the largest difference seen at 11,800 cal. BP, where the 
REVEALS estimate of open-land cover is higher than the pollen 
percentages of the corresponding taxa by 42%. The smallest dif-
ference, of just 5.8%, is found at 8400 cal. BP. During the proto-
cratic stage, the REVEALS model reconstructs a mostly open 
landscape dominated by sedges and grass. The REVEALS recon-
struction also indicates that up to 30–40% of the landscape was 
tree covered (by birch and pine, with low amounts of willow and 
even spruce). This is the period where the differences in land-
scape openness indicated by REVEALS and pollen percentages 
are largest (25–41%). The large difference is because of the dom-
inance among the tree species of highly productive and well-
dispersed pollen types like Pinus and Betula. However, during 
this period, forest cover may still be overestimated by REVEALS 
because the local pollen production in a tundra-like landscape is 
very low (Hicks, 1977), so that long-distance transported pollen 
from the continent can have a big impact on the reconstruction. 
The REVEALS model makes the simplification of assuming that 
all pollen originates within the region where the site is located, 
an assumption that may not hold true in such environments. 

Furthermore, it is likely that the relative pollen productivity of 
the different taxa was also different in the much colder late gla-
cial climate, as is indicated by differences seen today in PPEs 
from different regions (Broström et al., 2008). Thus, although 
REVEALS indicates c. 30% tree cover, the area of steppe-tundra 
was probably totally dominant during PAZ 1.

In the period c. 11,500–10,000 cal. BP, at the transition from 
the protocratic to the mesocratic stage, the climate got steadily 
warmer, with mean July temperature rising to above 10°C (Björk-
man, 2007). The forest cover expanded, with REVEALS showing 
an increase in tree cover from around 30% to over 80% of the 
landscape. As woodland became dominant in the region, the prob-
lem of long-distance transported pollen likely became smaller, 
and the REVEALS estimates of woodland cover therefore more 
reliable. REVEALS indicates that the cover of Betula quadruples 
from 11,600 to 11,400 cal. BP, while the cover of Pinus doubles a 
few hundred years later. Corylus starts expanding when trees 
cover four-fifths of the landscape.

During the mesocratic stage, the REVEALS estimated wooded 
area was rather constant as also suggested by pollen percentages. 
But with 10–15% of the landscape covered by grasses, herbs, and 
Calluna, open-land vegetation was much more frequent than ear-
lier interpreted from uncorrected pollen values, where these taxa 
only make up 2–4% during this period. Our new interpretation 
based on the REVEALS estimates is that heathland and grassland 
occurred in areas with thin soils and exposed bedrock, which also 
characterize the bedrock plateaus surrounding Lake Färskesjön.

In PAZ 3, the tree composition alters significantly when the 
cover of Betula is reduced by half (to 20%), while Corylus and 
Pinus each cover about 25% of the landscape. Alnus and the 

Figure 8. The summary REVEALS-based land-cover categories from the 2013 core (see also Figure 7a) plotted with Loss On Ignition (LOI 
%) from the Kajak core (FSK) and uppermost Russian core (FS1a). Periods of increased minerogenic content (note inversed LOI axis) and 
increasing landscape openness are indicated with gray shading. For the open-land taxa (Calluna heath, pasture and meadow, and cropland taxa) 
included in the REVEALS reconstruction, the sum of their REVEALS cover (with ±1 S.E.), and of their pollen percentages are shown, as it the 
ratio between these two values for each sample. Also shown is the percentage of the terrestrial pollen sum in each sample represented by taxa 
not included in the REVEALS analysis.
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broadleaved tree species Ulmus, Quercus, Tilia, and Fraxinus 
establish in the region, and Ulmus expands significantly from a 
few to 10% coverage. During the following centuries (PAZ 4), the 
cover of Corylus is halved to 10%, while Quercus, Tilia, and 
Fraxinus expand to 5%, 10% and a few percentage cover, respec-
tively, resulting in a much more mixed broadleaved forest, but 
still with the open areas described above covering about 10% of 
the landscape. The proportion of open-land and early successional 
trees like Betula may also indicate a rather dynamic landscape 
with shifting openings in the forest with grass that were later over-
grown with birch. There is a slow expansion of oak that doubles 
in cover to 10% during PAZ 5 and 6a, while the cover of Pinus is 
reduced to 15%.

Around 5500 BP, there is a significant change in the species 
composition of the woodland when the coverage of Ulmus is 
reduced by three quarters from 10% to 2.5% during the elm 
decline. The proportion of woodland, however, remains almost 
unchanged at 90%, as Tilia, Quercus, and, to a lesser extent, Pinus 
increase as Ulmus decreases.

A few hundred years after the elm decline, there is indication 
of grazing in the area by the presence of a small amount of Plan-
tago lanceolata. Between 5000 and 3000 cal. BP (PAZ 6B), the 
area of open land is doubled to 20%, dominated by grass (15%). 
The abundance of Artemisia, Plantago lanceolata, and Rumex 
acetosa increases to a few percent, and Calluna vulgaris covers 
5%. The expansion of open land happens at the cost of Ulmus, 
Tilia, Quercus, and Pinus, which all decline in cover. Corylus 
expands to some extent until 3500 cal. BP and thereafter also 
decreases, while Betula expands significantly from 15% to 24% 
cover, indicating a dynamic landscape were trees are cut down 
and the openings later overgrow in a secondary succession. Two 
new tree species, Fagus and Carpinus, establish in the landscape 
during PAZ 6B, possibly favored by the anthropogenic distur-
bance and less nutrients in the soil.

The telocratic stage is characterized by a total change of the 
woodland composition, namely, the retreat of Ulmus, Tilia, Cory-
lus, and, to some extent, also Quercus on behalf of the expanding 
Fagus, Carpinus, and open-land vegetation (heathlands, pastures, 
meadows, and cropland). The open-land pollen indicators have 
values of 10–20%, while the REVEALS estimates of open-land 
cover reach 30–40% in core 1956, and up to 60% in the period 
300–50 BP in core 2013, indicating that the landscape in south-
eastern Blekinge in the 17th to the 19th centuries ad was substan-
tially more open than that found in the region today, with only 
two-thirds of the present tree cover. We regard these REVEALS 
values as a realistic estimate of the vegetation openness consider-
ing the geological and topographical character of the landscape of 
southeastern Blekinge and Småland within 50 km of Lake  
Färskesjön. The area surrounding the lake was during the 18th 
century (Figure 2) part of an extensive outland area with poor 
soils and sparsely wooded pastures and grazed heathlands (out-
lands) belonging to farmer villages, which were mainly situated at 
the coast. The fertile infield areas with cropland and hay meadows 
were fenced off from the grazed outlands. This structure of the 
farming landscape goes back to Prehistoric time, probably at least 
1500 years (Berglund et al., 2014).

Human impact during late Holocene
Our interpretation of the human impact during the last 6000 years 
refers to the pollen diagrams in Figures 6 and 7. The following 
description is based on the diagrams of REVEALS estimates. We 
also consider the changes in palynological diversity or the ‘diver-
sity events’ based on the complete pollen assemblages from the 
Färskesjön 1956 core (Berglund et al., 2008, Figure 6). Referring 
to this, we emphasize the value of combining REVEALS-based 
land-cover reconstructions with consideration also of rarer 

indicator species for open-land vegetation that are excluded in the 
REVEALS calculation, including, for example, Potentilla, 
Jasione, Melampyrum, and Pteridium. Although we do not quan-
tify the cover of these species with REVEALS, their low pollen 
percentages (<0.2% of each in all samples) indicate that they only 
covered a very small fraction of the landscape. However, they are 
important indicators of human impact on the landscape (Gaillard, 
2013). We compare phases of land-use change and ‘diversity 
events’ with the archaeological time scale of southern Sweden 
(Berglund, 1991; Myrdal and Morell, 2011).

As visible in the REVEALS diagram of core 1956 (Figure 7b), 
there is an indication of pastures around 5600 cal. BP through the 
first finds of Plantago lanceolata, also supported by other open-
land indicators in the original diagram (Berglund, 1966b). This 
time corresponds to the Early Neolithic. A more general increase 
of pasture and meadow plants, as well as the first occurrence of 
cereals, does not take place until 4600 cal. BP. This change coin-
cides with diversity event 1 culminating between 4700 and 4300 
cal. BP, which is during the Middle Neolithic. From 3600 cal. BP, 
there is a more distinct increase of Gramineae, Plantago lanceo-
lata, and Rumex acetosella, that is, an open landscape caused by 
expanding farming and grazing. The increase of Betula and the 
doubling of Calluna cover combined with a reduction of Corylus 
c. 3200–3000 cal. BP are interpreted as a change towards more 
open woodland and increased areas of heathlands. The expansion 
of heathland indicates an increase in grazing pressure and that 
poorer soils were used for this purpose. This phase may be related 
to diversity event 2 (3800–3300 cal. BP).

From 3000 cal. BP, the REVEALS estimates from core 2013 
(Figure 7a) provide a more detailed picture of the open landscape 
development than the REVEALS diagram from core 1956. Dur-
ing PAZ 7, the landscape composition seems to be rather stable 
until c. 2300 cal. BP, with open land covering one quarter of the 
landscape. Grassland accounted for approximately 15% of the 
landscape, dominated by grasses but also including herbs like 
Artemisia, Plantago lanceolata, and Rumex acetosa at a few per-
centages each. At that time, a more pronounced expansion of pas-
tures and cropland begins, which lasts until c. 1500 cal. BP. This 
expansion is characterized by a distinct increase of Juniperus and 
Cerealia together with high values of Gramineae, Cyperaceae, 
Plantago lanceolata, Rumex acetosa, and Secale. The results of 
the LOI analyses (Figure 8) show increased proportions of 
minerogenic matter in the sediment, which is interpreted as 
caused by soil erosion in the hydrological catchment of the lake 
(and possibly also eolian transport from sandy, cultivated soils 
nearby). During this phase, the complex diversity events 3 and 4 
occurring during the Pre-Roman and Roman Iron Age were iden-
tified by Berglund et al. (2008).

During the following period 1500–1000 cal. BP (PAZ 8), 
which is during the Late Iron Age, tree cover increased as a con-
sequence of reduced farming. The cover of Quercus doubled, and 
Fagus expanded to more than three times its former cover, prob-
ably invading former heathlands and wood pastures. The cover of 
Corylus on the other hand is halved to 5%. The decrease in the 
areas of pastures and cropland is reflected in lower REVEALS 
estimates of Juniperus and Cerealia. Berglund et al. (2008) noted 
a distinct drop in plant diversity around 1500–1300 cal. BP, 
between diversity events 4 and 5, followed by an increase. The 
LOI values show a decrease of minerogenic matter during the 
period 1400–800 cal. BP. In a larger European perspective, this 
decrease in agriculture in Blekinge coincides with the reforesta-
tion that characterized Europe during the 6th century ad (Lagerås, 
2007). This has been explained as an effect of climate change and/
or population decrease, or a combination of both.

The period 1000–350 cal. BP (PAZ 9) is a time of increased 
human impact with a gradual expansion of pastures and cropland 
as indicated by higher values of Juniperus, Calluna, and cereals. 
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The total cover of open land increases from 30% to 40% of the 
landscape mainly because of the doubling of heathland from 10% 
to 20%. Between 1000 and 600 cal. BP, the area of cropland is 
approximately doubled to 3%. There are minor changes in the 
forest composition, but Fagus doubles in cover to 20%, and dur-
ing the period 1000–600 cal. BP, a reduction in broadleaved trees 
(Quercus, Corylus, and Tilia) occurs, which may be explained by 
expanding wood pastures. During the period 800–600 cal. BP, the 
LOI values indicate increased deposition of minerogenic mate-
rial. The plant diversity values are high during 1200–900 cal. BP 
(diversity event 5). We correlate the time from 1000 to 450 cal. 
BP with the Medieval society expansion. The late Medieval popu-
lation decline around 700–600 cal. BP is traced in some south 
Swedish pollen diagrams as a period of forest expansion (Lagerås, 
2007). In our REVEALS diagram, there is no clear forest expan-
sion, but there is a short lasting reduction in cropland cover to half 
of its former extent, followed by expansion of heathland (with 
Calluna cover rising from 9% to 17%) and especially Juniperus 
cover (gradually rising from <1% to 5%) after 700 cal. BP. This 
may have been caused by areas that were no longer cultivated 
being used for low intensity grazing.

A sudden change occurs at 350 cal. BP (ad 1600): tree cover 
decreases, particularly Fagus and Quercus, while Juniperus, cere-
als, and, to some extent, other pasture and meadow plants increase 
in abundance, so that the open-land area cover increases from 
40% to 60% of the landscape. There is a change in the relation-
ship between the pollen percentages and the open-land cover 
reconstructed by REVEALS, at the ratio REVEALS%/pollen% 
for open land (i.e. grassland, cropland, and heathland) falls from 
c. 3 to c. 2. This change is partly driven by the expansion of Juni-
perus, which has a higher pollen productivity than many of the 
other open-land species, and partly by the decline of Fagus, which 
is among the less highly productive tree species. But changes in 
other species also play a role for this relationship, underlining the 
importance of trying to correct for differences in pollen produc-
tivity when interpreting past landscape openness.

Cropland expands to cover c. 5% of the landscape by ad 1800. 
At the same time, there is a distinct increase of minerogenic mat-
ter with high values until ad 1950. Altogether, this reflects a more 
open farming landscape than earlier during these two centuries – a 
farm village landscape with infields (cropland, hay meadows) and 
outlands (heathlands, wood pastures) as it is documented in the 
land survey maps of that time (Figure 2). A change from ad 1850 
includes a decrease of deciduous trees followed by a decrease of 
pastures, meadows, and heathlands, while cropland area is dou-
bled to 10% from ad 1800–1900. This reflects a shift in land use 
from small-scaled farming towards modern agriculture, where 
pastures and meadows decrease in favor of concentrated crop-
lands, and modern forestry where former heathlands and wood 
pastures are planted with Pinus and Picea. Since ad 1900, the 
cropland areas are reduced by one-third to 7%, and woodland has 
expanded further to cover 50% of the landscape, mainly caused 
by the increase of coniferous trees, with Picea and Pinus covering 
6% and 15% respectively. The remaining part of the woodland, 
making up c. 30% of the landscape, is deciduous and consists of 
Betula (10%), Corylus (10%), and Alnus (5%) with smaller per-
centages of Quercus, Fagus, and Carpinus. The REVEALS%/
pollen% ratio for the open land increases again because of the 
expansion of the relatively low pollen productivity tree Picea and 
the decline in Juniperus in the grasslands.

Landscape changes and nutrient loading on the 
Baltic Sea
In the lake sediment sequence, three phases, at c. 2200–1400, 
800–600, and 300–0 cal. BP, are characterized by low values of 
LOI (see Figure 8), that is, relatively high content of minerogenic 

matter. As seen in Figure 8, these periods are also characterized 
by anthropogenic forest clearance, and cropland expansion is 
reflected in the REVEALS reconstruction. This indicates that 
increased land use lead to soil disturbance and increased erosion 
in the hydrological catchment of Lake Färskesjön. With the use of 
diatom-based transfer functions for reconstructing past phospho-
rous concentrations in lakes, it has been demonstrated in, for 
example, England (Birks et al., 1995) and Denmark (Bradshaw 
et al., 2005) that such catchment erosion, as a result of prehistoric 
and pre-industrial land use, can lead to increased nutrient levels in 
lakes. It has also been suggested that past land-use changes played 
a role in eutrophication, and in causing cyanobacteria blooms and 
periods of hypoxia in the Baltic Sea (Funkey et al., 2014; Zillén 
and Conley, 2010), although other authors (e.g. Bianchi et al., 
2000; Eremina et al., 2012) have argued that hypoxia and cyano-
bacteria blooms are a natural feature of the Baltic Sea system, 
with variations controlled mainly by climate. A period of increased 
erosion, not only in the hydrological catchment of Lake Färskes-
jön but throughout the wider region reflected by the REVEALS 
land-cover reconstruction, could have resulted in a substantial 
transport of material, including nutrients, to the coastal waters 
around southeastern Blekinge. For example, reconstruction of 
cropland cover nearly doubles, and open land increases by a quar-
ter between 1000 and 600 cal. BP. The Färskesjön record only 
shows an increase of minerogenic material in the later part of this 
period (see Figure 8), most likely because the expansion of crop- 
and grassland occurred first on the more fertile soils further west 
and near the coast, before reaching the watershed of Färskesjön. 
After 700 cal. BP, where cropland declines, there is a sharp drop 
in minerogenic content in the lake sediments, indicating decreased 
erosion during the late Medieval decline. From around 400 cal. 
BP, there is again increasing erosion, which seems to decline in 
response to the increase in forest cover after 150 cal. BP. Current 
palaeoecological studies of coastal, marine cores from the Karlsk-
rona area (Filipsson et al., unpublished) may reveal whether and 
how these regional landscape changes affected the coastal marine 
environment.

Considering the uncertainties in the Färskesjön chronology, 
one of the phases of increased erosion observed at Lake Färskes-
jön terminates at approximately the same time as the hypoxic and 
cyanobacteria rich phases described from the central Baltic Sea 
by Funkey et al. (2014), that is, at 600–700 cal. BP. This is a 
period affected by population decline and land abandonment in 
many areas of Europe, including Sweden (Lagerås, 2007; Skog 
and Hauska, 2013), following the Black Death. However, more 
studies are needed to determine whether this reduction in impact 
did indeed contribute to the improved oxygen status in the Baltic, 
or whether this was rather caused by climatic changes associated 
with the end of the Medieval Climate Anomaly and onset of the 
‘Little Ice Age’. Although the effect of past land-use changes on 
the Baltic Sea is still under debate, there is no doubt that climate 
also plays a very important role in the processes behind cyanobac-
teria blooms and hypoxia (Bianchi et al., 2000; Eremina et al., 
2012; Funkey et al., 2014).

A step towards disentangling the effects of human impact and 
climate is to study the variations in timing and degree of impact in 
different regions along the Baltic Sea coast. For example, com-
parison of the land-cover reconstruction from Lake Färskesjön 
with a similar study of Lake Storsjön in Småland (Åkesson, 2013) 
shows that the degree of anthropogenic landscape openness is 
much higher in Blekinge, as the REVEALS-based estimates of 
landscape openness around Lake Storsjön never reached  
values above 40%, against values up to 65% (±S.E. 4.5%) at Lake 
Färskesjön. The phases of increased impact also appear to be of 
shorter duration at Lake Storsjön. This difference may be reflected 
in differences in timing and extent of changes in nearby coastal 
areas (Ghosh et al., 2012; Nielsen et al., 2013).
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Conclusion
1. The accuracy of chronology for Holocene pollen diagrams 

in Sweden has improved enormously since mid-20th cen-
tury. Radiocarbon dating became available around 1960 
but was then mainly applied on large peat samples. Abso-
lute time scales were transferred from selected reference 
sites to non-dated stratigraphies by pollen-analytical corre-
lations. This was facilitated by numerical methods applied 
since 1970s. Today, AMS radiocarbon dating makes it 
possible to date small samples (seeds, leaves, shells, etc.) 
obtained by sieving lake sediment or peat. Modern grav-
ity corers are used to recover surface sediments with high 
water content. Time models for such young sediments 
are obtained by analyzing 210Pb in sequences of top sedi-
ments. This makes it possible to link palaeoecology with 
the modern environment.

2. During the last 100 years, the pollen-analytical method has 
changed from being descriptive and concentrating on for-
est history. In the early 20th century, it was mostly used 
as a correlation tool in Holocene geology, but around the 
mid-20th century, plant ecologists became interested in the 
human impact on the environment and the early farming 
history. Identifications of pollen of plants from cropland, 
pastures, and meadows were then included in a complete 
pollen analysis, and the results often applied in multidisci-
plinary projects where palaeoecologists collaborated with 
archaeologists and historians.

3. Interpretation of human impact on landscapes and land use 
in the past has gradually reached a higher precision with 
the development of the indicator species and the com-
parative approaches (Behre, 1981; Birks and Birks, 1980; 
Gaillard, 2013). This development occurred in parallel 
with the application of numerical methods from the 1980s 
onwards (Birks and Gordon, 1985; Prentice, 1985). Fur-
ther developments included empirical studies of the rela-
tionship between surface pollen assemblages and modern 
vegetation and finally the LRA of Sugita (2007a, 2007b) 
with its two models REVEALS and LOVE.

4. The REVEALS model was applied on the ‘classi-
cal’ Holocene pollen sequence from Lake Färskesjön 
(11,500–350 cal. BP) in southeastern Sweden and on a 
new sequence from the top sediments of the lake (3000 
cal. BP to present). The REVEALS estimates were 
compared with the uncorrected pollen percentages. The 
REVEALS estimates indicate that the open-land vegeta-
tion is strongly underrepresented by pollen percentages 
by a factor of 2–5, which varies over time depending 
on the exact species composition of both the forest and 
the open vegetation types. Thus, the area of open land 
was significantly larger than previously appreciated, not 
only during the protocratic and telocratic stages of the 
Holocene but also during the mesocratic stage, which is 
traditionally interpreted as being densely forested, but in 
this area is estimated to have been 10–15% covered by 
grasses, herbs, and Calluna.

5. The vegetation dynamics of the open landscape is mainly 
caused by changes within the agrarian society – popula-
tion pressure and land-use changes. The REVEALS model 
is useful for quantifying the development of cropland, 
open pastures as well as wood pastures, deforestation, 
reforestation, and so on. However, there is some loss of 
floristic details in comparison with a complete pollen data-
set. Based on our case study Lake Färskesjön, it is pos-
sible to identify ‘plant diversity events’ from the pollen 
data which might not be noted in the REVEALS data, but 
nevertheless contain information on past human impact on 
the landscape.

6. In the regional area of Lake Färskesjön, farming was intro-
duced in Early Neolithic c. 5000 cal. BP, but expansion 
of open farmland is not recorded until c. 3200–3000 cal. 
BP, that is, during the Early Bronze Age. A pronounced 
expansion occurred during the period 2300–1500 cal. BP, 
with deforestation and expanding of open areas from 30% 
to 40% of the landscape. This time corresponds to the 
Roman Iron Age. The following period 1500–1000 cal. 
BP is characterized by reforestation and reduced farming. 
The period 1000–500 cal. BP is a new phase of expanding 
farming related to the Medieval society expansion, pos-
sibly including the Medieval decline around 600–700 cal. 
BP, where the area of cropland is reduced by half. The 
most distinct expansion of open farmland occurred 350 
cal. BP (ad 1600), with deforestation and expanding pas-
tures and cropland lasting until ad 1850, culminating with 
a landscape openness of more than 60%. This was fol-
lowed by a contraction of open land because of reforesta-
tion of heaths, pastures, and reduced areas of cropland as a 
consequence of the general land-use shift from traditional 
farming to modern agriculture.

7. Sedimentological studies of lake sediment cores, in com-
bination with land-cover reconstructions, give additional 
information on erosion linked to farming, deforestation, 
and possible climate changes. Our study shows that several 
phases of increased forest clearance and areas of cropland 
are associated with increased erosion in the lake catchment, 
which likely leads to increased nutrient transport from land 
to the lake and ultimately to the sea. Future studies will 
show whether this had an impact on the nutrient and oxy-
gen status of the coastal marine area of the study region.
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