

BIP Healthy Urban Systems

Lausanne, July 2024

Martin Loidl | martin.loidl@plus.ac.at

DEPARTMENT OF GEOINFORMATICS - Mobility Lab

ZGIS

Inter-/transdisciplinary research

- Research within domain silos
 - Various different (complementary) approaches, methods
- Multiple domains

- Multidisciplinarity
- Interdisciplinarity
- Transdisciplinarity

Disciplinary

- Within one academic discipline
- Disciplinary gal setting
- Development of new disciplinary knowledge

Multidisciplinary

- Multiple disciplines
- Multiple disciplinary goal setting under one thematic umbrella

Interdisciplinary

- Crosses disciplinary boundaries
- Development of integrated knowledge

Convergence

- · Crosses disciplinary and sectorial boundaries
- Common goal setting
- · Develops integrated knowledge for science and society
- Creates new paradigms
- Stakeholder Participants
 Discipline
- Goal, Shared Knowledge
 Academic Knowledge
- Conventional Knowledge

Adapted from Wright Morton, L., S. D. Eigenbrode, and T. A. Martin. 2015. Architectures of adaptive integration in large collaborative projects. *Ecology and Society* 20(4):5.

https://research.ncsu.edu/rdo/the-difference-between-multidisciplinary-interdisciplinary-and-convergence-research/

DEPARTMENT OF GEOINFORMATICS - Mobility Lab

Epistemiology

https://salmepatel.co.uk/academia/the-research-paradigm-methodology-epistemology-and-ontology-explained-in-simple-language/

Determinants of health

- Determinants of health include
 - the **social** and **economic** environment,
 - the **physical** environment, and
 - the person's individual characteristics and behaviours
- Domains that are related to health determinants
 - Transport
- Energy
- Food and Agriculture Industry
- Housing
- Waste

- Urbanization
- Water

- Radiation
- Nutrition and health

I ...

Socio-ecological model

- From isolated variables to a multi-layered, interrelated system
 - Socio-ecological model by Urie Bronfenbrenner: theory of human development
 - Transferred to numerous systems, e.g. health
- (1) intrapersonal factors characteristics of the individual such as knowledge, attitudes, behavior, self-concept, skills, etc. This includes the developmental history of the individual.
- (2) interpersonal processes and primary groups-formal and informal social network and social support systems, including the family, work group, and friendship networks.
- (3) institutional factors—social institutions with organizational characteristics, and formal (and informal) rules and regulations for operation.
- (4) community factors relationships among organizations, institutions, and informal networks within defined boundaries.
- (5) public policy local, state, and national laws and policies.

MCLEROY, K R, BIBEAU D, STECKLER, A & GLANZ, K 1988. An Ecological Perspective on Health Promotion Programs. Health Education Quarterly, 15, 351–377.

Ecological Model of Four Domains of Active Living

measuring the impacts
poughnut economics framework (Raworth, 2017)

Holistic System Model – Scenario Planning

- From problem statement to solutions:
 - 1. Scope (question) and focus (system level)
 - 2. Variables \approx key factors \approx indicators
 - 3. Outcome ("final product")
 - 4. Participation, stakeholders: stages, format
 - 5. System interrelations, feedback loops
 - 6. Simulation, scenarios
 - 7. Evaluation

- Entry points define research questions and decide on methods
- Possible entry points:
 - Stakeholders, actors
 - Addressed SDGs
 - Interventions
 - Health outcomes

Use case Chavannes: Health & Environment

System boundaries

- System boundaries
 - Topical: components of system » indicators / variables representing a phenomenon
 - Spatial scale: geographical extent (caution: edge effects), level of detail, spatial reference units (regular grid, admin boundaries, ...)
 - Temporal scope: time series (caution: change of environmental conditions, settings), extrapolation to future
- Definition of system decides on information » data demand

Information

- Information demand
 - Natural language
 - Ontologies » formalization of domain knowledge

LOIDL, M. 2020. Digital abstrahiert – räumliche Daten für die

Mobilitätsforschung und Verkehrsplanung. In: ZAGEL, B & LOIDL, M (eds.) Geo-IT in Mobilität und Verkehr: Berlin und Offenbach: Wichmann Verlag / VDE

(Spatial) Data

- From natural language description of real-world to objects
- Model as abstraction

Data: qual. – quant.

Quantitative data

- Generated by technical sensors
- Experimental research
- Normative scenarios
- Representation of physical reality
- Qualitative data
 - Generated by humans
 - Ethnography, discourse analysis, interviews, ...
 - Explorative scenarios
 - Representation of human reality

Mixed-Methods Designs

Intervention design

- Test the effect of a treatment (experiment/trial setting) = quan
- Decide on role of qual data in research (before, during, afterwards)
- Conduct experiment/trial
- Determine impact of qual data: enhancement of quan results

Multistage evaluation design

- Test effectiveness of program or activities (evaluation over time)
- Identify parameters to be evaluated (need assessment, exploratory research)
- Define stages of evaluation, incl. instruments
- Determine quan/qual data need
- Conduct evaluation, refine instruments and integration

s and integr

Convergent design

- Collect quan/qual data separately
- Merge results: data transformation, joint display, side-by-side comparison
- Discuss findings: confirmations, deviations

Explanatory sequential design

- Start with quan data collection
- Analyse quan data and formulate hypothesis for qual research
- Conduct qual research for explaining quan results
- Infere quan and qual results

Exploratory sequential design

- Start with qual data collection (explore the field)
- Develop and conduct quan investigation
- Compare findings of quan research with qual result and decide on generalizability

CRESWELL, J. W 2015. A concise introduction to mixed methods research, Thousand Oaks CA, SAGE, page 34 ff.

https://www.stadt-salzburg.at/presseaussendungen/2021/giselakai-und-ignaz-rieder-kai-werden-fahrradstrasse/

Table 1. Data sources and methods for data acquisition.

Category	Data Source	Method	Temporal Setting	Internal/ External 1	Dynamic/ Static	Quantitative/ Qualitative	Type of Data Acquisition	Subjective/ Objective
social sciences	in situ geo-questionnaire (e.g., e-diary app)	micro-survey	in situ	internal	dynamic	quantitative/qualitative	self-reported	subjective view
	post-run geo-questionnaire	questionnaire	post hoc	internal	dynamic and static	quantitative/qualitative	self-reported	subjective view
	post-run interviews	interview	post hoc	internal	dynamic and static	qualitative	recorded and transcribed statements	subjective view
physical sensors	physiological measurements	human sensing	in situ	internal	dynamic (moving)	quantitative	measurements of physiological parameters	objective
	1st-person video	camera recording	in situ	external	dynamic (moving)	quantitative/qualitative	video recording	objective
	lateral distances (e.g., OpenBikeSensor)	ultrasonic distance sensing	in situ	external	dynamic (moving)	quantitative	distance measurements	objective
	button presses during overtakes	manual input: hardware push button	in situ	external	dynamic (moving)	quantitative	self-reported	subjective view
	traffic camera	camera recording	in situ	external	dynamic (stationary)	quantitative/qualitative	video recording	objective
	movement trajectory	GNSS, geolocation methods	in situ	external	dynamic (moving)	quantitative	recording of geolocation and time	objective
static spatial data	road network and environment	external data acquisition, GIS methods	independent	external	static	quantitative	spatial analyses	objective

¹*internal* refers to aspects related to an individual, such as demographics but also individual sensation and reactions; *external* refers to observations more closely related to the (built) environment or which reveal how people interact with the environment as perceivable form the outside—see Section 3.1.

Data assessment matrix

- Translates information demand into data requirements
- Identifies available data sets and assesses quality + suitability
- Ensures traceability
- Foundation for informed data acquisition strategy
- Developed and applied in interdisciplinary projects

Information demand	Project aims	Data	Relevance	
 Information (natural language) Type of measurement Extent (temporal, spatial) Resolution (temporal, spatial) Measurement unit 	 Purpose Outcome Aspect Comment 	 Dataset Type Type of measurement Composition Resolution (temporal, spatial) Update frequency Sensitivity (privacy, GDPR) Source Cost Data Governance Data sharing service Documentation 	 Availability (1-5) Importance (1-5) Suitability (1-5) Acquisition effort (1-5) General remarks Assessment index Availability type 	
	γ/		γ	

 $Z\underline{G}|S$

	Id		1	
		Information	rainfall	
	Type of measurement		forecast	
Information	Extent	Temporal	Jan-2023 - Apr 2024	
demand		Spatial	Salzburg city	
	Resolution	Temporal	hour	
		Spatial (geometry type)	Salzburg city	
	Measurement unit		mm/h, mm/day	
	Purpose		nudges	
			dashboard	
		Outcome	short-term nudging effect	
Project aims		Outcome	dahsboard visualization	
		Aspect	weather	
		Comment	Do i make it home dry or schould I wait for another 60 min?	
		Datasata	DWD Onon Data Weather	
		Datasets		
		Type	forecast	
	i ype of measurement		lolecast	
	Composition		hourly forecast of precipitation in mm/h at measurement station	
	Resolution	Temporal	60 min	
Data		Spatial	Salzburg	
Data	Update frequency		daily	
		Sensitivity	-	
		Source	Deutscher Wetterdienst	
		Cost	free	
		Data Governance	present	
		Data sharing service	web service	
		Documentation	present	
		Availability	1	
		Importance	5	
		Suitability	5	
Relevance		Acquisition effort	5	
		General remarks	https://opendata.dwd.de	
		Assessment index	30	
		Availability type	available free	

Geographic Information Systems

...

GIS & Geomatics @CanadianGIS

"GIS technology is kind of like Google Earth, but beeetter" – Arnold Schwarzenegger

 \heartsuit

11,

1:57 vorm. · 22. Mai 2015 · Twitter Web Client

Q

46 Retweets 2 Zitierte Tweets 40 "Gefällt mir"-Angaben

17

Maps

Maps are the geographic container for the data layers and analytics you want to work with. GIS maps are easily shared and embedded in apps, and accessible by virtually everyone, everywhere.

ZGIS

Data

GIS integrates many different kinds of data layers using spatial location. Most data has a geographic component. GIS data includes imagery, features, and basemaps linked to spreadsheets and tables.

Analysis

Spatial analysis lets you evaluate suitability and capability, estimate and predict, interpret and understand, and much more, lending new perspectives to your insight and decision-making.

Apps

Apps provide focused user experiences for getting work done and bringing GIS to life for everyone. GIS apps work virtually everywhere: on your mobile phones, tablets, in web browsers, and on desktops.

https://www.esri.com/en-us/what-is-gis/overview

Z<u>G</u>IS

Integrated, cross-domain approaches

Modelling in a GIS

- Spatial (de facto / fiat) objects constituting space
 - Continuous surfaces
 - Discrete objects
- Spatial relations
 - Geometry (shape, size, distance, ...)
 - Topology (neighbourhood relations)
- GIS as Model
 - Abstraction, simplification, purpose-driven

Vector-/Raster-Model

Discrete objects: crisp boundaries

ZGIS

Continuous surfaces: fuzzy boundaries