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Literature review

1 Introduction-Motivation

Air quality monitoring plays a crucial role in assessing the state of the environment and its
impact on public health. Traditional monitoring stations equipped with precision instruments
are typically operated by state environmental agencies but are limited in number and sparsely
distributed across a territory due to high costs. This limitation restricts the spatial and temporal
resolution of air quality data collection. However, advancements in participatory science and the
availability of low-cost sensors offer an opportunity to overcome these limitations.
Participatory science involves engaging a group of volunteers, who may not have scientific exper-
tise, in activities typically conducted by scientific or governmental communities. This approach
has gained popularity in various scientific fields, including environmental sciences, due to its abil-
ity to mobilize a larger number of individuals and gather data from diverse locations. Low-cost
sensors have played a significant role in enabling participatory science initiatives, as they offer
affordable and easily deployable tools for air quality monitoring.
In Lausanne, Switzerland, a participatory science project called "Captographie" was launched,
involving the installation of several low-cost sensors in volunteers’ homes. These sensors mea-
sured parameters such as PM10, PM2.5, temperature, and humidity. Additionally, the City of
Lausanne installed some sensors of the same type throughout the city. While the deployment
of these sensors allows for improved spatial and temporal coverage of air quality data, the relia-
bility and quality of the data generated by these low-cost sensors need to be assessed for future
scientific studies and applications.
This project aims to develop a methodology to improve the quality of data produced by the low-
cost sensor network, with a specific focus on PM2.5 and PM10 measurements. To achieve this
objective, understanding the variability among different low-cost sensors and their relationship
with official measuring stations in Lausanne is crucial. Factors such as humidity and temperature
will be investigated for their influence on sensor performance. Additionally, a methodology will
be developed to determine correction factors for the sensors. The project will also involve the
collocation of sensors to compare and assess their performance.

2 Literature review

There is a growing body of literature on calibrating low-cost PM sensors, as these sensors have
become increasingly popular for monitoring air quality due to their low cost and ease of use.
Although many studies suggest that these sensors can be useful, they also emphasize the risk of
misuse and the fact that the data they provide is only representative of the location and conditions
where they are used. This suggests that the root causes of inaccuracies in sensor measurements
still need to be identified. Several studies have shown that low-cost PM sensors can produce
accurate measurements when properly calibrated. Calibration involves comparing the sensor’s
measurements to those of a reference instrument and adjusting the sensor’s output accordingly.
One challenge with calibrating low-cost PM sensors is that they can be sensitive to changes in
environmental conditions, such as temperature and humidity. Therefore, it is important to test
sensors under various environmental conditions to ensure their readings remain accurate and
consistent. Another challenge is that there is currently no standardized approach to calibrating
low-cost PM sensors. However, several studies have proposed testing protocols and performance
metrics to evaluate the accuracy and precision of these sensors. Such as Zimmerman (2022) in
‘Tutorial: Guidelines for implementing low-cost sensor networks for aerosol monitoring’ [18] or
Duvall (2021) ‘Performance Testing Protocols, Metrics, and Target Values for Fine Particulate
Matter Air Sensors’ [9]. Recommended Testing Protocols for Understanding PM2.5 Air Sensor
Performance include two types of tests; Base and Enhanced testing. Base testing refers to field
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Sites Description and Sensor Construction

deployments of PM air sensors with the collocated Federal Reference Method (FRM) and Federal
Equivalent Method (FEM). It provides information on sensor performance that is relevant to
real-world, ambient, and outdoor conditions. It allows consumers to predict how a sensor might
perform in similar conditions. Enhanced testing consists of testing air sensors in controlled
laboratory conditions. It allows for the evaluation of sensors over a range of conditions that may
be challenging to capture in the field.

[10] [6] [5] [7] [8] [3] [11] [13] [14] [15] [17]

3 Sites Description and Sensor Construction

As part of our project on calibrating low-cost sensors, we constructed two Sensirion SPS30 sen-
sors at Fablab Renens. These sensors are designed to measure the mass concentration of PM2.5

and PM10 particles, with a precision of around +/- 10% and a detection range of 0-1000 µg/m³,
according to the manufacturer’s specifications. [1]

In total, we utilized six of these low-cost sensors for both colocation and laboratory experiments.
Additionally, we had access to a Grimm device, which served as our reference instrument. The
Grimm device is an aerosol spectrometer capable of measuring the aerosol size distribution ac-
curately.

This table provides a summary of the instruments used and their number for better readability
of the report. The sensors from Lausanne and sensor number 13149189 from Captographie are
approximately 1 year old. The two other sensors are the ones we built and the last three sensors
are the ones that were co-located near the official stations of measurements.

Sensor name Sensor number Age Belongs to Sampling interval [min]
SENSIRION SPS30 6161841 New Captographie ≈ 3

SENSIRION SPS30 6161572 New Captographie ≈ 3

SENSIRION SPS30 13149189 Old Captographie ≈ 3

SENSIRION SPS30 15256 Old City of Lausanne ≈ 10

SENSIRION SPS30 15257 Old City of Lausanne ≈ 10

SENSIRION SPS30 15259 Old City of Lausanne ≈ 10

SENSIRION SPS30 (PDL) Old City of Lausanne ≈ 10

SENSIRION SPS30 15253 (CR) Old City of Lausanne ≈ 10

SENSIRION SPS30 15258 (CR) Old City of Lausanne ≈ 10

GRIMM 1.1019 - - UNISANTE 1

Table 1: Table presenting the sensors used for the study

A colocation of all low-cost sensors was conducted for three weeks, from April 14th to May
5th. The sensors were placed indoors, allowing us to assess the inter variability of the sensors.
Adjacent to the indoor room, is a construction site, which brought additional environmental
factors for analysis. For a visual representation of the site, please refer to Figure 23 in the
appendix. To establish a baseline comparison, we also performed base testing using two main
official measurement stations: "César-Roux" and "Plaines-du-Loup".
The Vaud’air station in Plaines-du-Loup is located on the outskirts of the city of Lausanne, with
an altitude of 598 meters. This station is situated in an urban area characterized by open land.
It is positioned approximately 100 meters away from a bustling road, contributing to its urban
environment. See Figure 20 in the appendix for further reference.
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Methods

The Lausanne-César-Roux station, situated at an elevation of 530 meters, is centrally located in
Lausanne. It is housed in the basement of the "Pour tous" library, which is adjacent to a main
inner-city transit road that experiences a moderate incline. Approximately 30,000 vehicles tra-
verse this road daily. The immediate surrounding area primarily consists of residential buildings
and service businesses. See Figures 21 & 22 in the appendix.

In addition to base testing, we conducted supplemental experiments in a "controlled" labo-
ratory environment to explore specific factors. These enhanced testing experiments allowed us
to dig deeper into certain aspects of the measurements.

4 Methods

4.1 Sensor Colocation

The sensor colocation was conducted to measure the inter variability among the sensors. This
aimed to assess the consistency of measurements across multiple low-cost sensors. To evaluate
the sensor inter variability, several metrics were computed, such as the following:

• Standard deviation (SD)

• Coefficient of variation (CV)

These metrics provide insights into the consistency and variability of measurements obtained
from the co-deployed low-cost sensors. In addition to those, the percentage difference between
every two sensors was calculated, whose formula can be found in the appendix A.2. The percent-
age difference provides an indication of the relative difference between the measurements of the
two sensors. A lower percentage difference indicates a higher agreement or similarity between
the readings of the two sensors.

The performance metrics recommended by Duvall (2021) [9] were computed for both baseline
and enhanced testing. Additionally, we followed the methodology described in the study by
Giordano (2021)[10]. These additional metrics include the mean normalized bias (MNB), mean
absolute error (MAE), and bias-corrected mean normalized MAE (CvMAE). The MNB measures
the average deviation between predicted and actual values, while the MAE quantifies the average
magnitude of the prediction errors. The CvMAE is a bias-corrected version of the MAE that
takes into account the relative contributions of different sensor models.

For detailed metrics calculations, please refer to the corresponding section in the Appendix
(A.2). These metrics collectively provide a comprehensive evaluation of the performance and
calibration of the low-cost particulate matter mass sensors used in this study, enabling a more
robust assessment of their reliability and accuracy.

We were inspired by Qiao et al. [15] to compute the Intraclass correlation coefficient (ICC)
to assess the agreement between two sensors (XS and XR) in terms of trend. The Intraclass
correlation coefficient (ICC) is calculated using the following formula:

ICC =
D(XS +XR)−D(XS −XR)

D(XS +XR) +D(XS −XR)
(1)

where D() represents the arithmetic operators of variance. The ICC is used to evaluate the
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Methods

agreement between the sensor (XS) and the reference instrument (XR) in terms of trend. If XS
and XR are consistent in trend, meaning that the deviation between them is stable, D(XS - XR)
should be equal to 0. In our colocation study, we used the ICC to check whether all the sensors
had consistent measurements among themselves.

4.2 Lab experiments

To test the performance of these sensors, we conducted extensive testing in a laboratory setting.
On the first day, we used an ultrasonic generator containing NH4NO3 to generate particles and
measured their concentration. On the second and third days, we varied the humidity by boiling
water while generating particles containing NH4NO3 and lactose. The experimental setup is
illustrated in Figure 1 below.

Figure 1: Experimental setup for laboratory measurements

To generate the particles, we operated the ultrasonic system continuously for approximately
1-2 minutes, after which we allowed the concentration to decrease for 30-45 minutes before
repeating the process, for a total of 4-5 cycles. During the experiments, the humidity in the
chamber varied between roughly 20-90% and the temperature between 20-30 °C. The duration
of the experiments was around 3-5 hours. The same metrics as for the colocation study were
calculated, but this time, the aggregated values from the low-cost sensors were compared to the
reference Grimm instrument to calculate the sensor accuracy metrics. In addition, the particle
size distribution of the different size bins was computed.

4.2.1 Data treatment for the colocation and lab

For the colocation, as we want to access the inter variability between sensors, an hourly and a
daily mean average was computed for all the sensors. The three sensors from "Captographie"
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Methods

provided measurements approximately every three minutes, while the three sensors from Lau-
sanne provided measurements approximately every ten minutes.
In the lab experiments, the Grimm reference device took measurements every 6 seconds and
provided an average value every minute. However, due to limited measurement time and the
possibility of errors in individual low-cost sensor readings, we aggregated all the low-cost mea-
surements together to increase the sample size. By combining the data from all the low-cost
sensors and calculating the mean every 3 minutes, we aimed to reduce the potential impact of
individual sensor errors and obtain a more representative dataset. It is important to note that
aggregating the measurements in this manner may help mitigate the influence of individual sen-
sor errors, but it could also conceal specific errors that may have occurred. However, the larger
dataset obtained through aggregation allowed for a more robust analysis when compared with
the Grimm reference instrument.

Figure 24 in the appendix illustrates the PM2.5 values and provides an example of data
re-sampling using a 3-minute mean. This visualization demonstrates the data treatment pro-
cess, including the aggregation of low-cost sensor measurements, and highlights the comparison
between the original and re-sampled data.

4.3 Observational analysis

Data Cleaning/Pre-processing
The initial step involved data cleaning and pre-processing to ensure the quality and consistency
of the datasets. The following sub-steps were performed:

1. Data Retrieval: The data from the city of Lausanne, recorded at a 10-minute interval,
and the data from the official station, recorded hourly, were retrieved from their respective
sources.

2. Data Aggregation: To facilitate analysis, the retrieved data was aggregated into hourly
and daily means for all data frames.

3. Column Homogenization: The column names across the data frames were standardized
to ensure consistency and ease of merging.

4. Dataframe Merge: The low-cost sensor data and the reference station data were merged
into a single data frame, aligning the measurements based on the corresponding dates, for
each station.

5. Creation of Custom Categorical Columns: Additional categorical columns, such as
humidity, day of the week, season, and time of the day, was created to enable further
analysis and interpretation.

Data Analysis
The pre-processed data underwent comprehensive analysis to extract meaningful insights. The
following analysis steps were carried out:

1. Time Series Plots: Time series plots were generated to visualize the temporal patterns
and trends in the measured data.

2. Distribution Plots: Distribution plots were created to examine the frequency distribution
of the measured variables and assess their skewness and variability.

3. Performance Evaluation: Performance evaluation metrics, such as mean absolute error
or root mean square error, were employed to assess the accuracy of the low-cost sensor
measurements compared to the reference station measurements.
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4. Correlation Plots: Correlation plots were constructed to explore the relationships and
dependencies among the variables, examining the strength and direction of the correlations.

5. Meteorological Influence/Seasonal Analysis: The influence of meteorological vari-
ables on the measured data was investigated. Seasonal analysis was conducted to identify
any seasonal variations in the measurements.

6. Machine Learning and Regression Analysis: Machine learning algorithms and re-
gression analysis were applied to model the relationship between the low-cost sensor mea-
surements and the reference station measurements, allowing for predictive modeling and
further insights. We made sure to separate our data into ’training’ and ’testing’ sets (0.7-0.3
ratio), to evaluate our models faithfully.

5 Results

5.1 Sensors Colocation

For curiosity, Figure 25 in the Appendix shows the hourly value for every sensor in a log plot.
Overall, the observed trend is similar across all sensors. However, there is a noticeable difference
between the Captographie and Lausanne sensors.

Figure 2: Figure showing the daily and hourly PM2.5 concentration over a period of 3 weeks from
colocated sensors. The Lausanne sensors are aggregated together, as well as the Captographie
sensors. Error bars representing the standard deviation are included for comparison.

In Figure 2, the daily PM2.5 concentration is depicted, illustrating the average values of
both the Lausanne and Captographie sensors. The error bars on the graph are calculated using
the standard deviation of the averages, providing an indication of the variability. To assess the
inter variability among the sensors, the daily mean values will be utilized. The table presented
below 2 displays the results of the computed standard deviation and coefficient of variation for
all the co-located sensors:
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Parameter Mean Standard Deviation Coefficient of Variation (%)
PM2.5 [µg/m3] (All Sensors) 12.44 2.29 18.37
PM2.5 [µg/m3] (Lausanne) 11.00 1.07 9.76

PM2.5 [µg/m3] (Captographie) 13.88 0.71 5.08
PM10 [µg/m3] (All Sensors) 12.56 2.37 18.84
PM10 [µg/m3] (Lausanne) 11.09 1.15 10.39

PM10 [µg/m3] (Captographie) 14.03 0.81 5.76

Table 2: Summary of PM2.5 and PM10 concentrations with their variation during the 3 weeks
of colocation

The results presented in Table 2 demonstrate that the Captographie sensors exhibit lower
standard deviations and coefficients of variation in both PM2.5 and PM10 concentrations com-
pared to the Lausanne sensors. This suggests that the Captographie sensors offer more consis-
tent measurements of pollutant concentrations. One possible explanation for this disparity is the
higher sampling frequency of the Captographie sensors, which collect data every 3 minutes, in
contrast to the Lausanne sensors with a 10-minute sampling interval. The increased frequency of
sampling enables the Captographie sensors to capture a greater number of data points within the
same time period, resulting in a more comprehensive representation of pollutant fluctuations.
Furthermore, additional analysis was performed to compare the size distribution of particles.
Low-cost sensors have the capability to provide particle count numbers for specific size ranges.
The findings presented in Table 3 provide valuable insights into the particle size distribution
based on the computed metrics.

Metric Mean
(# particles/cm³)

Standard Deviation
(# particles/cm³)

Coefficient of Variation
(%)

<0.5 Micrometer 71.22 6.51 9.13
0.5-1 Micrometer 11.77 1.15 9.78
1-2.5 Micrometer 0.35 0.13 36.77
2.5-4 Micrometer 0.03 0.02 60.18
4-10 Micrometer 0.02 0.01 28.63

Table 3: Particle Size Distribution Metrics

The higher coefficient of variation observed for larger particle sizes indicates greater vari-
ability and inconsistency in the measurements of those sizes. This can be attributed to the
limitations inherent in low-cost particulate matter sensors. Unlike more expensive instruments
that can count every particle in the sampling volume, low-cost sensors only capture a small frac-
tion of aerosol particles (around 3-5%). Consequently, they heavily rely on statistical methods
and extrapolation techniques to estimate particle concentrations.
The low count density of PM10 particles further complicates the direct measurement by low-cost
sensors. For example, particles with a diameter of 8µm may contain 500 times fewer particles
compared to particles with a diameter of 1µm at the same particulate mass level. To achieve
comparable precision in measuring PM10 as PM1.0, low-cost sensors would need to integrate
measurements over an extended period to gather sufficient statistical data.
As a result, the PM4.0 and PM10 outputs of Sensirion’s PM sensors are estimated based on
measurements of PM0.5, PM1.0, and PM2.5, while considering typical aerosol profiles [2]. This
approach takes into account the limitations of detecting larger particles and relies on data from
smaller particles to estimate the concentrations of larger particles.
Therefore, the limitations in particle detection rate and the reliance on statistical extrapolation
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likely contribute to the larger coefficient of variation observed in the measurements of larger
particle sizes.

Figure 3a represents a comprehensive table of metrics computed between every sensor, en-
abling a comparison of the performance of different low-cost sensors in terms of accuracy, vari-
ability, and agreement. It provides valuable insights into the relative performance of the sensors
and allows for an assessment of their overall performance in relation to each other.

(a) Metrics computed for the co-located sensors (b) Plot of the nRMSE versus ICC

Figure 3: Figures comparing the variability between each sensor individually

Overall, the sensors in our analysis exhibit varying levels of performance in terms of agree-
ment and variability. Some sensors demonstrate high agreement and strong correlation with each
other, as indicated by high values of R2 and ICC. These sensors exhibit low MAE and RMSE,
suggesting good accuracy in capturing similar PM2.5 values.

However, there are also cases where sensors exhibit lower agreement and higher differences in
their measurements. This can be seen in lower R2 and ICC values, higher MAE and RMSE values,
and larger percentage differences. These differences may be attributed to the sampling frequency.
Figure 3b is inspired by the report conducted by [Qiao et al., 2021][15], which categorizes different
working statuses of sensors based on theoretical thresholds for ICC and nRMSE. The normal
status indicates that there are no pollution incidents or malfunctions. Fluctuation status suggests
the presence of local differences in measurements. Hotspot status indicates short-term and rapid
pollution processes, while malfunction status represents problems with the sensor itself. Since we
do not have a reference instrument for comparison, we calculated both ICC and nRMSE metrics
to identify any variations among the sensors. The sensors from Captographie have high ICC
and low nRMSE values among themselves, indicating a strong agreement and low variability in
their measurements. Similarly, the sensors from Lausanne also show high ICC and low nRMSE
values, although slightly less favorable compared to Captographie. They all fall into the normal
category.

When comparing the sensors from Captographie and Lausanne, they fall into the "fluctu-
ation" window according to the classification based on ICC and nRMSE. This suggests that
there may be some local differences or variations between the measurements of these sensors,
indicating potential discrepancies or inconsistencies in their agreement and variability.
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5.2 Lab experiments

In Figure 4, the generation of particles conducted on April 12th and 13th, 2023 is illustrated,
along with the corresponding variations in humidity. It should be noted that all sensor mea-
surements were aggregated to compare them with the reference values obtained from the Grimm
instrument. The experiments conducted on March 31st and April 12th involved the generation
of NH4NO3 particles, while the experiment conducted on April 13th utilized lactose generation.
Throughout the experiments, the concentration of PM2.5 ranged from approximately 0 to 300
µg/m3, while the concentration of PM10 varied between 0 and 500 µg/m3. The trend of PM10

concentration can be found in Figure 26 in the Appendix. The green dashed line in Figure 4
represents the changes in humidity over time. Overall, the PM values exhibit a similar trend.
It is noteworthy that when humidity exceeded 80% during the NH4NO3 generation, the val-
ues obtained from the Sensirion sensors deviated significantly from the Grimm reference values.
This discrepancy is explored further in subsequent sections of the report. It is well-known that
measurements taken by low-cost monitors are sensitive to variations in particle properties, such
as size distribution, and can encounter challenges in high ambient relative humidity conditions
due to changes in particle size distribution and refractive index caused by aerosol water uptake.
[12] [4]

(a) NH4NO3 (b) Lactose

Figure 4: Results of the lab experiments conducted on the 12 and 13 April 2023. The Figure
represents the PM 2.5 concentration over time with varying humidity during the NH4NO3 gen-
eration (Left) and Lactose generation (Right).

Table 4 shows the performance metrics computed using the lab data by comparing the
aggregated sensor values to the reference instrument "Grimm." PM2.5’s higher R2 and lower
MAE/RMSE values indicate better prediction performance compared to PM10. PM2.5 smaller
CvMAE and nRMSE values suggest relatively lower relative error and normalized error com-
pared to PM10. PM2.5 lower coefficient indicates less relative variability in the predicted values
compared to PM10.
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Metric PM2.5 PM10

Value Unit Value Unit
R2 0.767 - 0.273 -

MNB 0.242 - 0.222 -
MAE 6.958 µg/m3 19.257 µg/m3

RMSE 18.867 µg/m3 48.204 µg/m3

CvMAE 0.481 - 0.782 -
nRMSE 0.955 - 1.649 -

Standard Deviation 18.291 µg/m3 47.775 µg/m3

Table 4: Performance Metrics

A main aspect of the project consisted of trying to calibrate those low-cost sensors. Figure 5
displays the calibrated equations obtained from the lab experiments for PM2.5. The calibration
equations were derived by considering only low-cost sensor values with a PM2.5 concentration
of fewer than 100 micrograms per cubic meter. The calibrated equations obtained from the
lab experiments for PM10 are represented in Figure 28 in the appendix. The performance of

Figure 5: Calibrated PM2.5 equations considering high and low humidity’s. Green points repre-
sent low humidity points (<75%) and red points high humidity points (>75%)

low-cost sensors in predicting PM2.5 concentrations is good under low humidity conditions but
deteriorates when humidity is high. This is evident from the discrepancies between the predicted
values of the low-cost sensors and the measurements from the reference instrument (Grimm) for
high humidity points. Similarly, the performance of the low-cost sensors in predicting PM10

concentrations is generally poorer, particularly under high humidity conditions. Therefore, the
accuracy of the low-cost sensors in predicting PM concentrations is affected by humidity, with
less reliable performance observed.

5.3 More details on particle sizes, NH4NO3 and Lactose

To further investigate the lab experiments, particle count numbers were computed for various
particle size ranges. For illustration, all the size ranges are displayed in Figure 29 and 30 in the
Appendix. Those Figures show that the count values are similar for smaller particle sizes but
then tend to diverge a lot for larger particle sizes. As stated before, the particle concentration
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counts for PM4.0 and PM10 outputs of Sensirion’s PM sensors are estimated based on measure-
ments of PM0.5, PM1.0, and PM2.5.

Figure 6 and 7 illustrate the particle count number comparison between the NH4NO3 and
Lactose generated particles. It can be observed that for particle sizes below 1 µm, the agree-
ment with the reference is relatively good. However, for particles larger than 1 µm, there is a
significant deviation. Furthermore, there is a noticeable difference between the NH4NO3 and
Lactose generated particles in terms of estimating particle sizes. The NH4NO3 generated parti-
cles provide a better estimation for particles below 0.5 µm, while the Lactose generated particles
perform better in the particle size range between 0.5-1 µm. This shows that there seems to be
a difference between the two experiments but it is important to note that the interpretation of
these results should be approached with caution due to the limited availability of data points.

(a) Particle size distribution for different size bins on April 12th. (NH4NO3 generation)

(b) Particle size distribution for different size bins on April 13th. (Lactose generation)

Figure 6: Comparison of particle size distribution.

For higher size bins, please refer to Figures ?? and 31 in the Appendix. The estimation for
higher size bins is notably poorer.

To further evaluate the performance of the low-cost Sensirion sensors compared to the refer-
ence Grimm sensor, a separate analysis was conducted for lactose and NH4NO3 particles at a
similar humidity range of 0-75%. The performance metrics were computed using PM2.5 mass
concentration as the metric of interest, and the results are presented in Table 5.

Based on the computed performance metrics, it can be concluded that the low-cost Sensirion
sensors perform comparably to the reference Grimm sensor for the detection of lactose and
NH4NO3 particles. The R2 values indicate a moderate to strong correlation between the low-cost
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Figure 7: Particle size distribution for the NH4NO3 generation, Lactose generation, and no
generation during the night both in normal and log scale

R2 MNB nRMSE Slope
Lactose 0.83 0.14 0.31 1.14

NH4NO3 0.85 0.12 0.38 1.12

Table 5: Performance metrics for PM2.5 mass concentration

sensor measurements and the reference sensor measurements. The MNB and nRMSE values are
similar, suggesting a small average difference and overall error between the two sensor types. The
slope values indicate that the values obtained from the low-cost sensors are slightly overestimated
compared to the reference sensor for PM2.5 mass concentration.

Therefore, based on these performance metrics, the low-cost Sensirion sensors demonstrate
a satisfactory performance for the detection of lactose and NH4NO3 particles, specifically in
terms of PM2.5 mass concentration. Figure 8 shows two different calibration equations obtained
from the two experiments, possibly due to variations in the generated particles and internal clock
differences between the instruments.

(a) Calibrated PM2.5 equation for lactose gen-
eration

(b) Calibrated PM2.5 equation for NH4NO3

generation

Figure 8: Scatter plots with the regression equation the Lactose and NH4NO3 generation. Only
points with humidity below 75% are represented.
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5.4 Official station Analysis

Time Series Plots
The first step of the Lausanne urban station analysis was plotting the PM concentration time
series. We can compare the official station measurements against low-cost sensors. In Figure
10, LCS and LCS 2 correspond to the two low-cost sensors deployed by the city of Lausanne in
César-roux (one near the library and the other near the gymnasium).

(a) PM2.5 (b) PM10

Figure 9: Plaines-du-Loup PM concentration time series

(a) PM2.5 (b) PM10

Figure 10: César-Roux PM concentration time series

In both plots, we can notice missing values, mostly in the winter months. This might be due
to a lack of power supply to the batteries, as not enough sun hit the solar panels at that time of
the year.
Distribution Plots
Next, we observed the distribution of PM values for both stations. This allows us to detect
any discrepancies between LCS and the reference. As we can see in Figure 11, both stations
seem to have similar ranges for their daily averages. The processed PM10 values computed by
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the city of Lausanne seem to approach the reference better, whereas the LCS seems to generally
underestimate daily values. These ’processed’ values were provided to us by the city of Lausanne.
We do not know, however, how they were computed.

(a) Plaines-du-Loup (b) César-Roux

Figure 11: Daily average values distribution

Performance Evaluation
Again, Table 6 shows the performance metrics computed comparing the LCS against their ref-
erence. As in the lab experiment, these metrics evaluate the precision/accuracy of the low-cost
sensors in predicting PM2.5 and PM10 concentrations. We can see better predictions of PM2.5

than PM10, as they have a R2 closer to 1 and a smaller error.

Metric PDL CR
PM2.5 PM10 3-PM2.5 8-PM2.5 3-PM10 8-PM10

R2 0.673 -0.051 0.688 0.798 -0.005 0.242
MNB -0.211 -0.473 -0.336 -0.039 -0.575 -0.393
MAE 3.101 7.200 3.307 2.732 8.345 7.406
RMSE 4.087 9.642 4.618 3.816 10.875 9.636

CvMAE 0.297 0.403 0.289 0.276 0.399 0.365
nRMSE 0.438 0.574 0.400 0.399 0.503 0.476

Standard Deviation 8.451 8.906 6.537 10.279 6.892 10.873
Coefficient of Variation 1.274 1.304 1.115 1.138 1.149 1.138

Table 6: Performance Metrics

Correlation Plots
Now, a correlation analysis was performed to examine the relationships between the variables of
interest, LCS, and reference PM values.
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(a) Plaines-du-Loup PM2.5 (b) Plaines-du-Loup PM10

Figure 12: Correlation plot; Reference vs Low-cost Sensor PDL

(a) César-Roux PM2.5 (b) César-Roux PM10

Figure 13: Correlation plot; Reference vs Low-cost Sensor CR

Meteorological Influence/Seasonal Analysis
The meteorological influence/seasonal analysis was conducted to explore the potential impact of
weather conditions and seasonal variations on the observed data. Indeed, weather conditions,
such as temperature and humidity are known to influence various environmental phenomena and
human activities. By examining the relationship between the meteorological variables and the
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target variable of interest, we can assess the extent to which weather factors contribute to the
observed variations.
We can observe in Figure 14 that the LCS tends to overestimate values when humidity is higher
than 60%, which is in accordance with what we have seen in the lab. The same thought process
was applied to seasonal changes, as they often bring distinct environmental characteristics and
human behaviors that can impact PM values and the accuracy of measurements. Analyzing the
dataset across different seasons allows us to identify any seasonal patterns or trends. In Figure
15 below, we notice such seasonal difference in measurement distribution.
One last thing we observe in Figure 16, in which we compared the regression line of the Lausanne
observations with the lab-computed functions in Figure 5 and 28 , is the seemingly good match
for PM2.5.

Figure 14: Temperature & Humidity influence on Normalized PM2.5 Concentrations

Similar analyses have been conducted for the influence of the time of the day, and day of the
week, however, no significant results have been found.

Machine Learning and Regression Analysis
Finally, machine learning and regression analysis was performed to uncover complex relationships,
identify predictive patterns, and develop models that can effectively estimate or forecast the
actual PM concentration based on the available features. The following models were inspired by
Zimmerman’s tutorial [18].

Table 7: Regression Models for PM2.5 Prediction

Model Formula

Model A PM2_5 = β0 + β1 · sps30_pm2_5 + β2 · humidity + β3 · temp_dew
Model B PM2_5 = β0 + β1 · sps30_pm2_5 + β2 · humidity
Model C PM2_5 = β0 + β1 · sps30_pm2_5 + β2 · temp_dew
Model D PM2_5 = β0 + β1 · sps30_pm2_5

We can observe that Models A and C obtain the best results, with lower MSE, MAE, and
higher R2. We could argue that Model C is the best, as it yields good results with fewer features.
Meaning that dew point temperature is a relevant correction factor in PM sensor calibration.
At last, we computed a Random Forest model on the Plaines-du-Loup PM2.5 measurements.
We can observe a higher correlation between the calibrated and reference values, as well as a
lower RMSE. An interesting finding was the importance of the different prediction features. As
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Figure 15: Seasonal and Humidity influence on PM10 concentrations

(a) PM2.5 (b) PM10

Figure 16: Comparison between Lab and Observed correlation

we can see in Figure 17, the most important feature is the count number of particles below
0.5 micro-meters, contrary to the categorical variables we computed ( such as day of the week,
season, time of the day, ...), which have very little influence. We also applied this predictive
model to the César-Roux data, and obtain the results given in Figures 18 and 19. The results
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Table 8: Regression Model Results

Model MSE MAE R-squared

Model A 8.416 1.990 0.841
Model B 9.163 2.140 0.827
Model C 8.889 2.052 0.832
Model D 10.557 2.344 0.800

are not as good as for PDL, as expected, however, it still lowers the error, and approximates the
reference better.

(a) Correlation plot with calibrated values (b) Parameters’ importance in RF prediction

Figure 17: Random Forest calibration results

Figure 18: PDL Random Forest calibration applied to CR
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Figure 19: PDL Random Forest calibration applied to CR-Time Series

6 Discussion

From the analysis conducted earlier, it is evident that the Captographie sensors consistently
exhibit lower variability, as indicated by their low coefficients of variation, making them suitable
for capturing rapid changes in PM concentrations. On the other hand, the Lausanne sensors,
despite being colocated, show higher variability when averaged into daily values. This variabil-
ity can be attributed to factors such as sensor age, location, and positioning within the room.
Another factor contributing to variability is the slight time lag between the sensors, which may
result in different PM concentration readings during transient events. Therefore, it is important
to consider hourly values for a more accurate representation of overall trends. It is consequently
important not to be overly alarmed by occasional high PM concentrations observed at specific
time steps.

Additionally, the analysis revealed that low-cost sensors face challenges in accurately measuring
PM10 concentrations compared to PM2.5. This is evident from the lower R-squared (R2) values
obtained for PM10 in comparison to PM2.5. This disparity may be attributed to the limited
capacity of low-cost sensors to capture a small fraction of aerosol particles, typically around 3-5%
[2], as mentioned earlier in the analysis. The limited capacity of low-cost sensors to capture a
small fraction of aerosol particles, coupled with the reliance on statistical methods and extrapola-
tion, contributes to the relatively poorer performance in estimating PM10 concentrations. These
sensors are better suited for capturing fine particles below 2.5 µm but struggle to accurately
represent coarse particles above that size.

During the laboratory experiments with NH4NO3 generation, significant differences in PM con-
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centrations were observed between the reference Grimm device and the low-cost sensors when
high humidity levels were reached, particularly for PM10. This difference can be attributed to
the hygroscopic nature of NH4NO3, which leads to changes in particle size distribution and
refractive index due to aerosol water uptake. According to Seinfeld & Pandis; "At very low rela-
tive humidity, atmospheric particles containing inorganic salts are solid. As the ambient relative
humidity increases, the particles remain solid until the relative humidity reaches a threshold value
characteristic of the particle composition." [Chapter 10.2, Atmospheric Chemistry and Physics:
From Air Pollution to Climate Change, 3rd Edition] [16]. Consequently, NH4NO3 particles can
potentially increase in size when the humidity exceeds 61.8% at a temperature of 25°C due to
water absorption. In contrast, without significant hygroscopic growth, the lactose generation
experiment resulted in better agreement between the reference and low-cost sensors. The lim-
itations in accurately capturing PM2.5 and PM10 concentrations during NH4NO3 generation
highlight the challenges faced by low-cost sensors in accurately representing particle size distri-
butions and concentrations, especially when hygroscopicity plays a significant role.
It should be noted that low-cost sensors provide only a partial representation of atmospheric
particles, and caution should be exercised when interpreting the data, as they may not capture
the complete range of particle composition, size, and sources.

During our analysis of the observational data, we discovered several interesting findings when
comparing the low-cost sensors with the reference station. Firstly, when examining the corre-
lation plots (Figure 5, 12, and 13), we noticed that the low-cost sensors tend to overestimate
the values of PM2.5 and PM10. Furthermore, we observed a striking similarity in the trend
between the two stations (CR and PDL) when considering the slope of the regression line. This
similarity is likely due to the fact that the stations are situated in similar urban environments.
Consequently, our random forest model, trained on PDL measurements, produced good results
when applied to CR. Additionally, we found significant variability in measurements across dif-
ferent seasons (winter, spring, summer, fall). We believe this variability is influenced by changes
in temperature and humidity, as well as the types of particles present during each season. For
instance, in spring and summer, there appears to be a higher concentration of organic particles
that are particularly sensitive to higher humidity levels. In contrast, during winter, the low-cost
measurements exhibited better agreement with the reference station. This pattern was further
supported by our random forest calibration results, which revealed that the algorithm prioritized
the size distribution of particles over seasons in terms of importance. We hypothesize that the
"seasonality" effect is reflected in the size distribution, as different types of particles prevalent in
each season could be represented by their size distribution. This insight makes future calibration
endeavors particularly interesting, as it suggests the possibility of developing a calibration algo-
rithm that calculates correction factors based on the size distribution while taking into account
the various particle types associated with different seasons.

In order to improve the quality of data produced by low-cost sensors, one recommended step
is to colocate the sensors near a reference instrument to identify and address any erroneous
readings. This allows for calibration and validation against more accurate measurements. Cal-
ibration procedures should be implemented to address systematic biases and inaccuracies, and
robust quality control measures should be applied to filter out unreliable data. It is important to
note that while PM2.5 concentrations can be trusted to some extent, caution should be exercised
with PM10 measurements. Additionally, trust in the data can be increased when the humidity
is below approximately 75%. Lab measurements can also contribute to enhancing the quality
of data. However, it is important to note that different calibration equations may be required
when dealing with different types of particles, as observed during the lab experiments. Machine
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learning techniques and data fusion can be employed to improve the estimation and correction
of air pollutant concentrations. In the context of this study, the random forest model trained on
PDL and applied to CR yielded satisfactory results, suggesting the potential of machine learning
for data correction, particularly in urban areas. However, it is worth noting that the effectiveness
of the random forest model may vary in different types of areas. Further exploration of various
environments, such as rural areas, would be valuable to advance this study. As mentioned earlier,
the significance of the number concentration of particles below 0.5 µm in the random forest model
highlights the potential role of particle size distribution in calibrating low-cost sensors. Regular
sensor maintenance and adherence to manufacturer guidelines are crucial factors to consider.

7 Conclusion

Based on the work conducted in this paper, several key findings have emerged. Firstly, the
analysis revealed that the three colocated sensors from Captographie exhibited a low coefficient
of variation, indicating their effectiveness in capturing rapid changes in PM concentrations. In
contrast, the Lausanne sensors, despite their proximity, displayed higher variability when aver-
aged into daily values. Factors such as sensor age, location, and positioning angle within the
room contributed to this variability.
Moreover, the study highlighted the importance of considering the timing of sensor measure-
ments. Since the sensors may not provide values simultaneously, transient events or rapid pro-
cesses can lead to variations in PM concentration readings. Therefore, it is advised to focus on
hourly values rather than occasional high PM concentrations at specific time steps for a more
accurate representation of overall trends and patterns.
Additionally, the research underscored the challenges faced by low-cost sensors in accurately
measuring PM10 concentrations. These sensors exhibited lower R-squared values for PM10 com-
pared to PM2.5 when compared to lab measurements and reference stations. This limitation
arises from the sensors’ restricted capacity to capture a small fraction of aerosol particles, usu-
ally around 3-5%. Consequently, statistical methods and extrapolation techniques are heavily
relied upon, introducing uncertainties and potential inaccuracies in estimating PM10 values.
Furthermore, the experimental analysis involving NH4NO3 highlighted the impact of high hu-
midity on particle size distributions. The hygroscopic nature of NH4NO3 particles resulted in
water absorption and subsequent size growth, which low-cost sensors estimated based on statis-
tical methods. In contrast, during the lactose generation, where hygroscopicity played a minor
role, low-cost sensors performed relatively better. These findings emphasize the challenges faced
by low-cost sensors in accurately representing particle size distributions and concentrations, par-
ticularly under conditions where hygroscopicity is significant.
It is crucial to acknowledge the limitations of the study as unexpected trends and challenges
were encountered during the lab experiment, particularly in high humidity conditions and when
comparing sensors with different time intervals. Moreover, environmental conditions can signifi-
cantly influence sensor performance, necessitating distinct calibration approaches.
In conclusion, the findings highlight the need for careful interpretation of data, consideration of
timing effects, and awareness of the impact of environmental conditions on sensor accuracy. Fur-
ther research and advancements in calibration techniques are necessary to enhance the reliability
and comparability of low-cost sensors in atmospheric monitoring applications.
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A Appendix

A.1 Site Description

Figure 20: Plaines du Loup station

Figure 21: César-Roux Bib station
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Figure 22: César-Roux Gymnase station

A.2 Metrics computation[9]

The U.S. EPA PM2.5 Testing Report recommends reporting on the following metrics:

1. Sensor Accuracy Metrics

• Coefficient of Determination (R2)
• Slope
• Intercept
• Root Mean Square Error (RMSE)
• Normalized Root Mean Square Error (NRMSE)

2. Sensor Precision Metrics

• Standard Deviation (SD)
• Coefficient of Variation (CV)

The coefficient of determination R2 is given by the formula:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2

where:
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Figure 23: Illustration of the colocated low-cost sensors

n is the number of data points yi is the i-th true y value ŷi is the i-th predicted y value ȳ is
the mean of the true y values

It assesses how differences in one variable can be explained by the difference in a second
variable.([18])

Slope is calculated by finding the ratio of the “vertical change” (rise) to the “horizontal
change” (run) between (any) two distinct points on a line. For a simple linear regression between
the FEM/FRM data (x) and the sensor data (y), it is calculated as:

m =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
(2)

The intercept (b) is the value at which the fitted line from a simple linear regression crosses
the y-axis. For a simple linear regression between the FEM/FRM data (x) and the sensor data
(y), it is calculated as:

b = ȳ −mx̄ (3)
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The RMSE is a measure of the differences between the sensor data (y) and the FEM/FRM
monitor data (x).

RMSE =

√√√√ 1

N

N∑
i=1

(yi − xi)2 (4)

The Normalized Root Mean Square Error (NRMSE) helps account for periods when ambient
concentrations are high (which may skew the RMSE). It is calculated by normalizing the RMSE
by the average concentration measured by the FEM/FRM monitor.

NRMSE =
RMSE

x̄
× 100 (5)

The standard deviation of the sensor PM2.5 concentration measurements is calculated using
data from all co-deployed low-cost sensors. It is defined as follows:

SD =

√√√√ 1

(N ×M)− 1

M∑
j=1

N∑
d=1

(ydj − ȳd)2 (6)

where:
N is the number of periods during which all instruments are operating and reporting valid

data M is the number of identical sensors operated simultaneously ydj is the average concentration
for day or hour d and sensor j ȳd is the average concentration across all sensors for day or hour d.

The coefficient of Variation (CV) is given by

CV =
SD

ȳ
× 100 (7)

The following metrics were computed for our study in addition to the slope and intercept: [10]

The percentage difference is computed the following way:

Percentage Difference =

∣∣∣∣∣Predicted − Actual
Predicted+Actual

2

∣∣∣∣∣× 100 (8)

where:

• Predicted is the predicted value from one sensor

• Actual is the actual value from another sensor

Mean normalized bias:

MNB =

∑n
i=1(cestimated,i − ctrue,i)∑n

i=1(ctrue,i)
(9)

Mean absolute error:
MAE =

∑n
i=1 |cestimated,i − ctrue,i|

n
(10)

Bias-corrected mean normalized MAE and RMSE (CvMAE, nRMSE):

CvMAE =

∑n
i=1 |cestimated,i − nbias − ctrue,i|∑n

i=1(ctrue,i)
(11)
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nRMSE =

√∑n
i=1(cestimated,i − nbias − ctrue,i)2∑n

i=1(ctrue,i)
(12)

where

nbias =
1

n

n∑
i=1

(cestimated,i − ctrue,i) (13)

A.3 Additional Figures

Figure 24: PM2.5 values and data resampling using a 3-minute mean

Figure 25: Figure showing the daily and hourly PM2.5 concentration from the 3 weeks of colo-
cation (All the sensors are represented)
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(a) PM 2.5 concentration over time with vary-
ing humidity for different sensors

(b) PM 10 concentration over time with varying
humidity for different sensors

Figure 26: Illustration of the lab experiment conducted on the 12 April 2023 (NH4NO3 genera-
tion)

Figure 27: PM10 concentration as a function of time during the Lactose generation
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Figure 28: Calibrated PM10 equations considering high and low humidity’s. Green points rep-
resent low humidity points (<75%) and red points high humidity points (>75%)

Figure 29: Particle size distribution for different size bins on April 12th. (NH4NO3 generation)
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Figure 30: Particle size distribution for different size bins on April 13th. (Lactose generation)

Figure 31: Particle size distribution for the NH4NO3 generation, Lactose generation, and no
generation during the night both in normal and log scale
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(a) PM2.5

(b) PM10

Figure 32: Temperature & Humidity influence on Normalized Concentrations in César-Roux
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Figure 33: Seasonal and Humidity influence on PM2.5 concentrations
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