STKGNN: Scalable Spatio-Temporal Knowledge Graph Reasoning for Activity Recognition

Gözde Ayşe Tataroğlu Özbulak^{1,2}, Yash Raj Shrestha¹, Jean-Paul Calbimonte^{2,3}

¹University of Lausanne

²University of Applied Sciences and Arts Western Switzerland HES-SO ³The Sense Innovation and Research Center

The ACM Conference on Information and Knowledge Management (CIKM) 2025 Seoul, Korea

Application Domains for Spatio-Temporal Streaming Data

- Autonomous driving: video streams capturing changing traffic scenes
- Smart-city IoT: sensor networks tracking environmental factors
- **Social-media analysis:** detecting events from geotagged videos or posts

... video, sensors, social media logs, transaction records ...

Background & Motivation

- Rapid growth of spatiotemporal data in video streams.
- In activity recognition, existing models emphasize visual perception rather than reasoning.
- Treating spatial and temporal cues separately limits contextual understanding of activities.

- Need for unified spatiotemporal reasoning to capture evolving activity relations.
- To scale the framework for dynamic and heterogeneous video data.
- Integrate semantic, spatial, and temporal cues for context-aware activity reasoning.
- Move beyond pixel-level perception toward structured relational understanding.

Absence of unified spatio-temporal representations in existing activity recognition models

Research Gap & Limitations

Insufficient capacity for semantic and relational reasoning in dynamic activity contexts

Poor adaptability and generalization capacity of existing models across heterogeneous video sources

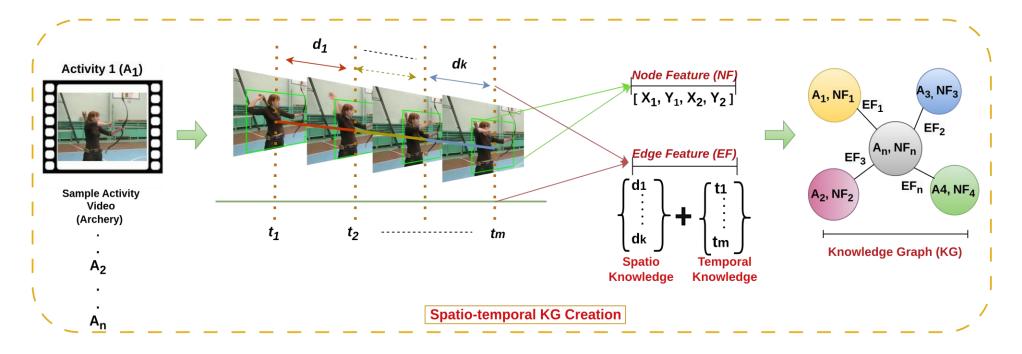
Lack of scalability in current frameworks for large, evolving spatio-temporal graphs

Problem Statement Challenges

Problem Statement

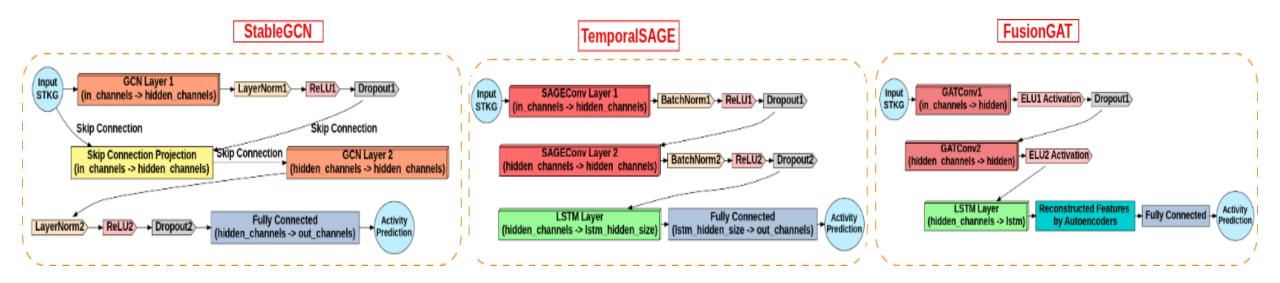
Existing approaches cannot jointly reason over structured and dynamic spatio-temporal information, limiting contextual consistency and generalization.

Key Challenges © > >


- Joint Modelling
- Dynamic Representation
- Relational Reasoning
- Generalization
- Scalability

Overview Proposed Method

Main	Semantic		Pixel - wise	Dynamic	Reasoning			Video Input Stream
Recognition Methods	-aware Context	Scalability	Recognition	Capabilities	Capabilities			
Traditional Recognition Methods	X	X	✓	Partial	X			Feature Extraction for Node & Edge Construction
Knowledge Graph-driven Models	√	Х	√	Partial	Partial			
Transfer Learning and Interaction Modeling	X	Х	√	X	Partial	Bridging limitations to	9	Temporal & Spatial Link
Dynamic KGs for <u>Spatio</u> - Temporal Recognition	√	X	Partial	Partial	✓	proposed framework	#	Knowledge Graph Assem (STKG)
Our Method — STKGNN	✓	✓	✓	✓	✓		?	Reasoning & Inference (STKGNN)


- Spatio-temporal Knowledge Graph (STKG)
- Spatio-temporal Knowledge Graph Neural Network (STKGNN)

Spatio-temporal Knowledge Graph (STKG) Construction

The module shows the STKG construction, where each node Ai represents an activity element with node features (NF) derived from detected object coordinates, and edges (EF) represent spatio-temporal relationships based on spatial distance dk and temporal intervals tn.

Proposed GNN Models

Core Design Aspects	StableGCN	TemporalSAGE	FusionGAT	
Temporal Dependency Handling	Low (neighborhood- based)	Captured via LSTM	Fine-grained via Attention + LSTM	
Generalization Strategy	Skip connections	Augmentation (edge manipulation)	Autoencoder-based latent reconstruction	
Target KG Types	Simple, low-noise graphs	Mid-complex dynamic graphs	Complex, heterogeneous graphs	
Design Purpose	Fast, lightweight reasoning	Temporal-aware intermediate reasoning	Deep semantic reasoning for complex graphs	

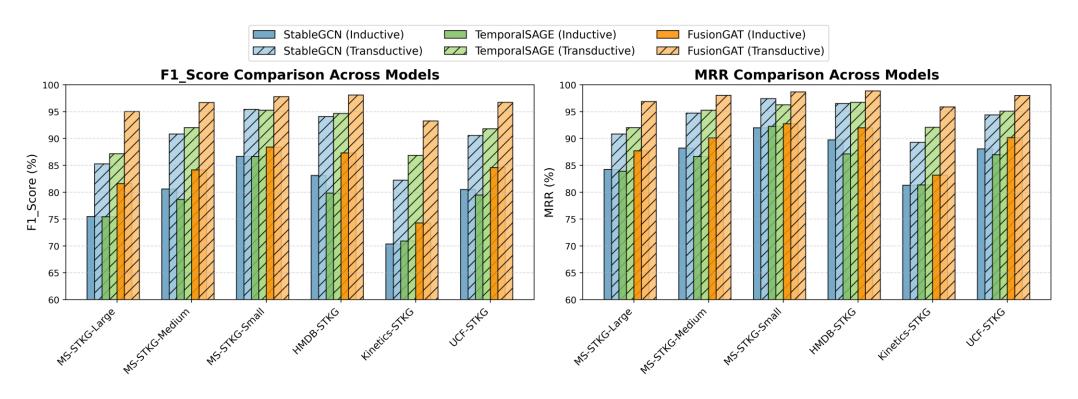
Video-Based Benchmark Datasets Used for Deriving STKG

<u>Dataset</u>	Temporal Coverage	Scene / Source Characteristics	Structural Complexity	Representative Scenario
HMDB-STKG	Short clips (2–5s)	Single camera, isolated human actions	Low	Single-action recognition
UCF-STKG	Short sequences (5–10s)	Multiple short scenes, limited transitions	Low–Middle	Scene-level activity detection
Kinetics-STKG	Long sequences (10–30s)	Diverse video sources, multiple concurrent actions	Middle	Cross-scene event reasoning
MS-STKG (Small / Medium / Large)	Multi-temporal (short → long)	Fused from HMDB, UCF, and Kinetics; heterogeneous nodes and relations	High → Very High	Multi-source fusion Benchmark

NOTE: Each dataset contains 15 activity classes and 120 videos. The three MS-STKG variants are constructed by combining samples from HMDB, UCF, and Kinetics:

[•] Small: 15 classes, 60 videos • Medium: 15 classes, 120 videos • Large: 30 classes, 150 videos

Performance of Models Various Scaled STKGs and Reasoning Settings


DATASET	StableGCN Inductive ± Std	StableGCN Transductive ± Std	TemporalSAGE Inductive ± Std	TemporalSAGE Transductive ± Std	FusionGAT Inductive ± Std	FusionGAT Transductive ± Std
HMDB-STKG	83.18 ± 0.63	94.09 ± 0.18	86.50 ± 0.27	95.17 ± 0.15	87.34 ± 0.24	98.10 ± 0.12
UCF-STKG	80.87 ± 0.24	90.73 ± 0.12	82.66 ± 0.21	93.09 ± 0.10	84.60 ± 0.44	96.73 ± 0.16
Kinetics-STKG	70.77 ± 0.98	82.49 ± 0.27	70.98 ± 0.44	86.67 ± 0.11	74.37 ± 0.64	92.38 ± 0.17
MS-STKG-Medium	80.71 ± 0.34	90.91 ± 0.15	81.88 ± 0.39	93.10 ± 0.09	84.15 ± 0.68	96.40 ± 0.18
MS-STKG-Large	75.90 ± 0.17	85.55 ± 0.21	78.48 ± 0.39	89.43 ± 0.20	81.67 ± 0.23	95.07 ± 0.21
MS-STKG-Small	86.79 ± 0.49	95.47 ± 0.21	87.83 ± 0.46	96.48 ± 0.19	88.45 ± 0.72	97.79 ± 0.23

Provides a static graph reasoning baseline

Learns how structural patterns change over time

Combines spatial, temporal, and semantic signals for unified reasoning

Cross-Metric Validation

F1 and MRR confirm stable reasoning patterns cross our models over multi-scale STKGs beyond accuracy

Baseline Comparison

MODELS	Top-1 Accuracy (%)
FusionGAT(Ours)	85.07
TemporalSAGE(Ours)	80.30
StableGCN(Ours)	79.38
STIP-GCN *	72.07
TRG **	70.51
AKU ***	67.42

STIP-GCN *: Capture local motion cues but lacking semantic temporal reasoning.

TRG **: Partially models temporal relations, but misses spatial semantics.

AKU ***: Multi-modal early fusion approach, yet without explicit reasoning.

Comparison of our proposed models and closely related GNN based baselines on the MS-STKG-Medium dataset

^{*} Sravani Yenduri, Vishnu Chalavadi, and C Krishna Mohan. 2022. STIP-GCN: Space-time interest points graph convolutional network for action recognition. In 2022 International Joint Conference on Neural Networks (IJCNN). IEEE, US, 1–8.

^{**} Jingran Zhang, Fumin Shen, Xing Xu, and Heng Tao Shen. 2020. Temporal reasoning graph for activity recognition. IEEE Transactions on Image Processing 29 (2020), 5491–5506.

^{***} Yue Ma, Yali Wang, Yue Wu, Ziyu Lyu, Siran Chen, Xiu Li, and Yu Qiao. 2022. Visual knowledge graph for human action reasoning in videos. In Proc. 30th ACM International Conference on Multimedia. Association for Computing Machinery, New York, NY, USA, 4132–4141.

Key Contributions

Scalable framework (STKGNN) for structured spatiotemporal reasoning

Adaptive STKG construction pipeline capturing spatial, temporal, and semantic dependencies

Hierarchical graph-level three novel models which provide generalizable temporal and relational reasoning

Comprehensive evaluation under both inductive and transductive settings across heterogeneous data

Future Work

Extend the framework toward real-time and cross-domain reasoning across multiple video sources

Conduct computational efficiency and transparency analysis to assess scalability and real-time potential

Thank you!

Please scan the QR Code for all Reproducible Source

STKGNN: Scalable Spatio-Temporal Knowledge Graph Reasoning for Activity Recognition

Gözde Ayşe Tataroğlu Özbulak, Yash Raj Shrestha, Jean-Paul Calbimonte

This work was supported by the Swiss National Science Foundation through the StreamKG project with grant number 213369