
Workshop Governance by Infrastructure Short Position Papers

Alain Sandoz (University of Neuchâtel, Switzerland) & Léa Stiefel (University of Lausanne, Switzerland

Untying the knot between software-based platforms
and information infrastructures

1.	 Introduction

Software-based platforms (Tiwana et al., 2010) are important
parts of information infrastructures (Hanseth and Bygstad,
2021). There is however a knot that remains to be untied to
fully understand how platforms might drive their emergence,
structuring, and architecting. It appears from the literature
that all software-based platforms are centrally controlled by
an owner, and, therefore, that information infrastructures (IIs)
might be made up, at best, of constructs or juxtapositions of
centralized platform ecosystems.

In this paper, we intend to untie this knot and free up some
space for research on alternatives to a world of IIs that would
be an archipelago of isolated island-states and of federations
of platforms under the control of public or private entities
jockeying for power.

The concept of platform-oriented infrastructure (Hanseth and
Bystad, ibid) describes what is to our knowledge the most
elaborate way of articulating large digital platforms in order
to reach higher infrastructural levels. Drawing on the seminal
work of Tiwana (2014) and on contributions from many authors,
the authors write, in relation to current research on platforms:
“Platform ecosystems and infrastructures are similar in the sense
that they include a huge number of technological components
as well as developers and development organizations, … [but]
there are also significant differences: platform ecosystems
are all based on one specific architecture in terms of the split
between platform and apps, and a specific governance structure
where one single actor owns and controls the platform while
autonomous app developers control the apps”. In his book
review of (Tiwana, ibid), Kumar (2018) summarizes: “The
platform owner must achieve autonomy of app developers and
also integration of efforts of individual contributors. These twin
goals can be achieved by an appropriate mix of decision rights,
control mechanisms, and pricing policies”.

We do not share this view. Software-based platforms may
be neither proprietary nor centrally controlled, and some
fundamental platforms of the Internet are. In this paper, we
identify such platforms, study their properties, and discuss why
they are interesting. We will consider only inter-organizational
interactions and how information systems (ISs) of organizations
interoperate on platforms.
Throughout the paper, we consistently use the terms interact/
interaction between organisations (i.e., module- and IS-
owners) and interoperate/interoperation between information
systems and/or modules and/or programs. We purposely
leave aside end-users (e.g., the private persons that use apps
running on their smart-phone) and the corresponding platform
ecosystems (e.g., Android OS or Apple iOS). As our examples
show, this does not restrict the generality of our position: we
do not pretend that centrally controlled platforms should not
be parts of IIs, only that they should not be the only parts.

The paper is structured as follows. We first dissect the
definition of software-based platform from (Tiwana et al., ibid)
and isolate its core shared functionality. We show that TCP/
IP is a software-based platform in this sense, which is neither
proprietary, nor centrally controlled. In the following sections,
we identify different forms of core shared functionality and
examine each form separately: service platforms (by definition
are centralized and proprietary), intermediation platforms
(by default, are decentralized), interoperability platforms
(by construction are fully distributed). We then study the
relationships between platforms. We make a distinction
between platform- and information system- dependencies and
show that dependencies between platforms might be relayed
in different ways to the ISs that operate on these platforms.
Finally, we come back to the analogical world and to our initial
objective of untying the knot. We conclude with a discussion
of questions raised by our perspective.

2.	 The core shared functionality of a platform

Tiwana et al. (ibid) defines a software-based platform as “the
extensible codebase of a software-based system that provides
core functionality shared by the modules that interoperate with
it and the interfaces through which they interoperate”. This
definition is central to their research note on platform-centric
ecosystems and is used consistently in much of the research
that has followed over the years on the relationship between
platforms and IIs. We make three remarks on this definition:
1) the definition does not specify whether the software-based
system is centrally controlled or not. The system could be
centralized, decentralized, or distributed; 2) it is the core
functionality that is shared, not the extensible codebase; and
3) the interfaces are an integral part of the platform, and the
modules use them to interoperate with the software-based
system (i.e., not specifically with the IS of some actor).

In all generality, modules are programs, and interfaces are
application programming interfaces (APIs). If 1) some
software-based system (e.g., the enterprise IS owned by some
actor) were 2) to provide a core functionality (implicitly
shared) to external modules, 3) together with the APIs
through which the modules would interoperate with that IS
(or more precisely with the services of the IS that provide the
functionality by executing the codebase), then that “platform”
would by definition be proprietary and centrally controlled.

But, let’s imagine that a distributed software-based system was
to provide some core shared functionality to a collection of
modules, and that the owners of those modules each controlled
the API through which their module would interoperate
with that distributed system. Provided (for consistency) that
the codebase was extensible, then that system would be a
software-based platform in the sense of (Tiwana et al., ibid).

Keywords: inter-organizational platform, information infrastructure, shared functionality, service platform, intermediation platform,
interoperability platform

mailto:alain.sandoz%40unine.ch?subject=
mailto:lea.stiefel%40unil.ch?subject=

Workshop Governance by Infrastructure Short Position Papers

If the component of the system that executes the portion of the
codebase used to implement the functionality for a module, and
its API, were both locally controlled by the module’s owner;
and if there was no central component in the system, then the
platform might be fully distributed, and neither proprietary nor
centrally controlled.

The codebase that implements the TCP/IP stack and that is
executed throughout the Internet by programs running on
computer systems from within information systems (i.e.,
modules) is a software-based platform. Although there are
many implementations of TCP/IP, at any time any computer
system that is connected to the Internet (i.e., any IP-host)
must locally operate at least one and control its API. The
codebase is extensible. New implementations of TCP/IP can
be easily produced (if only in higher education engineering
institutions) and extensions of the underlying protocols, e.g.,
from IPv4 to IPv6, happen from time to time, although this
kind of transition proves laborious on a socio-technical level
(as shown by DeNardis, 2009). The set of all IP-hosts is a
(distributed) software-based system that provides a shared core
functionality through this codebase. The functionality is end-
to-end controlled transmission of data between programs that
run on computer systems. It is shared by these modules. The
API through which a program interoperates with this system
is the TCP/IP system-call interface of the computer on which
it is executed.

The TCP/IP software-based platform is neither centrally
controlled, nor proprietary. A skilled programmer might modify
the portion of the codebase under his/her control, i.e., hack the
TCP/IP implementation of her/his Linux OS, recompile the
kernel, and run programs on the computer system as before.
Provided this version respects the requirements of TCP/IP when
it interoperates with other IP-hosts, probably no one will notice.
Note that the codebase is not shared. What is shared is the core
functionality of TCP/IP, i.e., the generalized capability to inter-
operate conferred to any pair of programs running at any given
time on IP-hosts. TCP/IP is a low-level platform that resides in
the transport layer of the Internet, so low that it remains under
the radars. We will see higher level examples, i.e. platforms in
the application layer, later.

3.	 Service platforms

We call the type of platform usually understood in the sense of
(Tiwana et al., ibid) a service platform. The core functionality
shared by modules is a bundle of services provided by a
servicing information system (SIS) through its APIs, i.e.,
interfaces that the SIS controls. Modules external to the SIS use
the services but do not directly interoperate: data only flows
between the SIS and each module’s IS. Nevertheless, if its
service provides a functionality like transaction consistency
(e.g., as for SWIFT - Scott and Zachariadis, 2012), the SIS might
relay data between the client-ISs. So, depending on the service,
client organizations might not interact at all, or interact only
indirectly over the platform.

Although an IS might be a large and complex system, it is
usually considered to be operated under the control of a single
entity that owns it. The owner’s management sees control
of the IS as a strategic priority and drives it according to
principles of enterprise architecture (Hanseth and Bygstad,
ibid; Ross et al., 2006). The platform ecosystem built on
top of such a client-server configuration will be centrally
controlled by the service provider; its software base and APIs

will be proprietary.

Service platforms might be combined in several ways. The SIS
of one platform might use the shared functionality of another
SIS through the latter’s APIs, and vis versa. This need not be
restricted to a pair of service platforms: any number of SISs
can be connected by a network of direct client-server relations.
The network might be centralized, or decentralized, or locally
distributed. To articulate service platforms in this way enables
to develop platform- oriented IIs in the sense of (Hanseth and
Bygstad, ibid). Multiple bilateral interconnections however
stumble on the problem of the standardization of data. This
is a research topic of its own (Hanseth et al. 1996; Poppe et al.,
2014; Sæbø and Poppe, 2015; Nielsen and Sæbø 2016).

Nielsen and Aanestad (2005) report on another type of
combination: two platform owners who dominated the
mobile networks in Norway collaborated to provide services
to the same third-party developers through the APIs of their
respective SISs. In this way they drove the emergence of a
unique market for mobile content- providers and -consumers,
that they together controlled.

For module owners, the client-server configuration can be
problematic, as the literature has shown for platforms like
Twitter (Bucher, 2013; Puschmann, 2013) or Facebook
(Helmond, 2015). In addition to functional, causal and
technical dependencies of a client-IS on the SIS, to control the
API gives the SIS owner indirect control on what a module
owner can do (control of activity), how (control of semantics),
and when (control of temporality) (Stiefel and Sandoz,
2022). These master-slave dependencies apply at the level of
organisations. If they remain unbalanced, i.e., without clear
incentives (business) or guarantees (through governance),
then the platform may be rejected (Stiefel, in press).

4.	 Intermediation platforms

Another type of software-based PF is an intermediation
platform. These platforms provide support functionalities to
modules. They have dedicated interfaces, that might or might
not be controlled by module owners.
The implementation of the Internet internet layer, the Internet
Domain Name System, and blockchains are intermediation
PFs.

The Internet internet layer is composed of information
systems that implement the transport of TCP/IP packets
through routers and over physical links. Each router is
controlled by a unique Internet Service Provider (ISP).
Links are controlled by multiple ISPs using contracts.
Transport within this global physical network is a core
functionality provided by ISPs (i.e., enterprises, each under
the jurisdiction of one state) that are directly connected point
to point through local area networks (LANs) or backbones
using their own fully controlled interfaces. The banal end-user
Internet-host does not share this core functionality with ISPs.
It uses the transport function only on the last link, i.e., on the
LAN that connects it to its ISP. Transport in the open Internet is
only a support function for communication between modules.
The ISP enterprises, possibly under the pressure of states or
of big customers, or on arbitrary grounds, can filter, slow
down or block out, decipher and read, etc. traffic that transits
through their routers (DeNardis, 2012).

Workshop Governance by Infrastructure Short Position Papers

ISPs collectively operate a private information infrastructure
to manage routing data for the transport of TCP/IP packets
according to their policies.

The Internet Domain Name System (DNS) (Mockapetris,
1983) provides name resolution in the Internet to programs that
need to access remote resources. For example, any program
that sends a request to a web server must have resolved the
domain name of the URL before connecting to the server. The
DNS is a software-based platform composed of a decentralized
hierarchy of servers that resolve names in specific areas of the
Internet, either based on local knowledge (exact or cached)
or by forwarding unresolved requests down the hierarchy, and
responses back up. The DNS-PF is decentralized and some of its
nodes are controlled, in particular, by ISPs (using other policies
than for transport). Control and ownership of the DNS are
decentralized. The DNS support function can be altered under
the pressure of states and attacked in many ways (Musiani, et
al. 2016; in particular, Musiani, 2016; and Merrill, 2016).

Finally, blockchains (BCs) are software-based platforms that
provide the support functionality of ordered consensus
on block contents. Any module may submit requests to
a BC for the execution of code (smart contracts) over APIs
that it controls locally. But only blockchain- nodes enforce
consensus. Blockchains are in general non- proprietary and
control is decentralized. A blockchain might be more or less
open (from fully open, e.g., Bitcoin, to permissioned with
unequal voting rights, e.g., Hyperledger Fabric).

Modules that use an intermediation platform, do not interoperate
on the platform and module-owners do not interact when they
use it. The platform only supports some possible interaction.
Modules might suffer 1) from failures of the support function;
and in the case of blockchains, 2) from unexpected temporal
dependencies due to the total ordering algorithm used by the
BC nodes.

5.	 Interoperability platforms

The last type of software-based PF is an interoperability
platform. On these platforms, modules use the shared function
to interoperate directly, i.e., interoperability platforms
support direct interaction between module owners. The global
implementation of TCP/IP, seen as a software-based system,
is the most widespread interoperability platform: it underlies
the Internet information infrastructure, and in fact any
digital II. The platform is a distributed peer-to-peer (P-2-P)
system. Every IP-host can communicate with any other over
TCP/IP, provided both agree (and the underlying support
transport function does not fail). Each IP-host owner is free
of its associations and can connect its IS to the platform, or
disconnect it, at any time. The IS fully controls the execution
of the codebase it uses and the APIs that give access to this
codebase.

TCP/IP lies in the intermediary transport layer of the Internet,
above the internet layer and below the application layer. The
latter contains many software- based platforms, including
interoperability platforms such as FTP or HTTP. Even
though these names designate protocols, the codebase that
implements these protocols, the distributed system where this
codebase is executed, together with the APIs through which
modules access their local version of the codebase, compose
software- based platforms whose core shared functionalities
enable modules to interoperate directly.

In the examples above, the organizations that own and
operate an IS using the platform are peers. Their roles and
responsibilities with regards to the platform and its usage
are assumed in all freedom and perfectly symmetrical. It is
important to place these considerations at the organizational
level, because when the core shared functionality is eventually
used (e.g., for a file transfer via the FTP platform), the technical
relationship between modules might be client-server. The role
of being slave or master, and the choice of the master, resp.
slaves to answer to, is however a choice of the peer, and it can
be played in the opposite direction anytime. The P-2-P concept
generally supposes that peers share a common resource, e.g.,
files, computing power, bandwidth, etc. (Méadel and Musiani,
2015; Musiani, ibid). On interoperability platforms, the core
shared functionality is the common resource, not the data that
transits (packets, files or contents) when peer-ISs interoperate.

Based on fieldwork conducted in 2018 and 2019, Stiefel
and Sandoz (2021) study the case of an interoperability
platform that was a digital commons (Stalder, 2010). The
shared functionality was P-2-P data transmission between
organisations that operated a database in Swiss agriculture,
provided that it was authorized by the farmer who owned
the data. The codebase of the platform was opensource. It
implemented a set of services packaged into a generic node.
Each peer (organization) operated and controlled its own node
and the APIs through which it invoked the functionality. The
function required specific mechanisms in order to guarantee
asynchrony (each party remained temporally autonomous) and
support autonomy, liberty of association, and trustworthiness
of peers. The capacity to exchange data was the common
resource of the platform, not the farmers’ data. Its usage
was defined by principles, rules, and requirements from the
environment. Modules that used the platform depended on its
mechanisms (i.e., on its codebase) and module-owners on its
rules of usage, but no interorganizational dependencies were
induced by the platform (Stiefel and Sandoz, 2022).
A second case that we studied was individual traceability
of animals in livestock. The traceability of an object is the
capability to establish a chain of events that guarantees some
property of a given object at some instant (e.g., some animal
has never received AB treatment). This is done by proving that
the property is stable when any event of the chain occurs and
between any pair of events; and by following the given chain
back up to some point where the property was known to be true.
Different actors might be interested in different properties of the
same objects and use different events to establish the properties
they are interested in. Different chains of events might not go
through the same locations, and not reach common destinations
in the same order. Because events first occur and are then
reported (after occurrence), total ordering (e.g., using a BC)
scales up poorly. We believe that an interoperability platform
designed to realize traceability by implementing transmission
of events and delivery at destination in causal order (Schiper
et al., 1989), is feasible and would have the capacity to scale
up well.

Workshop Governance by Infrastructure Short Position Papers

6.	 Dependencies between platforms, scaling up

To summarize, the examples we gave of different types of
platforms show that:

-	 concerning dependencies imposed on modules/owners 1)
service platforms impose dependencies on module- owners
in favour of platform-owners; 2) an intermediation platform
might induce dependencies of modules on the platform (e.g.,
through the failure of the support function), and possibly
indirect dependencies between modules (i.e., temporal
dependencies due to the total ordering of blocks by a BC).
Inter-module dependencies might be relayed to module-
owners; and 3) inter-operability platforms that are designed
P-2-P with liberty of association between peers seem to not
by themselves impose dependencies to module-owners.

-	 concerning dependencies of platforms 1) interoperability
platforms (TCP/IP, HTTP) can depend on intermediation
platforms (e.g., transport in the Internet, resp. DNS).
Intermediation platforms like the two latter might be
locally controlled, e.g., by ISPs, and suffer from political
constraints; and 2) service or intermediation platforms can
depend on interoperability platforms (e.g., Facebook and
blockchains depend on TCP/IP).

-	 concerning the ability to technically scale up (scalability)
1) the scalability of a service platform depends on the
interest and the capacity of the platform owner to sustain
demand and the growth of its SIS; 2) the scalability of an
intermediation platform depends on its organization and
on the support function (DNS was built to scale, whereas
blockchains in general have problems to scale); 3) the
scalability of an interoperability platform seems to depend
more on the complexity of the meta-data necessary to
manage the shared functionality, rather than directly on the
functionality itself (e.g., TCP/IP).

7.	 Back to the analogical world

In the analogical world, platforms, though not software based,
have long emerged to support interaction by providing
shared functionalities to actors. 1) Language (for direct oral or
written communication), 2) currencies,
3) fax (for legal document exchange), 4) dictionaries (to
support actors using different languages), 5) stock exchanges
(for trade), and 6) deep sea harbours (for transport), are
examples of analogical platforms (that we assimilate resp. to
interoperability (1-3), intermediation (4), and service (5, 6)
platforms).

Users evolve and platforms adapt. In the 1970s sweets
producers in the Netherlands realized that they all supplied
the same retailers. By pooling their logistics i.e., to globally
optimize storage and transport, they managed to save costs
without giving up competition in the market. This gave way
to a business practice called co-opetition (Bengtsson and
Kock, 2000), which stands short for (horizontal) collaboration
between competitors. It has since then spread to many
business sectors. The first experiment consisted in organizing
a new platform with a core functionality shared between
competitors, i.e., storage, inventory, and re-distribution to
retail according to local needs for any brand. The platform was
owned collectively and there was no competition in relation
to its usage. Each producer had previously used a service
provider, who supplied storage, inventory, and transport
depending on what products of that brand retailers needed

locally. Each service provider had operated out of its own
private logistics platform. After co-opetition was introduced,
they had to reorganize their ecosystems in order to survive
with a reduced total income. Someone down the line was
bound to be unhappy. Producers on their side didn’t change
how they organized production and competed in the market.
Getting an advantage (reduced costs) out of change, without
having to change the core business, is a strong incentive to
switch platforms.

In the case of sector-wide authorized data transmission
(authors’ first case study), organisations were threatened by
the emergence of a central service platform for smart- farming.
They launched a counterproject that ended up building a
digital interoperability platform for co-opetition (Sandoz,
2020). Both projects finally failed to scale up across the
sector, because once organizations had reached their political
objective of preventing the service platform to prevail, they
dropped their shared concern for data management and fell
back into doing business as usual.

If the interoperability platform had been widely adopted by
organizations, a new question might have arisen: would their
IT-service providers pool to co-opete in order to supply the new
tools needed by their customers, or would they have resisted
change, relying on their strategic position (Saadatmand et al.
2019)?

More importantly, the interoperability platform for authorized
data transmission might have provided a mechanism to
articulate the service platforms of the peer organizations into
a broader, sector-wide, information infrastructure.

Traceability, on the other hand, is a form of collective control
implemented by producers, transformers and distributors,
regulators and consumers, etc. in value- or supply-chains.
Shared concerns and requirements are collaboratively
implemented in order to guarantee certain properties of
objects.

The initial implementation of the animal traceability platform
we studied (Stiefel and Sandoz, 2022) relied on a centrally
positioned SIS that provided the consistent ordering of events
and their transmission between event- producers and event-
consumers. This position induced dependencies of client ISs
towards the SIS. However, in large value chains like food
production, most actors use only a small subset of all the
types of events that are traced, and encounter only a small
number of the events of those types that eventually occur.
Technologies, modes of production, regulation, and products
change constantly. The actors who are directly concerned by
a change adapt quickly, whereas the others don’t even see it.
Providing traceability without imposing to the actors concerned
any dependency towards actors that are not concerned, makes
sense. Looking deeper into requirements for traceability leads
to relax technical constraints like centralization that are not
anchored in the analogical reality. It becomes then possible
to design an interoperability platform (or a loosely coupled
collection of interoperability platforms) for traceability that can
scale up independently of the sector’s overall complexity.

If a core shared functionality could scale up (e.g., in the
number of peers for authorized data transmission, or in
the number of participants and in the types of events for
traceability), then an interoperability platform might end

Workshop Governance by Infrastructure Short Position Papers

up spilling over into a neighbouring sector (e.g., healthcare).
The platform could then possibly become an articulation
between the information infrastructures of different business
sectors. Eventually, this is what the TCP/IP and HTTP
platforms did when their basic core functionalities spilled out
of their original business sector which was academia.

8.	 Conclusion: untying the knot

In this paper, we argue that the centralized, proprietary software-
based platform model is only one type among several. Using
the central component of the definition of a platform (Tiwana
et al., ibid), i.e., the core shared functionality, we identify two
other generic types of platforms, that we call intermediation and
interoperability. We give examples of these alternative forms
(e.g., DNS, resp. TCP/IP) to the service platform generally
understood under this definition (e.g., Facebook, or large
organizational platforms as in Hanseth and Bygstad, ibid). If
service platforms seem to be exclusively built in the application
layer of the Internet, intermediation and interoperability
platforms populate all of its layers (internet, transport, and
application).

The paper raises a series of questions that we enumerate in
conclusion, as avenues for further work. First, there seems to
be a relationship between how users of the shared functionality
at the core of a platform interact, and its preferred architecture-
governance (Hanseth and Rodon, 2020) and ownership
configurations. Service platforms (no direct interaction) are by
definition centralized- proprietary; intermediation platforms
(used in support of interaction) are by default decentralized
and non-, or possibly shared-proprietary; interoperability
platforms (direct interaction) are by construction fully
distributed and non-proprietary. It would be interesting to
further investigate this relationship by putting it to the test of
other case studies: if a relationship exists, of what order is
it (historical contingency vs. practical necessity or strong
compatibility)? Is it possible to change a platform’s type all the
while keeping its core shared functionality?

Second, we argue that interoperability platforms could be a
basis for more open sectoral infrastructures which would not
be the mere multiplication of proprietary platforms under
the control of their respective private and/or public actors.
This is in line with the new commons developed by the works
of (Benkler, 2014; Boyle, 2002; and Lessig, 1998). This
hypothesis also deserves to be tested by case studies. Are all
cases of sectoral IIs, based on traditional service platforms?
And, if not, do intermediation platforms also play a role?

Third, we have shown that platforms of different types can have
dependency relationships between them. For example, some
service or intermediation platforms depend on interoperability
platforms and interoperability platforms might depend
on intermediation platforms. The question remains: what
implications can be drawn from this observation? Here
again, empirical studies, at the scale of interactions between
platforms types, could shed light on this point.

Fourth, we opened a breach with our story of Dutch sweets
producers in the 1970s, without going much further. It would be
interesting here, however, to see how far the analogy between
analogical and digital platforms might take us (in the line with
the work done by Schafer et al., 2021). But the effort might
require distancing ourselves from the concept of platform
and instead finding cases of platforms with which to work

the analogy. Similar to what Nicolas Verdier (2007) did in the
case of the horse post office, showing how technical network
thinking was already at work in the 18th century, before the very
concept of network appeared in the 19th.

Fifth, but not last, we sketched a socio-technical imaginary of
high-level interoperability platforms (authorized transmission,
traceability) that could spill over between neighbouring
sectors and possibly become an articulation between their
information infrastructures. Questions: is this imaginary
possible for interoperability platforms only, or does it apply, for
example, to traditional service platforms? In any case, would a
platform- articulated cross-sectoral infrastructure be scalable
and sustainable? And finally, is this only an imaginary, or are
there cases of cross-sectoral information infrastructures that
we could study?

The call is out.

References

Bengtsson, M., and Kock, S. (2000) “Coopetition” in Business
Networks—to Cooperate and Compete Simultaneously,
Industrial Marketing Management, 29(5), 411–426.

Benkler, Y. (2014) Between Spanish huertas and the open road: a tale
of two commons?. Governing knowledge commons, 69.

Boyle, J. (2002) Fencing off ideas: Enclosure & the disappearance of
the public domain. Daedalus, 131(2), 13- 25.

Bucher, T. (2013) Objects of intense feeling: The case of the Twitter
API. Computational Culture, Vol. 3.

DeNardis, L. (2009) Protocol politics: The globalization of Internet
governance. Mit Press.

DeNardis, L. (2012) Hidden levers of Internet control: An
infrastructure-based theory of Internet governance. Information,
Communication & Society, 15(5), 720-738.

Hanseth, O. and Bygstad, B. (2021) Managing IT in Large Organizations
as Platform-Oriented Infrastructures. A Norwegian E-Health
Case, Working Papers Series, Nielsen, P. (Ed.) Information
Systems Group, Department of Informatics, University of Oslo.

Hanseth, O. and Modol, J. R. (2021) The dynamics of architecture-
governance configurations: an assemblage theory approach.
Journal of the Association for Information Systems, 22(1), 5.

Hanseth, O., Monteiro, E., and Hatling, M. (1996) Developing
information infrastructure: The tension between standardization
and flexibility. Science, Technology, & Human Values, 21(4),
407-426.

Helmond, A. (2015) The platformization of the web: Making web data
platform ready. Social media+ society, 1(2), 2056305115603080.

Kumar, V. (2018) Book Review: Platform Ecosystems. Aligning
Architecture,	 Governance	 and	 S t r a t e g y ,
Journal of Information Technology Case and Application
Research, 20(2).

Lessig, L. (1998) Keynote address: commons and code.
Fordham Intell. Prop. Media & Ent. LJ, 9, 405.

Scott, S. V. and Zachariadis, M. (2012) Origins and development of
SWIFT, 1973–2009 Business History, 54(3), 462-482.

Méadel, C. and Musiani, F. (2015) Abécédaire des architectures
distribuées. Presses des Mines.

Merrill, K. (2016) Domains of Control: Governance of and by the
Domain Name System. In The turn to infrastructure in Internet
governance (pp. 89-106). New York: Palgrave Macmillan.

Workshop Governance by Infrastructure Short Position Papers

Mock�apetris, P. (1983) Domain names: Concepts and Facilities (RFC
882) and Implementation and specification (RFC 883), 15 Sept.
2022 https://www.rfc-editor.org/rfc/rfc882 and https://www.
rfc-editor.org/rfc/rfc883).

�Musiani, F., Cogburn, D. L., DeNardis, L., and Levinson, N. S. (Eds.).
(2016) The turn to infrastructure in Internet governance. New
York: Palgrave Macmillan.

Musiani, F. (2016) Alternative Technologies as Alternative
Institutions: The Case of the Domain Name System. In The turn
to infrastructure in Internet governance (pp. 73-86). New York:
Palgrave Macmillan.

Nielsen, P. and Aanestad, M. (2005) Infrastructuralization as design
strategy: A case study of a content service platform for mobile
phones in Norway. In Proceedings of the 28th Information
Systems Research Seminar in Scandinavia. Kristiansand.

Nielsen, P. and Sæbø, J. I., (2016) Three strategies for functional
architecting: cases from the health systems of developing
countries. Information Technology for Development, 22(1), 134-
151.

Poppe, O., Sæbø, J., and Nielsen, P. (2014) Architecting in Large
and Complex Information Infrastructures. In Scandinavian
Conference on Information Systems, pp. 90-104. Springer.

Puschmann, C. and Burgess, J. (2013) The politics of Twitter data.
Ross, J. W., Weill, P. D., and Robertson, D. C. (2006) Enterprise

Architecture as Strategy. Creating a Foundation for Business
Execution. Harvard Business School Press.

Saadatmand, F., Lindgren, R., and Schultze, U. (2019) Configurations
of platform organizations: Implications for complementor
engagement. Research Policy, 48(8).

Sæbø, J. I. and Poppe, O., (2015) Federated Architecting in West
Africa. In Proceedings of the 13th International Conference
on Social Implications of Computers in Developing Countries,
Negombo, Sri Lanka.

Sandoz�, A. (2020) Inter-operating Co-opeting Entities. A Peer- to-
Peer Approach to Cooperation between Competitors http://
www.thinkmind.org/index.php?view=article&articl eid=
bustech_2020_1_20_90020.

Schafer, V., Balbi, G., Ribeiro, N., and Schwarzenegger, C. (2021)
Digital Roots: Historicizing Media and Communication
Concepts of the Digital Age. De Gruyter.

Schiper, A., Eggli, J., and Sandoz, A. (1989) A New Algorithm
to Implement Causal Ordering. In International Workshop
on Distributed Algorithms (pp. 219-232). Springer, Berlin,
Heidelberg.

Stalder, F. (2010) Digital commons. The Human Economy: A
Citizsen’s Guide.

Stiefel, L. (in press) Les données du problème. Une plateforme
numérique inadaptée à l’agriculture suisse. Etudes rurales.

Stiefel L. and Sandoz A. (2021) Une plateforme en pair-à-pair pour
l’échange de données : l’émergence d’un commun numérique,
Terminal, (130).

Stiefel, L. and Sandoz, A. (2022) Alternatives à la concentration :
une analyse des relations de dépendance sur les plateformes
numériques. In Proceedings of the 31st AIMS Conference,
Annecy.

Tiwana, A., Konsynski, B., and Bush, A. (2010) Platform Evolution:
Coevolution of Platform Architecture, Governance, and
Environmental Dynamics (Research Commentary),
Information Systems Research 21(4), 675–
687.

Tiwana, A. (2014) Platform Ecosystems. Aligning Architecture,
Governance and Strategy. Newnes.

Verdier, N. (2007) Le réseau technique est-il un impensé du XVIIIe
siècle: le cas de la poste aux chevaux. Flux, 68(2), 7-21.

https://www.rfc-editor.org/rfc/rfc882
https://www.rfc-editor.org/rfc/rfc883
https://www.rfc-editor.org/rfc/rfc883
http://www.thinkmind.org/index.php?view=article&articl
http://www.thinkmind.org/index.php?view=article&articl

