Probabilistic three-dimensional time-lapse inversion of magnetotelluric data: Application to an enhanced geothermal system

M. Rosas-Carbajal1,2, N. Linde1, J. Peacock3, F. I. Zyserman4, T. Kalscheuer5 and S. Thiel6

1 Applied and Environmental Geophysics Group, University of Lausanne, Switzerland
2 Presently at Institut de Physique du Globe de Paris, France
3 US Geological Survey, Menlo Park, USA
4 CONICET - Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Argentina
5 Formerly at Institute of Geophysics, ETH Zurich, Switzerland; presently at Department of Earth Sciences, Uppsala University, Sweden
6 Formerly at University of Adelaide, South Australia; presently at Geological Survey of South Australia, Australia

\textbf{SUMMARY}

Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas, and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a three-dimensional Markov chain Monte Carlo (MCMC) inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parameterization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The center of mass and
spread of the plume are well retrieved. We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a three-dimensional deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north-south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.

Key words: Inverse theory – Non-linear electromagnetics – Probability distributions – Hydrogeophysics

1 INTRODUCTION

Monitoring of subsurface mass transfer is critical to maximize oil, gas, and geothermal production, to improve groundwater remediation and to manage environmental risk. In particular, enhanced geothermal systems, which constitute an attractive and increasingly studied renewable energy source (Muñoz 2014), require information on the flow paths taken by the injected water in order to subsequently recover it and use it for energy production.

Geophysical methods are suitable to characterize subsurface processes, both because of their non-invasive nature and their capacity to provide spatially extensive data coverage (e.g., Hubbard & Rubin 2005). Various geophysical techniques have been applied in time-lapse studies that aim at inferring temporal changes in the near subsurface (e.g., LaBrecque & Yang 2001; Day-Lewis et al. 2002; Ajo-Franklin et al. 2007; Miller et al. 2008; Doetsch et al. 2010; Rosas Carbajal et al. 2012). Tailored inverse formulations that reduce noise and model parameterizations that focus on temporal changes make time-lapse inversions more suitable than simple differencing of models obtained from separate inversions. LaBrecque & Yang (2001) proposed a time-lapse difference inversion, and applied it to three-dimensional electrical resistivity tomography (ERT) data. A similar strategy was applied by Ajo-Franklin et al. (2007) to better resolve subsurface variations related to CO₂ injection with crosshole seismics, and by Doetsch et al. (2010) combined with joint inversion of crosshole ERT and ground-penetrating radar (GPR). More recently, Rosas Carbajal et al. (2012) applied this type of inversion approach to time-lapse electromagnetic (EM) data, specifically radio (RMT) and audio (AMT)
magnetotellurics. Inspired by the work of Falgàs et al. (2009), who monitored saltwater intrusion in a coastal aquifer, Rosas Carbajal et al. (2012) demonstrated significant improvements in the resulting models by incorporating information about the expected temporal changes in the subsurface and by removing systematic errors.

For deeper targets, for example in volcanic and geothermal studies, microseismic and EM methods represent prominent monitoring tools. The former consists in locating natural (e.g., Brenguier et al. 2007, 2008) or induced (e.g., House 1987) seismic sources associated with fracture openings caused by hydraulic pressure variation. The latter are sensitive to changes in electrical resistivity, which can be related to fluid redistributions and changes in fracture connectivity. Feasibility studies that focused on marine (e.g., Lien & Mannseth 2008; Orange et al. 2009) and on-land (Wirianto et al. 2010) controlled source electromagnetics (CSEM) showed that monitoring is feasible, but complicated by the diffusive character of the EM fields and the large depths of investigation. On-land CSEM has some disadvantages with respect to marine applications, for example, the need for large source-receiver distances, with kilometer-long sources that need to be accurately modeled (Constable 2010; Streich & Becken 2011). Recent advances (e.g., Grayver et al. 2014) suggest that monitoring of resistive targets will soon become feasible. Bedrosian et al. (2004) performed one of the first magnetotelluric (MT) studies aimed at monitoring a fluid injection experiment. They conducted two-dimensional inversions to map the subsurface resistivity changes following the injection, but no changes could be detected due to the low signal-to-noise-ratio. Kappler et al. (2010) studied MT data variations over a period of 4 years at the San Andreas Fault and showed that no significant EM signal precursors occurred prior to the most significant earthquake event during this period. Aizawa et al. (2011) conducted a one-year monitoring study at a volcano in Japan using two MT stations. The data indicate large temporal changes, and the two-dimensional inversion models suggested that the resistivity changes occurred at the sea level. Peacock et al. (2012, 2013) presented MT monitoring results of an injection experiment in an enhanced geothermal system at Paralana, Australia. In this experiment, 3100 m3 of saline water, together with acids, were injected at 3.7 km depth to stimulate the opening of new fractures and enable remote monitoring of the plume. The authors observed changes above the ambient noise in both apparent resistivity and phase at \sim50 MT stations, with maximum changes occurring in the north-northeast direction. No attempts were made to invert these data.

The works cited above present deterministic approaches to the inverse problem, where one single subsurface model that explains the data is sought by iterative linearization and regularization, and no formal estimates of model parameter uncertainty are made. Probabilistic inversion (e.g., Mosegaard & Tarantola 1995; Tarantola 2005) offers an alternative approach by estimating the posterior probability density function (pdf) of the model parameters, which contains detailed information about parameter
uncertainty. To numerically estimate the posterior distributions, Markov chain Monte Carlo (MCMC) simulation methods are often used. These methods are able to (e.g., Sambridge & Mosegaard 2002, and references therein) (1) correctly treat non-linear relationships between models and data, (2) successfully converge to the posterior pdf of the model parameters, and thus, (3) adequately characterize parameter uncertainty. Pioneering EM applications of probabilistic inversions were performed by Tarits et al. (1994), Grandis et al. (1999, 2002), Hou et al. (2006), Khan et al. (2006), and Chen et al. (2007). The computational costs of the algorithms, which require many evaluations of the forward response, have only recently been overcome to explore high dimensional problems: Chen et al. (2012) presented a MCMC algorithm to invert two-dimensional MT data based on a fixed number of layers, and Rosas-Carbajal et al. (2014) presented the first two-dimensional pixel-based MCMC inversion of plane-wave EM data. Probabilistic inversions have been applied to time-lapse geophysical data (e.g., Ramirez et al. 2005; Laloy et al. 2012; Lochbühler et al. 2014). Of particular interest in this study is the work by Laloy et al. (2012), who inverted synthetic crosshole GPR travel time data to characterize an injected water plume in partially-saturated media. The authors proposed a model parameterization based on the Legendre moments of the injected plume. This reduces the number of parameters to estimate, and thus the computation time, and constrains the solutions to those that honor the total volume of water injected.

In this paper, we address the problem of estimating the mass transfer following a deep injection with time-lapse MT data. To do so, we present the first deterministic and probabilistic three-dimensional time-lapse inversions of MT data. We parameterize the probabilistic inversion using a Legendre moment decomposition similar to Laloy et al. (2012), but under saturated conditions and for a saline fluid, and provide uncertainty estimates of the plume’s center of mass and spread. After a numerical test, we focus on the plume resulting from the Paralana injection experiment (Peacock et al. 2012), and compare the MCMC inversion results to those obtained by time-lapse deterministic inversion.

2 METHODOLOGY

2.1 Probabilistic inversion

We use a probabilistic framework to estimate the posterior pdf of a set of model parameters that describe a tracer plume at a given time-lapse \(t \). Let this system be described by a vector of \(B \) model parameters, \(\mathbf{b}_t = (b_{1,t}, b_{2,t}, \ldots, b_{B,t}) \) and a set of \(N \) observations, \(\mathbf{d}_t = (d_{1,t}, d_{2,t}, \ldots, d_{N,t}) \), which are related to \(\mathbf{b}_t \) via a set of equations,

\[
\mathbf{d}_t = g(\mathbf{b}_t) + \mathbf{e}_{t} + \mathbf{e}_{\text{sys}},
\]
Monitoring of fluid injection in a geothermal system

where \(g(\mathbf{b}_t) \) is the simulated MT forward response, \(\mathbf{e}_{t,i} \) is a random observational error that is varying in time, and \(\mathbf{e}_{\text{sys}} \) is a systematic contribution that is present at all times. The latter may include static shifts, errors in sensor calibrations, and/or geometrical errors (e.g., station positioning). The posterior pdf \(p(\mathbf{b}_t|\mathbf{d}_t) \) of the model parameters conditional on the data is found by applying Bayes theorem (e.g., Tarantola & Valette 1982). In the case of a fixed model parameterization, this results in the following proportionality equality

\[
p(\mathbf{b}_t|\mathbf{d}_t) \propto p(\mathbf{b}_t)L(\mathbf{b}_t).
\]

The prior probability, \(p(\mathbf{b}_t) \), represents the information known about the subsurface before collecting the actual data, whereas the likelihood function, \(L(\mathbf{b}_t) \), describes the likelihood that a given model is responsible for the observed data. The larger the likelihood, the closer the model response is to the experimental data. Typically, the assumption is made that the errors are uncorrelated and follow a normal distribution with zero mean. Then the log-likelihood function, that is, the logarithm of the likelihood function \(l(\mathbf{b}_t) \), is proportional to \(-\frac{1}{2} \varphi_{l_2} \), where

\[
\varphi_{l_2} = \sum_{i=1}^{N} \left(\frac{g_i(\mathbf{b}_t) - d_{i,t}}{\sigma_{i,t}} \right)^2,
\]

represents the data misfit, \(\sigma_{i,t} \) denotes the standard deviation of the \(i \)-th error at time \(t \), and the subscript \(l_2 \) indicates the \(l_2 \)-norm. Under these assumptions, \(\varphi_{l_2} \) is expected to follow a chi-squared distribution with expected value \(N \). A common representation of the data misfit is the root mean square (RMS) misfit:

\[
\text{RMS} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{g_i(\mathbf{b}_t) - d_{i,t}}{\sigma_{i,t}} \right)^2},
\]

which attains the value of RMS = 1 when \(\varphi_{l_2} = N \).

When the data errors contain significant outliers, it is often better to use an exponential distribution, which is equivalent to using an \(l_1 \)-norm instead of an \(l_2 \)-norm to describe the data misfit (Menke 1989). The \(l_1 \)-norm is more robust and often represents a more realistic description of data errors (e.g., Claerbout & Muir 1973; Egbert & Booker 1986; Chave & Thomson 1989; Farquharson & Oldenburg 1998; Tarantola 2005). For uncorrelated errors, the corresponding log-likelihood function is proportional to \(-\varphi_{l_1} \), where the data misfit is now defined as

\[
\varphi_{l_1} = \sum_{i=1}^{N} \left| \frac{g_i(\mathbf{b}_t) - d_{i,t}}{\sigma_{i,t}} \right|,
\]

and \(\sigma_{i,t} \) represents the mean deviation of the \(i \)-th error at time \(t \) (e.g., Tarantola 2005).

To numerically implement the probabilistic inversion, we use the DREAM\(_{ZS} \) algorithm (Laloy & Vrugt 2012). This is an adaptive MCMC algorithm (e.g., Roberts & Rosenthal 2007) which, in order
to render the sampling more efficient, runs multiple chains in parallel and implements sampling from an archive of past states. Jumps in each chain are obtained by computing the difference between one or multiple pairs of chain states, drawn from an external sample of points that summarizes the search history of all the individual chains. A proposed model $b_{t,\text{new}}$ is accepted, in the case of a uniform prior, with probability (e.g., Mosegaard & Tarantola 1995):

$$P_{\text{accept}} = \min\{1, \exp[l(b_{t,\text{new}}) - l(b_{t,\text{old}})]\}.$$

where $b_{t,\text{old}}$ is the chain’s last accepted model. If the proposal is accepted then the chain moves to $b_{t,\text{new}}$, otherwise the chain remains at its old location. After a burn-in period, the sampled model realizations are distributed according to the underlying posterior distribution. To assess convergence, the Gelman-Rubin statistic (Gelman & Rubin 1992) is periodically computed using the last 50% of the chains’ samples. Convergence to a limiting distribution is declared if the Gelman-Rubin statistic is less than 1.2 for all model parameters.

A variation of the DREAM(ZS) algorithm is the so-called MT-DREAM(ZS) algorithm (Laloy & Vrugt 2012), which has recently been applied to several types of geophysical data such as GPR, RMT and ERT (Laloy et al. 2012; Linde & Vrugt 2013; Rosas-Carbajal et al. 2014; Lochbühler et al. 2014). This multiple-try sampling procedure, designed for high parameter dimensions (i.e., more than ~ 30 model parameters), proposes several model variations per chain and per realization, and thus requires many forward computations running in parallel to be efficient. In the present contribution we use DREAM(ZS) as we estimate at maximum 14 parameters. We run the different chains in parallel, and use parallelized forward solvers.

2.2 Time-lapse strategy

Rosas Carbajal et al. (2012) proposed a time-lapse inversion to derive temporal changes from an initial two-dimensional resistivity model using time-lapse RMT and AMT data. The strategy is based on data differencing (LaBrecque & Yang 2001) to remove systematic errors (see Eq. 1). Although the examples were limited to the audio and radio frequency range, this strategy is directly applicable to other types of geophysical data, in particular MT data.

First, a base resistivity model is obtained by means of a deterministic inversion using the data acquired at a reference time ($t = 0$) before any perturbation is made to the system. The resulting data residuals, $\delta_0 = d_t - g(b_0) = e_{\text{sys}} + e_{t,0}$, are removed from the data acquired at all subsequent times:

$$\tilde{d}_t = d_t - \delta_0 = g(b_t) + e_{t,t} - e_{t,0}.$$

The corrected data sets \tilde{d}_t used in the inversion at time-lapse t will be contaminated with less error.
provided that \(\sigma_{sys} > \sqrt{\sigma_{r,0}^2 + \sigma_{r,t}^2} \), where \(\sigma_{sys} \) and \(\sigma_r \) are the standard deviations of the systematic and random errors, respectively.

2.3 Tracer plume parameterization

Our aim is to estimate the spatial distribution of the injected fluid in the subsurface. We describe this distribution in a uniformly discretized three-dimensional domain and present it in terms of the volume of fluid originating from injection over the volume of the voxel:

\[
\theta_i = \frac{\left[m^3 \right] / \left[m^3 \right]}{\left(n_x \times n_y \times n_z \right)},
\]

where \(n_x, n_y, \) and \(n_z \) are the number of voxels in the \(x-, y- \), and \(z- \) directions, respectively. Thus, \(\theta_i \) is dimensionless and varies between 0 (no injected fluid) and a maximum value \(\theta_{max} \). Plumes that occupy large volumes will, for the same total injected volume, have smaller \(\theta_{max} \) and vice versa, such that

\[
\sum_{i=1}^{n_x \times n_y \times n_z} \theta_i \Delta x \Delta y \Delta z = W_{tot},
\]

where \(\Delta x, \Delta y, \) and \(\Delta z \) are the voxel dimensions and \(W_{tot} \) is the total volume of fluid injected.

The three-dimensional space described by \(\Theta \) is located in a sub-region of the MT forward mesh and is more finely discretized (see Fig. 1) to ensure the precision of the parameterization described in this section. We hereafter refer to this domain as the “plume mesh”. A set of coordinates \(\beta = (x_{start}, x_{end}, y_{start}, y_{end}, z_{start}, z_{end}) \) describes the maximum extension of the sub-region of the plume mesh where \(\theta_i \neq 0 \).

To reduce the number of parameters to invert for in the MCMC inversion, and to include \(W_{tot} \) as a fixed constraint on the proposed plume geometries, we use a model parameterization similar to the one proposed by Laloy et al. (2012). This parameterization is based on a reduced Legendre moment decomposition of the plume. The Legendre polynomials are orthogonal if defined in a unit square domain, and thus the Legendre moments are uncorrelated with each other (Teague 1980).

The Legendre moments \(\lambda \) of \(\Theta \) are given by

\[
\lambda_{pqu} = \frac{(2p + 1)(2q + 1)(2u + 1)}{8} \times \sum_{i=1}^{n_x \times n_y \times n_z} P_p(x_i')P_q(y_i')P_u(z_i')\theta_i \Delta x' \Delta y' \Delta z',
\]

where \(x', y', \) and \(z' \) are the transformed model coordinates on a unit square grid \([-1 \leq x', y', z' \leq 1]\), \(\Delta x', \Delta y' \) and \(\Delta z' \) represent the voxel dimensions of the unit square, and \(P_p(x_i') \) is the Legendre polynomial of order \(p \) evaluated by numerical integration over cell \(i \) in the \(x \)-direction. In matrix notation, equation (9) is described by

\[
\lambda = P\Theta,
\]

where \(P \) contains the Legendre polynomial products on the three-dimensional unit grid. Then, \(\Theta \) can
be reconstructed from its Legendre moments up to a given resolution defined by a truncated series expansion (Teague 1980),

$$\theta_{\text{rec}}^i = \sum_{p=0}^{O_{\text{max}}} \sum_{q=0}^{O_{\text{max}}} \sum_{u=0}^{O_{\text{max}}} \lambda_{pqu} P_p(x'_i) P_q(y'_i) P_u(z'_i),$$

where the superscript \(\text{rec}\) stands for “reconstructed” and \(O_{\text{max}}\) is the maximum order of moments used for the reconstruction. Writing Eq. 11 in matrix notation gives

$$\theta_{\text{rec}} = \Gamma \lambda,$$

where \(\Gamma\) contains the polynomial product coefficients of the orthogonal moments and has dimension \((nx \times ny \times nz) \times n_{pqu}\), with \(n_{pqu} = [(\max(p) + 1) \times (\max(q) + 1) \times (\max(u) + 1)]\).

The parameterization of \(\theta\) in terms of the Legendre moments allows to propose plume models that satisfy certain desired constraints that increase the efficiency of the MCMC inversion. Here, the first imposed constraint concerns the total volume of injected water, which is directly related to the first Legendre moment:

$$\lambda_{000} = \frac{W_{\text{tot}}}{8} \frac{\Delta x' \Delta y' \Delta z'}{\Delta x \Delta y \Delta z}.$$

The remaining constraints force \(\theta\) to be zero at the boundaries of the region defined by \(\beta\). To implement these constraints, we follow Laloy et al. (2012) and construct a system of equations \(A\lambda = h\) that
contains all the constraints on \(\lambda \), and calculate the singular value decomposition (SVD) of \(A \)
\[
A = USV^T,
\]
where \(U \) and \(V \) are orthogonal matrices that contain basis vectors spanning the space of constraints imposed in \(h \), and basis vectors spanning the model space for \(\lambda \), respectively, and \(S \) is a diagonal matrix with the singular values sorted in decreasing order.

According to Laloy et al. (2012), \(S \) will typically have \(k \) significant singular values related to the preservation of injected water volume and zero-constraints for \(\theta \) on the boundaries given by \(\beta \). Then, the solutions to the inverse problem will have the general form
\[
\lambda = V_k S_k^{-1} U_k^T h + V_0 \alpha,
\]
where \(V_k, S_k \) and \(U_k \) have dimensions \(n_{pqu} \times k, k \times k \) and \(N_{\text{prior}} \times k \), respectively. The first term on the right side of Eq. 15 ensures that \(\lambda \) satisfies the desired constraints and we thus keep these values fixed. Conversely, the second term, specifically the vector \(\alpha \), can take any value while still creating models that honor the constraints. We invert for \(\alpha \) in the MCMC inversion scheme such that the inferred models honor the data.

The constraints described above do not prevent the generation of models containing negative values (i.e., \(\theta_i < 0 \)). To avoid such models we set to zero the negative values and then pre-multiply each \(\theta_i \) by a factor of \(W_{\text{tot}}/W'_{\text{tot}} \), where \(W'_{\text{tot}} \) is the total fluid volume without considering the negative values. By doing so, the new plumes conserve the injected water volume.

We evaluate the basic geometrical properties of the resulting plumes in terms of their center of mass:
\[
\begin{align*}
\mu_{xc} &= \frac{1}{W_{\text{tot}}} \sum_{i=1}^{n_x \times n_y \times n_z} \theta_i x_i \Delta x' \Delta y' \Delta z', \\
\mu_{yc} &= \frac{1}{W_{\text{tot}}} \sum_{i=1}^{n_x \times n_y \times n_z} \theta_i y_i \Delta x' \Delta y' \Delta z', \\
\mu_{zc} &= \frac{1}{W_{\text{tot}}} \sum_{i=1}^{n_x \times n_y \times n_z} \theta_i z_i \Delta x' \Delta y' \Delta z',
\end{align*}
\]
and spread:
\[
\begin{align*}
S_{xx} &= \frac{1}{W_{\text{tot}}} \left(\sum_{i=1}^{n_x \times n_y \times n_z} \theta_i x_i^2 \Delta x' \Delta y' \Delta z' \right) - \mu_{xc}^2, \\
S_{yy} &= \frac{1}{W_{\text{tot}}} \left(\sum_{i=1}^{n_x \times n_y \times n_z} \theta_i y_i^2 \Delta x' \Delta y' \Delta z' \right) - \mu_{yc}^2, \\
S_{zz} &= \frac{1}{W_{\text{tot}}} \left(\sum_{i=1}^{n_x \times n_y \times n_z} \theta_i z_i^2 \Delta x' \Delta y' \Delta z' \right) - \mu_{zc}^2.
\end{align*}
\]

2.4 Petrophysics and upscaling procedure

In this subsection, we explain how we translate \(\theta \) into corresponding bulk resistivity values, from which the MT response can be evaluated. Let the base model, that is, the three-dimensional resistivity distribution prior to the injection be described by a vector \(r_{j,0}, j = 1, ..., (NX \times NY \times NZ) \), with
NX, NY and NZ the number of resistivity blocks in the x-, y- and z-direction, respectively. The black mesh in Fig. 1 represents this discretization. We assume that the region where fluid is injected is saturated with water of constant resistivity. Taking \(\Phi_{j,t} \) to be the porosity at the scale of the resistivity discretization, and using Archie’s law (Archie 1942) gives

\[
r_{j,0} = \rho_{w,0}^{pre} \Phi_{j,0}^{m_0},
\]

where \(m_0 \) is the cementation factor prior to the injection, which we assume to be known, and \(\rho_{w,0}^{pre} \) is the resistivity of the pre-existing fluid at the confining rock temperature. We assume that the conductive fluid dominates the conduction in the fracture network (e.g., Brace et al. 1965), and surface conductivity is thus neglected.

The fluid resistivity is a function of temperature and salt concentration. We use the relationship by Sen & Goode (1992) to model this dependence:

\[
\rho_w(T, c) = \left(5.6 + 0.27T - 1.5 \times 10^{-4}T^2\right)c - \frac{2.36 + 0.0997T}{1 + 0.214c} c^{3/2} \Omega \text{m},
\]

where \(c \) is the salt concentration in mol/l and \(T \) the temperature in °C. Given a proposed spatial distribution of the tracer plume at time \(t, \theta_{i,t} \) [m³/m³], we consider the possibility of an increase in porosity due to the opening of fractures, \(\Delta \phi_{i,t} \), where \(\phi_{i,t} \) represents the porosity. The bounds for the porosity change are given by 0 \(\leq \Delta \phi_{i,t} \leq \theta_{i,t} \). To obtain the salt concentration of the fluid at time \(t \) in each model block, we sum the contributions from the salt concentration of the injected water and the salt concentration of the water prior to the injection, weighted by the volume they occupy in the available space:

\[
c_{i,t} = \frac{\theta_{i,t}}{\phi_{i,t}} \phi_{i,t,0} + \frac{\phi_{i,t,0} - \theta_{i,t}}{\phi_{i,t}} c_{pre},
\]

where \(\phi_{i,t} = \phi_{i,0} + \Delta \phi_{i,t} \).

If new fractures are opened it is likely that the cementation factor decreases (e.g., Jougnot & Revil 2010). As a first approximation, we model the changes of the cementation factor \(\Delta m_{i,t} \) to be proportional to \(\theta_{i,t} \)

\[
\Delta m_{i,t} = \frac{\theta_{i,t}}{\theta_{t,max}} \Delta m_{max},
\]

where the maximum change in the cementation factor \(\Delta m_{max} \) is one of the parameters to be estimated within the inversion. The cementation factor at time \(t \) will then be given by \(m_{i,t} = m_0 + \Delta m_{i,t} \).

To reduce the computation time of the forward responses, it is important to make the MT forward mesh as coarse as possible. At the same time, the plume mesh should be fine enough to ensure the precision of the Legendre moment decomposition. Here, we propose to upscale the finely discretized plume description and then use Archie’s law to calculate the corresponding resistivity distribution of the MT forward mesh (Fig. 1). We volume-average the porosity and the cementation factor within
Monitoring of fluid injection in a geothermal system

11

\[\Phi_{j,t} = \sum_{i \in V_j} \frac{\phi_{i,t} V_i}{V_j}, \]
\[M_{j,t} = \sum_{i \in V_j} \frac{m_{i,t} V_i}{V_j}, \]

where \(V_i \) and \(V_j \) are the volumes of the fine plume mesh and MT forward mesh blocks, respectively.

Correspondingly, the total amount of salt in each of the coarse blocks is given by:

\[S_{j,t} = \sum_{i \in V_j} c_{i,t} \phi_{i,t} V_i. \]

We use this value to calculate the upscaled fluid salt concentration \(C_{j,t} \), which in turn is used in Eq. 19 to calculate an upscaled fluid resistivity. Finally, the coarse-mesh bulk resistivity at time \(t \), \(r_{j,t} \), is calculated using Eq. 18 with the upscaled porosity, cementation factor and fluid resistivity.

The posterior pdf that we seek to sample with MCMC simulations is given by

\[p(b_t | d_t) \propto p(b_t) L(b_t), \]

where \(b_t = [\alpha, \beta, \Delta m^{\max}] \). Figure 2 summarizes our probabilistic inversion methodology and the upscaling procedure.

2.5 Resistivity-difference-based probabilistic time-lapse inversion

In cases where the petrophysical relations described above do not apply, or the information about the time-lapse experiment is limited, the classical approach is to infer the resistivity contrasts needed to explain the data changes (e.g., Falgàs et al. 2009). Here, we present such an approach while conserving the Legendre moments parameterization to reduce the number of parameters. We propose the following relation between the resistivity ratio and the spatial variations given by the Legendre moments

\[\frac{r_{1,j}}{r_{0,j}} = \begin{cases} 1, & \text{if } \Theta_j = 0, \\ \frac{\Theta_j}{\Theta_{max}} & 10^f \Phi_0^{\max}, & \text{otherwise,} \end{cases} \]

where \(f \) is a parameter to be inferred in the inversion, \(\Theta \) the upscaled \(\Theta \), and \(\Theta_{max} \) its maximum value. Taking the logarithm of Eq. 25 to consider the resistivity changes \(\log_{10} r = \log_{10}(r_1/r_0) \), it can be noted that \(f \) acts as a shift on the spatial variations imposed by \(\frac{\Theta_j}{\Theta_{max}} (\log_{10} \Phi_0) \). For a given \(\Theta \) and negative \(f \), the maximum change in resistivity with respect to the base model is be given by

\[\Delta \log_{10} r_{max} = f + \log_{10} \Phi_0. \]

2.6 Three-dimensional deterministic inversion

To obtain the base resistivity model needed for the time-lapse inversions, we resort to classical deterministic inversion. To the best of our knowledge, no attempts have been made so far to use MT data to
Figure 2. Schematic overview of the MCMC inversion framework used to invert the time-lapse MT data. The left side describes the MCMC algorithm applied to one of the parallel chains used in DREAM_{ZS}. The right side highlights the upscaling procedure used to transform the proposed tracer plume model to a resistivity model that can be used to evaluate the corresponding MT response.

obtain the posterior pdf of a three-dimensional resistivity model discretized in voxels. This is because the large number of unknowns would imply a large number of iterations to converge to the posterior distribution (c.f., Rosas-Carbajal et al. 2014), and the forward solvers still require significant CPU time to calculate the three-dimensional forward model response. We use the ModEM program (Egbert & Kelbert 2012) with non-linear conjugate gradients (e.g., Nocedal & Wright 2006) to perform the deterministic inversions.

3 THE PARALANA TEST SITE

The Paralana geothermal system is located in Paralana, South Australia. Its anomalously high heat flow, estimated at 113 mW/m² (Neumann et al. 2000), is associated with an unusual concentration of radiogenic elements within the Mount Painter Domain (Brugger et al. 2005). This domain is composed of fractured Paleoproterozoic to Mesoproterozoic gneiss, granites, and metasediments. Well testing and fracture stimulation were carried out in view of developing a power supply from the geothermal sources. In 2009, an injection well was drilled to 4000 m depth and cased to 3725 m. Several zones of over-pressured fluid were encountered between 3670 and 3864 m (Reid et al. 2011) and the measured...
temperature at the bottom of the borehole was 190 °C. Saline fluids with a resistivity of 1.5 Ωm (at ambient temperature) were encountered at 3860 m, indicating a preexisting fluid-filled fracture network (Peacock et al. 2013).

In July 2011, 3100 m3 of saline water of resistivity 0.3 Ωm, along with acids, were injected into the metasediments to stimulate the opening of new fractures. The injection was carried out at a depth of 3680 m over the course of four days. During the injection, a microseismic array measured over 11,000 events with the majority located in the northeast quadrant from the injection well (Hasting et al. 2011). The data suggest that fractures opened in a preferred northeast direction and that the total zone stimulated by the injection was approximately 900 m in the northeast-southwest direction, over a depth extent of 600 m. After the injection, the wellhead pressure remained at approximately 27.6 MPa, suggesting that the stimulated volume is connected to a naturally over-pressured zone (Reid et al. 2011).

Peacock et al. (2012) presented the results of the continuous monitoring of the 4-day injection with 11 MT stations placed around the borehole. Peacock et al. (2013) reported on time-lapse measurements of about 50 MT stations acquired just before and 1 week after the injection experiment. They observed coherent changes in the MT signals above measurement errors, indicating predominant resistivity changes in the north-northeast direction. In the following section, we use these data in an attempt to infer the spatial distribution of the injected tracer 1 week after the injection was finalized. We refer to Peacock et al. (2012) and Peacock et al. (2013) for details about the MT transfer function estimation.

4 RESULTS

4.1 Base resistivity model from three-dimensional deterministic inversion

To evaluate the changes in resistivity produced by the injected water, a base model representing the subsurface resistivity prior to the injection is needed (Rosas Carbajal et al. 2012). Figure 3 depicts the location of the 60 MT stations used to obtain this model. Besides the time-lapse stations (i.e., those repeated post-injection), additional stations were used to obtain the base model.

We first perform one-dimensional MCMC inversions to obtain layered models that are parameterized in terms of the logarithms of resistivity and layer thickness, for 2, 3, 4, and 5 layers. The one-dimensional forward solver is described by Linde & Pedersen (2004). We use the off-diagonal components of the impedance tensor of 60 stations with 12 periods ranging from 0.016 to 161 seconds and assume an error floor of 5% on the impedance elements. The results of these inversions will subsequently be used as starting models of deterministic three-dimensional inversions. Since the latter are limited to the use of an l_2-norm to measure the data misfit, we also use an l_2-norm for the
data misfit in the one-dimensional MCMC inversions. The prior pdf consists of uniform distributions in the range of -2 to 4 for \log_{10}-resistivity, and 1 to 4 for \log_{10}-thickness. Figure 4(a) shows some posterior realizations of these inversions, and Figs. 4(b) and (c) display the forward response of the posterior mean models compared to the measured apparent resistivity and phase, respectively. The uncertainty in the posterior pdf increases with the degrees of freedom, and thus, the number of layers. The improvement in data fit from the mean model with 4 layers to the mean model with 5 layers is subtle (RMS of 6.77 and 6.6, respectively). Furthermore, the inversion considering 5 layers proposes a very thin and conductive layer (located at about 10 km depth), which appears unphysical. The data presented in Figs. 4(b) and (c) shows evidence of heterogeneity or anisotropy that cannot be explained with one-dimensional isotropic models. Therefore, we use the mean model from the posterior pdf with 4 layers as the starting model of the three-dimensional deterministic inversion. The layer thicknesses and resistivities in this model from surface to depth are given by

\[
\begin{align*}
 h_1 &= 33 \text{ m}, r_1 = 70 \Omega \text{ m}, \\
 h_2 &= 700 \text{ m}, r_2 = 4 \Omega \text{ m}, \\
 h_3 &= 7780 \text{ m}, r_3 = 550 \Omega \text{ m}, \\
 h_4 &= \text{half-space}, r_4 = 20 \Omega \text{ m}.
\end{align*}
\]

We use the ModEM program (Egbert & Kelbert 2012) to perform the deterministic three-dimensional inversion. Since the diagonal components of the impedance tensor are strongly noise contaminated,
we do not use them in any of the inversions. Thus, we invert the same data as for the one-dimensional MCMC inversion, and we obtain a final RMS of 1.35 after 99 iterations.

Figure 5(a) shows vertical slices of the inverted three-dimensional model at the center of the x- and y-axes and for horizontal slices at 700 m and 3700 m (injection) depth. Most of the variability with respect to the starting model is present at shallow depths whereas only minor changes are introduced at the injection depth. According to this model, the injection takes place in a thick resistive layer. We present the comparison between the model response and the data for some stations in Fig. 5(b). Both apparent resistivity and phase curves are clearly better explained by the three-dimensional model than by the one-dimensional model (see Figs. 4b and 4c).

4.2 Time-lapse three-dimensional deterministic inversion

Figure 6 illustrates some of the changes observed with respect to the base data one week after the injection (defective stations were removed). Initial inversions using both apparent resistivity and phases lead to very erratic resistivity changes, which may be due to different galvanic distortions affecting
Following the differencing strategy presented in Section 2.2, we compute the data residuals from the base model and remove them from the post-injection data. Not all the stations could be repeated using the same holes for installing the MT stations, however, we applied the time-lapse strategy to all the stations assuming that in cases where the station locations were not exactly the same this would still remove most of the systematic modeling errors. To describe the resulting errors, we use the combination $(\sigma_{r,\text{tot}} = \sqrt{\sigma_{r,0}^2 + \sigma_{r,t}^2})$ of the errors pre- and post-injection provided by the impedance transfer function estimations. In addition, we use an error floor of 1° to ensure that data are not over-fitted. Finally, we remove 6 data points corresponding to the longer periods at 3 different stations because they present extremely large estimated errors. This results in a total of 676 data points.

Using the three-dimensional base model (Fig. 5a) as the starting model, we perform a deterministic time-lapse inversion of the data. The RMS of the starting model is 2.8 and the final RMS is 1.01, which corresponds to a data misfit of $\phi_L = 690$. Depth slices of resistivity changes at 700 and 3700 m depth are presented in Figs. 7(a) and (b). As expected, most changes indicate a decrease in the electrical resistivity. The resistivity decrease at the injection depth (Fig. 7b) is elongated in the north-south direction and is of much smaller magnitude than at 700 m depth (resistivity contrasts with respect to the base model are approximately 2 orders of magnitude smaller). The adequate data misfit and the
Figure 6. Relative apparent resistivity and absolute phase changes observed in the data one week after the injection as a function of station position, for some of the periods considered. Changes are represented by arrows, where the length is proportional to the l_2-norm of the off-diagonal impedance changes and the orientation depicts the relative weight between changes in the XY and YX components. A vertical arrow indicates changes in the XY component only. Phase changes are largest at $T = 4.10$ s (panel b). This figure is shown as a station-to-station comparison only. For phase tensor representation, see Peacock et al. (2013).

agreement between the data and the forward responses in Fig. 7 (c) suggest that this model explains most of the time-lapse data.

4.3 Synthetic time-lapse MCMC inversion

To evaluate our probabilistic three-dimensional time-lapse inversion strategy, we first consider a synthetic test case. The example is similar to the real experiment in that we assume being in possession of the same amount and type of information in terms of the station distribution, periods and data errors. In addition, we assume that the base model previously obtained (Fig. 5 a) is the real one, and insert in this model a three-dimensional plume calculated with a Legendre moment decomposition of order 3. For this, we use the same temperature and salinity constraints as the ones from the real experiment, but we assume that the mass injected is 6 orders of magnitude larger than in the real case, and that the injection is done at a depth of 2700 m, that is, 1 km more shallow than the real experiment. These drastic changes compared to the field experiment were needed to reproduce the observed magnitudes
Figure 7. (a-b) Estimated differences in log-resistivity after the injection with respect to the base model (Fig. 5a), obtained with a deterministic three-dimensional time-lapse inversion. The depth slices correspond to (a) 700 m and (b) 3700 m (injection depth). (c) Post-injection differences of data and forward response of the model shown in (a) and (b) for some of the stations measured, with respect to the data shown in Fig. 5 (b) (see station locations in Fig. 3). The resistivity changes are concentrated at shallower depths than the injection point. The model explains the time-lapse data (RMS = 1.01), but note also the low signal-to-noise-ratios in this field example.

To generate the synthetic plume we use the scheme shown on the right side of Fig. 2. We consider the porosity presented in Eq. 18 to be the crack porosity, that is, the ratio between the volume of open fractures in the rock and the total rock volume. This value is calculated using Eq. 18 with the base resistivity model and assuming $m = 2$ over the complete domain. The fluid resistivity at the borehole temperature is calculated using Eq. 19 with the values obtained from fluid samples and temperature measured at the injection borehole. Equation 18 gives, for an average resistivity value of 550 Ωm at the
Monitoring of fluid injection in a geothermal system

injection depth, an average crack porosity of 2.5%. We further assume that the space created by the rock dissolution and opening of fractures in each voxel is equal to the volume of fluid that originates from the injection in that voxel, that is, \(\Delta \phi_{i,t} = \theta_{i,t} \). This implies that the volume of pre-existing fluids does not change since the extra volume needed for the injected fluids is given by the porosity increase. This simplification maximizes the predicted resistivity changes. We adopt the same assumption in the inversion of the field data. Figure 8 (a) shows the selected geometry of the synthetic plume represented as the volume of subsurface where salinity has changed. The plume is predominantly oriented in the north-south direction and presents a bend towards the east in the northern extreme. In depth, it extends from \(\sim 1.5 \) km to \(\sim 3.3 \) km. The northeast extreme of the plume has smaller tracer water content than the north-south portion. The center of mass and spread are given in Table 1. The spread in the north-south direction is \(\sim 900 \) m larger than in the east-west direction.

Figure 8 (b) shows the corresponding resistivity changes with respect to the base model calculated as described in Section 2.4 and Fig. 2. Maximum resistivity changes of 2 orders of magnitude are found close to the injection point (\(x = y = 0 \) in Fig. 8b). In the northeastern part, the resistivity changes are \(\sim 1 \) order of magnitude. To simulate the synthetic data, we contaminate the forward response of this new resistivity model with errors following an exponential distribution with a mean deviation (see Eq. 5) equal to the standard deviation used for the deterministic inversion. We use this distribution to obtain similar errors to the ones observed in the Paralana data. The resulting synthetic data, shown for some stations in Fig. 8 (c), have deviations from the base model response that are similar to the field data (c.f. Fig. 7c).

The model parameterization used for the synthetic and field-based inversions is based on a Legendre decomposition up to order 3 (see Section 2.3). This means that, besides the 6 coordinate parameters in \(\beta \) and the maximum change in the cementation factor \(\Delta m_{\text{max}} \), 7 coefficients \(\alpha_i, i = 1, \ldots, 7 \) need to be determined by the inversion, thus yielding a total of 14 model parameters to invert for. Following Laloy et al. (2012), we assign uniform prior distributions for these coefficients in the range \([-0.1, 0.1]\), which contain the values used to create the synthetic plume. For the coordinates of the plume boundaries, we determine a maximum extension of 13.8 km in the east-west and north-south directions and of 3.3 km in depth. Then, we discretize this volume in cubes of \(75 \times 75 \times 75 \) m\(^3\) to obtain the injected water distribution \(\theta \) from the Legendre moments. Thus, \(x_{\text{start}} \) and \(y_{\text{start}} \) can take discrete (every 75 m) values between -6.9 km and 0 km; \(x_{\text{end}} \) and \(y_{\text{end}} \) can take values between 0 and 6.9 km; and \(z_{\text{start}} \) and \(z_{\text{end}} \) can vary between 0.5 and 2.15 km, and 2.15 km and 3.8 km, respectively. To translate the plume to a resistivity model, we discretize the same volume in cubes of \(300 \times 300 \times 300 \) m\(^3\). This discretization was chosen based on a convergence test of the mesh, in which we evaluated the forward response (also calculated with ModEM) of the base model containing a conductor of the size.
Figure 8. Synthetic plume used to test the MCMC inversions based on the Legendre moment decomposition. (a) Plume geometry at the fine discretization used for the Legendre decomposition. The isosurface corresponds to a value of \(\theta = 10^{-7} \). (b) Differences in log-resistivity with respect to the base model (Fig. 5 a) at the injection depth of 2700 m. (c) Time-lapse data simulated from the synthetic model and contaminated with noise corresponding to the same errors as assumed for the field data. The plume has a predominant north-south direction with a bend towards the northeast at its northern side.

of the maximum plume allowed for different lengths of the domain and resistivity block sizes. The chosen resistivity discretization represents a compromise between accurate forward responses, that is, changes in impedance of less than 0.1% with respect to a highly discretized and largely extended mesh, and computation time.

We allow \(\Delta m_{\text{max}} \) to vary between 0, that is, no change in the cementation factor, and -0.99, which implies \(m_{\text{min}} \approx 1 \) and thus a perfectly connected medium. We use uniform prior distributions for all the model parameters mentioned, and an \(l_1 \)-norm in the likelihood function to evaluate the data misfit (see Eq. 5) since the errors follow an exponential distribution.

We use the DREAM(ZS) algorithm with 3 chains that evaluate the forward responses in parallel. We also employ the parallelized forward solver in ModEM, which distributes the forward computations for each period and for each of the two electromagnetic field polarizations to a different processor. To decrease the number of processors needed, we only use the 8 longest periods in the MCMC inversions,
Table 1. Mean values and standard deviations of the center of mass and spread of the synthetic plume, as estimated with the probabilistic mass-constrained time-lapse approach.

<table>
<thead>
<tr>
<th>Model</th>
<th>Estimate</th>
<th>Center of mass</th>
<th>Spread</th>
<th>Data misfit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>μ_{xc}</td>
<td>μ_{yc}</td>
<td>μ_{zc}</td>
</tr>
<tr>
<td>True</td>
<td>N/A</td>
<td>-620</td>
<td>840</td>
<td>2550</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>-1160</td>
<td>670</td>
<td>2490</td>
</tr>
<tr>
<td>Order 3</td>
<td>Standard deviation</td>
<td>490</td>
<td>440</td>
<td>310</td>
</tr>
</tbody>
</table>

which is where the main time-lapse changes occur. Since we evaluate 8 periods for each configuration, we use 16 processors per chain, and thus a total of 48 processors for the forward computations. The computing time of a single forward response depends on the complexity of the model evaluated, but is on average 11 minutes. Convergence of the chains was reached after ~ 7500 realizations, which, multiplying by the number of chains implies a total of ~ 22500 forward computations. The mean acceptance rate was 40% and the total computing time needed to reach convergence was approximately 60 days.

Figure 9 (a-f) shows the marginal posterior distributions of the plume’s center of mass and spread, and Δm_{max}. All the parameter values used to construct the synthetic plume are contained in the posterior pdf. Figure 9 (h) shows the data misfit distribution of the models that belong to the posterior pdf. The corresponding model responses have data misfits that are close to the true value (676). Table 1 shows the mean and standard deviation of the histograms shown in Fig. 9. The center of mass estimate in depth is very well determined, being only 60 m more shallow than the true value, while in the x-direction, it is approximately 450 m to the south from the exact value. The standard deviations of the center of mass estimates are in the order of 400 m. The spreads of the plume are well determined, with a larger uncertainty in the x-direction. The cementation factor change of -0.5 is well estimated with a mean value of -0.48 and a standard deviation of 0.24. The posterior data misfit distribution is short-tailed and close to the number of data. In Fig. 10(a-f) we present some of the plumes that belong to the posterior distribution. In agreement with the true model, the plumes are mostly located in the eastern part of the region and are elongated in the north-south direction. Only two plumes (Fig. 10 b and e) present a larger extension to the northeast similar to the true plume.
Figure 9. (a-f) Marginal posterior distributions of the center of mass (a-c) and spread (d-f) of the plume for the synthetic test. The ranges of values shown correspond the prior pdfs’ bounds. (g) Maximum change of the cementation factor. (h) Data misfit distribution of the posterior models’ responses, to compare with the 676 data points used. The red crosses indicate the true values. The histograms’ mean and standard deviation are indicated in Table 1.

Figure 10. (a-f) Random posterior realizations from the MCMC inversion of the synthetic time-lapse data. Models have a predominant north-south direction and similar extension to the true plume (Fig. 8a). The isosurfaces correspond to a value of $\theta = 10^{-7}$.
4.4 Application to the Paralana injection experiment

We now return to the field data acquired during the injection experiment in Paralana. We first perform a MCMC inversion with the same model parameters as for the synthetic case and the same prior distributions, but with the actual water volume. Also, the discretization in cubes of $300 \times 300 \times 300$ m3 is shifted downwards 1.1 km in z to allow for deeper plumes. Thus, z_{start} and z_{end} can vary between 1.6 km and 3.25 km, and 3.25 km and 4.9 km, respectively.

The base model l_1-norm data misfit of the time-lapse data is $\phi_{l_1} \approx 1980$ and the MCMC inversion reaches a data misfit that oscillates around $\phi_{l_1} \approx 750$ for our 676 data (i.e., the data are not fitted to the error model). The spread estimates shown in Table 2, $S_{xx} = 2820$ m, $S_{yy} = 2900$ m, $S_{zz} = 710$ m, have a tendency to maximize the size of the plume (the prior ranges of β result in allowed maximum spreads of 3100 m in the horizontal directions and 740 m in depth). Moreover, Δm_{max}, which largely controls the changes in the resistivity with respect to the base model, is close to the maximum value allowed, that is, -0.99. This behavior of the spread and Δm_{max} indicates that resistivity changes larger than allowed by our physical model are needed to explain the time-lapse changes.

To investigate the actual resistivity changes needed to explain the data, we resort to the resistivity-difference-based time-lapse inversion presented in Section 2.5. We use the same Legendre moment decomposition up to order 3 as in the previous inversions, with the same prior ranges for α and β, and a uniform prior pdf between -10 and 0 for f. The MCMC inversion converged after $\sim 13,500$ realizations (40,500 forward computations), with a mean acceptance rate of 25% and 95 days of total computation time. Figure 11 shows the posterior estimates of the mean and standard deviation of the center of mass, spread, and the maximum resistivity change Δr_{max} and data misfit. The posterior uncertainty ranges of the spreads are no longer affected by the prior boundaries (see Table 2). The center of mass of the plume is located towards the south of the injection point and it is well centered in the east-west direction. The center of mass is estimated at a depth that is ~ 150 m deeper than the actual injection point, with a standard deviation of 130 m. In accordance with the microseisms (Reid et al. 2011), the spread is larger in the north-south direction than in the east-west direction. The posterior pdf of $\Delta \log_{10} r_{\text{max}}$ has a mean value of -7.3 with a standard deviation of 0.3. The posterior models have data misfit values that are smaller than the number of data with the data misfit distribution centered on 575.

The posterior models shown in Fig. 12(a-f) indicate that the plume is most likely oriented in a north-south direction, and rather to the east. In depth, most models extend between 3400 m and 4500 m but with depth variations along the plume. Some models (Figs. 12b, c, d and f) show a plume dipping towards the north, as suggested by the microseismic data by Reid et al. (2011). An isolated component
Table 2. Mean and standard deviation of the estimated center of mass and spread of the injected plume at Paralana, as estimated with the mass-constrained and resistivity-difference-based probabilistic time-lapse inversion approaches.

Center of mass	Spread									
Type of Estimate	Estimate	μ_{xc}	μ_{yc}	μ_{zc}	S_{xx}	S_{yy}	S_{zz}	Δm_{max}	$\Delta \log_{10} r_{\text{max}}$	Data misfit
Petrophysisically based	Mean	-460	1010	2830	2820	2900	710	-0.95	N/A	750
	Standard deviation	390	1070	110	210	100	60	0.04	N/A	7
Resistivity-difference based	Mean	-2540	10	3830	2260	1630	530	N/A	-7.3	574
	Standard deviation	440	550	130	180	160	60	N/A	0.3	9

Figure 11. (a-f) Marginal posterior distributions of the center of mass (a-c) and spread (d-f) of the plume from the resistivity-difference-based Paralana time-lapse inversion. The range of values shown corresponds to the prior pdfs’ bounds. (g) Maximum resistivity change. (h) Data misfit distribution of the posterior models, to compare with the 676 data points used. The histograms mean and standard deviation are indicated in Table 2.
Figure 12. (a-f) Random posterior realizations from the resistivity-difference-based MCMC inversion of the Paralana time-lapse data. The isosurfaces correspond to a value of $\theta = 10^{-7}$.

of the plume can be observed in Figs. 12(b), (d), and (f) in the northeast region at more shallow depths (~ 3400 m) than the rest of the plume.

5 INFLUENCE OF THE BASE MODEL

The previous results suggest that large resistivity changes are needed to explain the Paralana time-lapse data. These changes are presumably dependent on the base model from which they are estimated. To test this possibility we consider 5 additional starting models for the deterministic inversion of the base data. Table 3 presents the characteristics of these models. The first three models are built from the mean estimates of the one-dimensional MCMC inversions presented in Section 4.1. The fourth and fifth model are based on the 4-layer model previously used but present two unconnected conductors and a conductive layer, respectively, at the injection depth. The unconnected conductors are oriented in the north-south direction, they are separated by ~ 2 km and are located on opposite sides of the injection point. They have a vertical extension of ~ 5 km, and are completely embedded in the layer with resistivity of $550 \, \Omega\cdot\text{m}$.

The deterministic inversions based on these starting models provide new base models that fit the base data to similar levels as the original one. We then compute the time-lapse data using the residuals of each model and run new resistivity-difference-based probabilistic time-lapse inversions until a stable data misfit level is reached. Note that no formal convergence of the chains was reached due to computational constraints and therefore these estimates are used only to qualitatively assess the
Rosas-Carbajal et al.

Table 3. Initial structure and resulting resistivity change and spread ratio estimates of the one-dimensional models used to test the influence of the base model. The letters “r” and “h” correspond to the layer resistivity and thickness, respectively.

<table>
<thead>
<tr>
<th>Conceptual model</th>
<th>1st layer (top)</th>
<th>2nd layer</th>
<th>3rd layer</th>
<th>4th layer</th>
<th>5th layer</th>
<th>6th layer</th>
<th>(\Delta \log_{10} r_{\text{max}})</th>
<th>(S_{xx}/S_{yy})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halfspace</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-5.8</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>(r_1 = 8,\Omega,m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 layers</td>
<td>(h_1 = 594,m)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-8.5</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>(r_1 = 40,m)</td>
<td>(r_2 = 460,m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 layers</td>
<td>(h_1 = 55,m)</td>
<td>(h_2 = 430,m)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-7.2</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>(r_1 = 9.6,\Omega,m)</td>
<td>(r_2 = 3.3,\Omega,m)</td>
<td>(r_3 = 45,\Omega,m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 layers with 2 unconnected conductors</td>
<td>(h_1 = 33,m)</td>
<td>(h_2 = 700,m)</td>
<td>(h_3 = 7780,m)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-6.6</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>(r_1 = 70,\Omega,m)</td>
<td>(r_2 = 41,\Omega,m)</td>
<td>(r_3 = 550,\Omega,m)</td>
<td>(r_4 = 200,\Omega,m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 layers</td>
<td>(h_1 = 33,m)</td>
<td>(h_2 = 700,m)</td>
<td>(h_3 = 2650,m)</td>
<td>(h_4 = 1520,m)</td>
<td>(h_5 = 3610,m)</td>
<td>-</td>
<td>-9.0</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>(r_1 = 70,\Omega,m)</td>
<td>(r_2 = 41,\Omega,m)</td>
<td>(r_3 = 550,\Omega,m)</td>
<td>(r_4 = 550,\Omega,m)</td>
<td>(r_5 = 550,\Omega,m)</td>
<td>(r_6 = 200,\Omega,m)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

variations due to different base models. Table 3 shows the estimated maximum resistivity changes \(\Delta \log_{10} r_{\text{max}} \) and horizontal spread ratio \(S_{xx}/S_{yy} \) for each base model. Large differences can be observed among the maximum changes, which give evidence of the influence of the base model on the estimation of the time-lapse changes. For example, the maximum resistivity change in the plume area is estimated in -5.8 when the base model is derived from a half-space, and it is of -9.0 when a 6-layer model is used. Nonetheless, all the estimates point to a plume more elongated in the north-south direction than in the east-west direction. Note that all the models resulting from these inversions explain the data to the same level as the resistivity-difference-based inversion presented in the previous section (c.f. Table 2).

6 DISCUSSION

Our results indicate that it is possible to infer information about tracer plumes in deep injection experiments using MT data, but also that many important challenges remain. Our probabilistic time-lapse inversion methodology has several advantages over the deterministic approach. The non-linearity of the inverse problem is correctly treated and the uncertainty of the model parameters is formally characterized. Furthermore, valuable prior information such as the injection depth, the electrical resistivity
expected only to decrease or stay unchanged after the saline injection, and bounds on the region where resistivity can decrease, can be flexibly implemented in the MCMC inversion. The results of the synthetic example shown in Figs. 8-10 suggest that our approach works properly when the base resistivity model is suitable, and the plume is in accordance with the proposed physical model. The MCMC inversion correctly retrieves the change in the cementation factor and the center of mass and spread of the plume. Higher orders of the Legendre moment decomposition could be used, which would allow for more complicated three-dimensional structures (c.f., Laloy et al. 2012). The computational costs would then also be larger (3 months were needed for the inversion of the Paralana data to converge for Legendre moments up to order 3), but it is unlikely that smaller details would be resolved.

The large time-lapse changes observed in the MT data following the injection experiment in Paralana were used by Peacock et al. (2013) to derive qualitative information about the direction of flow of the injected fluids. Our deterministic three-dimensional time-lapse inversion was useful to determine the geographical regions of maximum resistivity changes, even if the inferred changes in depth appear to be too shallow. These changes were located above the actual injection point and towards the south and the west. The depth of the anomaly may be a result of the higher sensitivity of the inversion at shallower depths but could also be related to an inadequate base model. Unphysical increases in resistivity also appear (see Fig. 7) as no constraints regarding the sign of the resistivity changes were applied. Including these types of constraints could help to improve the deterministic inversions. For example, penalizing positive changes in the resistivity model and using an l_1-norm to penalize the model structure would lead to more compact resistivity changes (see examples for two-dimensional inversions in Rosas Carbajal et al. 2012).

Very large resistivity changes were needed to explain the Paralana time-lapse data. For example, the amount of injected water had to be increased and the depth of injection moved to shallower depths to obtain similar time-lapse changes for the synthetic example. An inversion of the Paralana data using our upscaling and petrophysical model that accounted for the amount of saline water injected could not explain the data changes. This suggests limitations of the petrophysical model used and raises the question of whether changes in reservoir properties can be inferred from the time-lapse MT data. In this regard, Vasco et al. (2014) argue that instead of aiming at relating changes in geophysical properties to changes in reservoir properties, it may be more viable to relate the initiation of a change in a geophysical property to key reservoir changes such as fluid saturation or pressures. While Vasco et al. (2014) consider reservoir monitoring with seismic data, the application to MT data where relatively long time series have to be used to obtain good signal-to-noise ratios of the transfer functions is not straightforward.

When directly inferring the changes in resistivity, while keeping constraints on the location of
the plume (injection depth and limited spatial dimensions), the probabilistic inversion could fit the data and retrieved water plumes that are more elongated in the north-south direction. Compared to the microseisims, the center of mass of the plume is located to the south of the injection point, and the plumes predicted from the MT data are much larger in extent (see Fig. 12). The latter is expected, as the microseismic data sense the opening of fractures whereas the MT time-lapse data sense changes in electrical resistivity, which happen where the injected fluid is present and not only where fractures open. Also, the microseismic data were measured during the injection, while the time-lapse MT data were acquired one week after the injection was completed.

To evaluate the influence of the base model, we performed time-lapse inversions using different base models that equally explain the base data. The discrepancy observed between the plume estimates calculated with different base models suggests that, to a large extent, the large resistivity changes needed to explain the time-lapse data are related to our chosen base model. The base model derived from a halfspace resulted in the smallest maximum resistivity change, with a log-value of -5.8 (c.f Table 3). That is, in order to explain the time-lapse data, a resistivity change with respect to the base model of more than 5 orders of magnitude is needed. The fact that the other base models require larger resistivity changes to explain the data may be a consequence of the the conductive surface layer they all contain, which reduces the sensitivity to deeper resistive layers. This does not mean that the halfspace-like base model is the most appropriate. Its resistivity value (8 Ω m) and magnetotelluric response as compared to the base data do not appear realistic. Most likely, none of the evaluated base models include the correct heterogeneity distributions that would lead to the true resistivity changes needed to explain the time-lapse data. The synthetic example, which was performed using the correct base model, yielded satisfactory estimates of the plume. To further constrain the model, one could perform a time-lapse MCMC inversion where both the base model heterogeneities and the plume geometry would be inverted for at the same time, minimizing the resistivity changes involved. Such methods have been proposed for deterministic time-lapse studies involving ERT data (Kim et al. 2009; Karaoulis et al. 2011). This type of study would be highly computationally demanding, and we leave it for future investigations.

The extremely large resistivity changes needed to explain the time-lapse data raise important questions about how such a large conductance anomaly could be caused by the injection. Surface conductivity could not explain the changes even if clay minerals were present as its effect would be decreased by the injected conductive water. One possibility is that, as the rock dissolves due to the injected acids, more minerals are incorporated into the fluids and thus the salinity of the fluid increases, therefore decreasing the bulk resistivity. Another alternative is that the large changes observed originated from the presence of microscopic or macroscopic electrical anisotropy. The latter could be the result of a
complex arrangement of fractures, which in some directions were effectively connected by the fracture stimulation whereas in other directions stay in the vicinity of the percolation threshold. Such situations were suggested by Bahr (2000) to explain the distortion in MT data and by Hautot et al. (2002) to associate observed temporal variations in resistivity to pore pressure changes controlled by lake level variations. Reid et al. (2011) reported on high fluid pressures encountered when drilling the Paralana borehole and after the injection experiment was finished. This supports the hypothesis that fractures may be well connected in some directions while staying close to the percolation threshold in others, thus creating large variations of the measured electric fields. Simulating the MT responses of realistic complex fracture networks would be highly computationally demanding and it is out of the scope of this contribution.

7 CONCLUSIONS

We presented the first time-lapse three-dimensional deterministic and probabilistic inversions of MT data, with focus on imaging a tracer plume created by injecting a saline tracer in a geothermal system. The time-lapse deterministic inversion resulted in resistivity changes that are much shallower than the depth of the injection, which demonstrates the importance of including prior information such as the injection point and that the electrical resistivity is expected to decrease following the injection. The probabilistic approach used relied on petrophysical relations and a reduced Legendre moment decomposition of the injected plume that decreases the parameter dimensionality and thus the computation times. This approach was effective when applied to a synthetic test case. For the inversion of the Paralana data, the applied petrophysical relation and upscaling procedure were not able to explain the large data changes observed and a resistivity-difference-based inversion with relaxed constraints had to be used. The plumes belonging to the posterior pdf are elongated in the north-south direction, which is in agreement with microseismic data. However, their center of mass is estimated to be located south from the injection point, which is in contrast to the microseismic events, and the inferred resistivity changes are extremely large (many orders of magnitude larger than expected). Since the studied media is highly fractured, a possible explanation for the large resistivity changes is the existence of a connected fracture network that is close to the percolation threshold in one direction. Another related possibility is a heterogeneous resistivity distribution that is poorly represented by our smoothly varying base model. A simple analysis using different base models supports this explanation. Thus, more efforts have to be put in the accurate characterization of the base model when performing monitoring studies with EM methods.
ACKNOWLEDGMENTS

We thank Eric Laloy for his advice on the use of the Legendre moment parameterization, Philippe Logean for his help with the cluster implementations, Damien Joungnot for useful discussions about petrophysics, Anna Kelbert and Gary Egbert for providing the ModEM program for the deterministic inversions and forward computations, Jasper Vrugt for providing the DREAM\(_{(ZS)}\) program, and two anonymous reviewers and the Editor Ute Weckmann for their constructive comments. This work was supported by the Swiss National Science Foundation under grants 200021-130200 and 200020-149117.

REFERENCES

Brenguier, F., Shapiro, N. M., Campillo, M., Nercissian, A., & Ferrazzini, V., 2007. 3-D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlations, Geophysical research letters, 34(2).

Chen, J., Hoversten, G. M., Key, K., Nordquist, G., & Cumming, W., 2012. Stochastic inversion of magnetotel-
Monitoring of fluid injection in a geothermal system

Orange, A., Key, K., & Constable, S., 2009. The feasibility of reservoir monitoring using time-lapse marine
Monitoring of fluid injection in a geothermal system

CSEM, Geophysics, 74(2), F21–F29.

