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CRH
cwv
DSE
ERA5
FFNN
Lv
MSE
P

RH

SREEL

Column Relative Humidity

Column Water Vapour

Dry Static Energy

ECMWF Reanalysis vb

Feed Forward Neural Network

Latent heat of water vapourisation

Mean squared Error

Total ERA5S precipitation

Relative humidity

Coefficient of determination

Specific gas constant for dry air

Specific gas constant for water vapour
Temperature of air in Kelvins

Any ERAD variable, other than precipipation
ERA5 standard deviation of subgrid-scale
orography

Potential temperature

Potential equivalent temperature

Saturated potential equivalent temperature
Mesure of subsaturation, as defined by 6} =
0% — 0.

Gravity constant

atmospheric pressure

Reference atmospheric pressure, taken as 1000
hPa

Specific humidity in kg.kg™!

Ice water content in kg.kg™!

Liquid water content in kg.kg™!

Saturation Specific Humidity in kg.kg™!

time
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Introduction

The tropics, with their intricate climate dynamics and profound societal implications, have
long intrigued climate scientists. Central to the understanding of tropical climate systems
is the accurate representation of precipitation in climate models. Tropical precipitation
is not merely a meteorological curiosity; it holds immense practical significance. These
regions are home to a substantial portion of the global population and are particularly
vulnerable to the impacts of climate change. The ability to predict and model tropical
rainfall patterns is crucial for various applications, including agriculture, water resource
management, and disaster preparedness.

In recent years, the intersection of scientific advancement and computational capabili-
ties coupled with data availability has reinvigorated the pursuit of precise cloud systems
parametrization (|7],[15]), notably through the use of Machine Learning (ML) based meth-
ods. However, these methods, while sometimes producing impressive results, often depend
on tens of thousands of parameters, making for models that are difficult to read, and re-
main difficult to understand or explain physically. To alleviate this problem, in this study,
we will seek to combine the performance of neural networks with the physical readability
of our models, in particular by using Symbolic Regression methods, which allow us to
derive analytical equations in a data-driven manner.
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1.1 Motivation

Due to computational constraints, climate models used to make future projections span-
ning multiple decades typically have horizontal resolutions of 50 — 100 km ([14]). Even
with our modern computation capability, climate models typically run at a horizontal
resolution of 25 km: that is their ’grid-scale’. This coarse resolution means that a lot
of sub-grid scale processes, that occur at smaller characteristic lengths like cloud mi-
crophysics are not directly computed by the models. However, they need still to be
taken into account somehow due to their relevance in climate dynamics and are therefore
parametrized: using grid-scale information, a parametrization tries to estimate the results
(e.g., precipitation) of sub-grid scale phenomenon (clouds formations and microphysics),
with various methods (empirical functions, neural networks..). These parametrizations
can vary a lot between climate models and therefore cause divergences between them
for future climate forecasting. Especially, clouds parametrization is believed to be "the
greatest source of uncertainty in climate projections".([15]).

With the recent rise of Machine Learning (ML), due to larger and larger data avail-
ability and refined algorithms, ML-based parametrization for various problems have been
developed, and also consequently for clouds and precipitation ([16],[7],[13], [9]). Using
very little domain knowledge or physical hypothesis, ML-based models can develop highly
nonlinear parametrization, that is not limited to a specific functional form like standard
regression, and with notable performance increase. However, these models usually act like
"black boxes’, relying on millions of parameters, and can prohibit the understanding of the
physical meaning underlying their parametrization. Moreover, the plethora of parameters
used can downgrade the generalization capability of these models, when presented with
inputs that were out of the training datasets distribution: i.e, a warmer climate [3].

The questions that this study will try to answer are as follow : Can we develop a data-
driven precipitation parametrization, that approaches the performance of NN-based mod-
els while keeping the formulation sparse and physically interpretable?

1.2 Past works and methods
1.2.1 Symbolic Regression methods

To answer the main question that we just outlined, we will deploy a Pareto-plan frame-
work on the parametrization that we will develop. Hence, the evaluation of our models
centers on their Pareto optimality, which gauges their status as the most performing mod-
els relative to their complexity. We can frame their 'performance’ as some score on metrics
like R? that we’ll describe in more detail later in the study, and their 'complexity’ as the
number of trainable parameters of each model.

On one end of the complexity spectrum, one could find heavy Deep-Learning models that
require O(10%) parameters, like [4], and on the other hand some analytical parametriza-
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tions with under 10 trainable parameters (e.g [2]).To strike a balance between these ana-
lytical mathematical formulations and high-performing neural networks, the primary aim
of this study was to apply was to deploy data-driven equation discovery through cutting-
edge Symbolic Regression techniques.

In symbolic regression, in contrast to conventional regression, we begin by defining a
suite of mathematical operators rather than a set of basic functions. For instance, the
introduction of division as a mathematical operator permits us to introduce rational non-
linearities to our models; coupled with other traditional mathematical operators and
analytical functions, the symbolic regression library (in our case PySR) generates an ini-
tial pool of equations randomly. Taking inspiration from the concept of natural selection
in evolutionary theory, symbolic regression is typically executed as a genetic algorithm.
This algorithm iteratively applies operations driven by genetic principles, such as selec-
tion, crossover, and mutation, to the collection of candidate equations. At each iteration,
the equations are ranked based on their performance and simplicity. The most high-
performing equations are chosen to form the succeeding generation of equations

An inherent advantage of training or discovering analytical models, as opposed to em-
ploying neural networks, is the instantaneous comprehension of the model’s content. This
encompasses the assessment of whether the model adheres to physical constraints. Fur-
thermore, analytical models allow for the direct analysis of their structure using robust
mathematical tools like perturbation theory and numerical stability analysis. Addition-
ally, analytical models are highly communicable within the scientific community, amenable
to numerical implementation, and exhibit efficient execution, especially when optimized
implementations of well-known functions are available.

Significantly, [17] marked the pioneering use of automated, data-driven equation dis-
covery in climate-centric applications. They harnessed sparse regression, particularly a
relevance vector machine, to unearth an analytical model characterizing ocean eddies
based on highly idealized data. Sparse regression, in this context, involves the user defin-
ing a library of terms, with the algorithm subsequently discerning a linear combination
of these terms that optimally fits the data while minimizing the term count used. Their
data-driven equations managed to outperform Deep-Learning algorithm (Convolutional
Neural Networks in this case) while having better generalization capability. [8] developed
a Data-Driven cloud cover Parametrization with Symbolic Regression using PySR. They
trained their parametrization on high-resolution data from storm-resolving models and
managed to develop sparse analytical relationships that have generalization capability to
other models (like ERA5) and that beat the existing Cloud Cover parametrization like
the Sunqdvist schemes.

1.2.2 Analytical Baseline

The main model that we will try to build upon is a buoyancy-based tropical precipitation
parametrization introduced in [2| and further developed in [1|. One key aspect it explores
is the role of water vapor in the atmosphere. It’s well-established that increased water
vapor typically leads to more intense tropical convection. For example, when the atmo-
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sphere is loaded with moisture, you often see intense tropical storms and heavy rainfall.
However, other factors like temperature, air pressure, and wind patterns also influence
convection. The challenge is that these factors interact in intricate ways, making it diffi-
cult to pinpoint precisely how the environment affects convection.

The article tackles this complexity by employing statistical approaches to examine broader
patterns, unraveling mean relationships between moisture and temperature variables in
the form of the integral of potential equivalent temperatures in different height regions.

One key finding highlighted in the article is the concept of "precipitation onset." This
refers to the point at which precipitation rapidly increases as atmospheric moisture con-
tent goes up. To put it simply, as the air gets moist, you tend to see a sudden uptick
in rainfall. During this study, we will try also evaluate our models on their capability to
capture this onset.

The article suggests that the increase in precipitation with moisture is primarily due
to buoyancy. Imagine a rising air parcel—often associated with convection. When this
parcel reaches a certain moisture level, it becomes positively buoyant near the freezing
level. This means it rises more vigorously, leading to stronger precipitation. The article
then develop a buoyancy measure called By,

(963 — Q:L) QJL

B =g |lwp—— —w
e ey

(1)

with wg,w;, being trainable parameters, 6.5 the integral of 6., the potential equivalent
temperature, in the boundary layer,d.; the integral on the lower troposphere. (see sec-
tion 1.3.2 for details on the 6-like variable). In [1] they link this buoyancy measure to
precipitation, with a simple linear model

P = aH(B, - B.)(B; - B.) (2)

with P the precipitation,«, B, trainable parameters and H the Heaviside function. This
precipitation parametrization will act as our baseline in this study (called the "By’ or
’AN18’ baseline) which we will try to build upon.

This buoyancy-based explanation doesn’t directly account for frontal precipitation or
stratiform rain, even though these are related to buoyant convective rain. This is another
potential improvement that we will try to develop with our SR models.

The study primarily focuses on tropical oceanic regions but also looks at tropical land
regions. It suggests that the relationship between moisture and precipitation onset can
differ between land and ocean. For instance, precipitation onset over land can occur at
smaller moisture levels compared to the ocean. This variation is attributed to differences
in vertical moisture distribution. In this study, we’ll try to provide a land and ocean
parametrization, notably through the use of orography-based variables to account for
these differences.
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1.3 Data

As said earlier, we will follow in this study a data-driven approach to find new precipitation
parametrization. To continue on the path opened up by the articles [2] and [1], we will
use real-world data, not idealized models or high-resolving ones. An argument could be
made to use a high-resolution model to first learn the structure of the parametrization
equations(e.g. [8]), and then retrain this model on real-world data. However, we chose
on this study to see whether or not we could develop a satisfying model starting directly
from real-world data. One of the advantages of this approach is that it avoids learning
the biases inherent in the results of an idealized model.

1.3.1 Data acquisition

Our research hinges on the ERA5 Reanalysis dataset, a powerful tool for advancing trop-
ical precipitation prediction. Developed by the ECMWEF, this dataset merges diverse
observational data using advanced assimilation techniques and backs up these observa-
tional data with meteorological models such as the International Forecast Systems (IFS)
to interpolate them on a complete spatiotemporal grid [10]. ERA5 provides fine-grained
spatial (grid) and temporal (dating back to 1979) resolution, making it an ideal resource
for investigating short-term weather events and long-term climate trends in tropical re-
gions.

The ERAS dataset is functioning at a spatial resolution of 0.25°0n both longitude and
latitude and an hourly resolution on time. We chose to investigate the tropical regions,
thus restraining the global grid to 25°north and south on latitudes, ending with a grid
composed of 1440 longitudinal points times 200 latitude points. For the 3D variables, we
used pressure level coordinates and selected 21 pressure levels from 1000 hPa to 10 hPa.

The total precipitation variable, i.e. our prediction goal, was initially taken from the
TRMM-3B42 dataset, which operates at a 3-hourly time resolution. We made this choice
following [2|, which was a study we were trying to build upon. However, after further
investigation, the ERAS5 total precipitation was found much easier to predict, with R?
jumping from around 0.2 (when trying to predict the TRMM precipitation with ERA5
variables) to 0.5 when trying to predict the ERA5 precipitation. This major discrepancy
could stem from multiple causes, for example, the fact that the horizontal grids between
TRMM and ERA5 do not align, thus needing to interpolate one dataset into another,
therefore adding noise and uncertainty. This discrepancy could also arise from the fact
that all ERA5 products are not observational data but rather a reanalysis, computed
with climate models introducing their biases. One could argue that since the ERA5 total
precipitation is computed using other ERAH state variables, the biases go "in the same
direction", leading to an easier prediction of precipitation using ERA5 to ERA5 rather
than ERA5 to TRMM.

Using the ERAS total precipitation, we nonetheless kept the 3-hourly resolution used
in TRMM and therefore coarsened our hourly ERA5 data. The 3-hourly total precipi-
tation was simply computed as a sum of the three hourly values in ERA5. For all the
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other time-dependent variables used in this study, we opted for an instantaneous choice,
meaning that we take the ERAb value of the first of the three 1-hourly values, and take
it as our 3 hourly value, resulting in a 3-hourly "snapshot" of the atmosphere rather than
an accumulated view (e.g we could have took the mean of the three hours).

1.3.2 Variables used

Relative Humidity RH The inclusion of RH from ERAD5 is pivotal. It furnishes
us with essential insights into atmospheric moisture, a key determinant in predicting
precipitation, particularly in tropical environments. The knowledge of the RH values on
the full pressure column is crucial to predicting convection and precipitation phenomena.
This variable is dimensional and expressed in percentage

Temperature 7' ERAD5’s temperature data is another crucial variable, in our analysis,
helping us comprehend temperature patterns and their significant role in initiating pre-
cipitation events within tropical regions ([18]). It will be expressed in K throughout the
study

Specific Humidity ¢, The specific humidity variable ¢ (expressed in kg.kg~1)from
ERAS5 is another valuable addition. It enriches our grasp of how moisture content influ-
ences tropical precipitation processes. Even if it’s supposed to bear the same information
as Relative Humidity, minus the temperature information (RH depending on ¢ and T’
only), this variable is still very useful if we aim to create sparse relationships: having
RH and g saves us some transformations that would otherwise need to be done in the G,
formulation.

Ice Water Content ¢; and Liquid Water Content ¢, Incorporating ¢; and ¢; data
from ERA5 broadens our perspective. These variables shed light on phase transitions
involved in tropical precipitation, including freezing, melting, and condensation phenom-
ena. They complement the humidity-based variables and will help us derive a precipitation
parametrization formulation. One of their drawbacks is that they are in a lot of models
not prognostic. Prognostic means that they are not integrated in times via Partial Dif-
ferential equations, as opposed to T',q and U that are integrated using the Navier-Stokes
equations in a hydrostatic model. For example in the International Forecast System, the
models that back up ERAS, ¢; and ¢; are not prognostic ([5]). The opposite of prognostic
is diagnostic: the variables are obtained through a parametrization, at each time step.
For example, in our case, precipitation is a diagnostic variables: using ideally prognostic
variables, we aim to propose a diagnostic (a parametrization) for precipitation at each
time step and grid points.

Equivalent Potential Temperature 6., 6* and 67 0. (expressed in K) is a fun-
damental thermodynamic parameter.It quantifies the temperature a parcel of air would
attain if lifted adiabatically to a reference pressure level while being saturated with water
vapor. As such, its value it’s more conserved than the traditional potential temperature
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0, during a convection event which leads to condensation. These convection events po-
tentially lead to precipitation, thus explaining the use of these variables in our study [6].
It is expressed as

Po Lvrv
. =1 (2 L 3
<p (cqg + 1) T] (3)

With r, and 7, the total water content and water vapor mixing ratios, Ry4,R, the specific
gas constants for dry air and of water vapor, ¢4 and ¢; the specific heat capacities of
dry air and of liquid water and L, is the latent heat of vapourization of water. In the
context of precipitation prediction, a higher 6. signifies atmospheric instability, which
promotes convection and precipitation. By integrating 6. data from ERA5, our research
gains deeper insights into the conditions conducive to convective activity and precipitation
initiation within the complex tropical climate system. We will also use @7, which is the
value of 0, if the air was at saturation; and 07 = 6* - 6., as a measure of subsaturation.

Rg/(cqa+ric)
) RH*TURU/(CdJrHC) exp {

Moist and Dry Static Energy Moist static energy (MSE) and dry static energy (DSE)
are essential thermodynamic quantities used to evaluate the potential for atmospheric
motion and convection. MSE is defined as follows:

MSE = cT' + gz + Lyq (4)

Where g is the acceleration due to gravity,z is the altitude. Dry Static Energy is defined
as
MSE =TI + gz (5)

These variables are similar to 6. and 0, respectively. As with ¢ and RH, we use them
even if they seem redundant with the 6 because they might help in formulating a sparse
relationship. Moist static energy accounts for the latent heat associated with water va-
por, making it a key parameter in assessing atmospheric instability and the potential
for convection. Dry static energy, on the other hand, represents the energy available for
lifting air parcels without considering moisture effects. Both of these energy variables are
integral to our analysis, aiding in the evaluation of atmospheric stability and convection
potential within tropical regions.

Orography based-variables To account for the land-sea separation between precip-
itation regimes, we include orography-based variables. First, we use the land-sea mask
(LSM), which ranges on a scale of 0 to 1 and indicates the proportion of land over the sea
on a given grid point. We will also go further in the land description in the form of four
measures of the sub-grid scale orography. The standard deviation of orography, denoted
o, thereafter, is a scalar representing the standard deviation of height; we also investi-
gated the mean-slope of the sub-grid scale orography, and its anisotropy. We introduce
a form of normalization for the standard deviation of orography: it is initially on a scale
with values ranging from 0 to around 900, and the land and ocean are not well split up
because flat land ends up with nearly the same o, as the ocean, very close to 0. As such
we normalise such that

Oy —

(6)

0 if LSM < 0.5
1+log(l+40,) if LSM > 0.5

10
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Hence, we have a scale that goes from 0 to around 7, and that is > 1 on land and equals
to 0 on ocean

2 Methodology Proposed

To try to tackle our sparse precipitation parameterization problem, we will make use of
multiple techniques, a lot of them rooted in the broad field of Machine Learning (ML)
Methods. We will therefore devote the first section to defining the general framework
in which we will use these methods. In this section, we’ll describe the datasets we’ll be
using, as well as the loss functions and metrics used in our neural networks, which form
the general framework within which we’ll be performing ML.

In a second section, we describe in more detail the type of neural networks used, which in
our case will be variations on the classic Feed-Forward Neural Network (FFNN). These
networks will first be used to clear the field, enabling us to quantify which variables are
the most important for the problem (feature selection), using the metrics previously dis-
cussed. They will also be used throughout the study as our chosen ’'common ground’ to
compare different inputs: if we want to assess the quality of two integration methods, we
integrate with them a given variable and give it as input to the same FFNN architecture:
the FFNN will act as a reflector of how much information we managed to keep with the
integration.

In the third section, we will then look at the methods used to develop new integration
schemes for 3D variables. Most of these methods will be based on the FFNN structure
already developed, which we will use to train the weights of different integration kernels

Finally, in a fourth section, we’ll look at how these methods lead to optimal use of
Symbolic Regression (SR). We will describe the SR methods used, and the framework
for training them, which is also similar to what we developed in the first section.

2.1 Framework, Metrics, Baselines

To perform a data-driven approach, we’ll need the traditional building blocks of it: First, a
dataset, with features and target, to train and validate our NN and Symbolic Regression.
Second, metrics: in the form of a loss function to define objectives for our NN, and
performance metrics, that will also us to benchmark all of our methods (NN-based or
not) on a unified ground. All of our Neural Networks will use the PyTorch Python library
[12].

2.1.1 Features and Target

To create our datasets, we take into inputs N3p 3D variables each with N, pressure levels,
and Nop 2D or static variables, and the total precipitation P. They are all spanning on a
horizontal grid of Ny, x Ny, points, during N, timesteps. As such, a dataset D will always
mean in this work an ensemble of two matrices, a features matrix ' composed of the ERA5

11
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inputs other than precipitation, and a target matrix 7" composed of precipitation inputs,
such that

F of size (N3D X Np + NQD,Nlat X Nlon X Nt)

D= (FT) with ] (7)
T of size Ny X Nign X N;

That can be considered two matrices of samples from the random variables ¢(x,t) €
RNspxNp+Nop - and P € R. These datasets D will be the form used to train our Neural
Network or Symbolic Regression equations and to evaluate the performance of different
candidates G, functions, precipitation parametrization. Our broad problem is then framed
as follows : Find a simple semi-empirical, local in time and horizontal space, deterministic
relationship between total ERAS precipitation and grid-scale variables, such that

P(x,t) =T = Gy (F(x,1)) (8)
Hence, the G, function that we are looking for is such that G, : RNsp*Ne#tNap 5 R

2.1.2 Metrics

Mean Squared Error

Coefficient of Determination The main performance metric we will be using during
this study is the coefficient of determination, R?, which can be defined for our case as

i MM~ G(F))?

RZ=1— —
N 9)
MSE
—1—
o7

with 7" and F the target and features matrices defined earlier, and T denoting the mean
of T'. This measure is related to the Mean Squared Error (MSE), the Loss function that
will be used in the majority of our NN throughout this work.

Onset description: Binary classification metrics While the R? metric describes
the overall performance of our model, one can develop metrics to specifically assess the
performance of certain regimes. For example, if we want to quantify how well our model
describes the onset of precipitation. We can consider that a point T; exceeds a certain
threshold T, for example, T. = 0.3mm/h, the corresponding column is precipitating at
that time. We can frame our regression problem as a binary classification problem, being
"Is it raining or not ?". The results of this problem can be summed up in a standard
confusion matrix

Predicted
gx(Fz) > Tc gx(E) S Tc
3 T>1 TP FN
S <t FP TN

12
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From there, FP,FN,TP and TN can be combined in various ways to produce metrics. We
chose to go with the Mathew Correlation Coefficient, which can be written as

TP xTN —FPxFN

MCC = (10)
V(TP + FP)(TP + FN)(TN + FP)(TN + FN)

The MCC provides a balanced measure of classification accuracy, particularly useful
when dealing with imbalanced datasets like ours, with around 90 percent of non-raining
samples. MCC considers both the sensitivity (true positive rate) and specificity (true
negative rate) of the model, making it well-suited for evaluating the model’s overall effec-
tiveness in capturing precipitation events while minimizing false alarms, thus providing a
robust assessment of its binary classification performance.

2.2 Neural Networks, Feature Selection and Kernel Discovery

One of the main focuses of this study, sparsity, means that want to reduce both the
dimensionality of our features vector ¢(x,t) which equals to N3pN, + Nop and trainable
parameters vector y; all of that while keeping performance metrics as good as possible. To
tackle the first issue, one can first select the most informative variables between all of our
ERAS5 inputs, therefore reducing N3p and Nap. To discriminate the "informativeness" of
each variable, we will be comparing them using the same NN model, a

2.2.1 Neural Network baselines

Given a Batch Size N,, an input size N; and an output size N,, we can describe the layers
as follow

Linear Layer Given an input tensor x; of size (N;) and an output tensor X, of size (IV,)a
linear layer, denoted in this study Linear(V;,N,), will perform the following operation

Xo = AXi+b (11)

With A the weight matrix, of size (N,, IV;), and b the bias vector of size (N,). A and
b are entirely composed of trainable parameters. The Linear layer is the main building
block of the FFNN.

Batch Normalization layer =~ We describe a Batch Normalization layer, denoted in this
study BatchNorm(N;), given an input tensor x; of size (IV;) and an output normalized
tensor X; of size (N;)

~ Xi — E(Xi)

Gi= a2y
/ Var(x;) + €

With € a small fixed parameter (¢ = 107% in this study) to avoid division by zero, and

~, B trainable vectors of size N;.The pointwise multiplication is denoted *. This layer

normalizes the inputs to fixed means v and standard deviation 8. This provides a faster

convergence of our networks and better results [11].

(12)

13
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Kernel Layer We describe a Kernel layer, denoted in this study KernelLayer(N;,1),given
an input tensor x; of size (N;) and an output tensor x, of size (1) as the operation

Xo = AX; (13)

With A the weight matrix, of size (1, IV;), and no bias vector. Therefore, the N; trainables
parameters of A compose our integration kernel, so the layer act as an integration layer.

Functionnal Kernel Layer We describe a Functional Kernel layer, denoted in this
study FuncKernelLayer((V;,1),k,).given an input tensor x; of size (IV;) and an output
tensor X, of size (1) as the operation

Xo = kj(P) - Xi (14)

With p the pressure level vector of size (1V;), k;’ a weight function depending on p and
parametrized by the trainable parameters of the vector ). - denotes the scalar product.
As such, we perform with this layer an integration of the 3D input variables x;, but the
trainable parameters act as parameters in a function that then outputs a weight vector
k;’ (p), rather than being directly themselves the vector.

Activation functions We use two activation functions. Given an input tensor x; of
size (IV;), we use the Rectified Linear Unit (ReLLU) function, written as
X; + |X;

ReLU(x;) = # (15)
With |- | the absolute values of the elements of the vector. As such, every output of ReLU
is non-negative. We use this activation function in the end of all our network : since
our regression target, precipitation, is positive by definition, we enforce this physical con-
straint to be respected with this activation function.

We also use the Gaussian-error Linear unit (GeLU), written as
GGLU(Xi) = Xj * (D(Xi) (16)

With ®(z) the cumulative distribution function of a normal distribution N (0,1). This
activation function is a smoothed version of the ReLLU activation function. One of its
important features is that it does have a small non-zero output for negative inputs, rather
than just 0 for ReLU. It prevents the "death" of certain neurons, meaning that a neuron
that outputs a lot of negative values could be never activated, hence his weight is never
modified by the backpropagation, effectively "killing it", which negatively impacts the
NN performances by reducing his number of effectively working weights.

2.3 Kernel Learning

To reduce further the dimensionality of our inputs, one way that comes to mind is to
integrate our 3D inputs, transforming a N discrete values on the vertical into one. The
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naive approach could be to just perform a column integral, written for

¢ = / " d(p)dp
N (17)
~ Z o(pi) Ap;

With Ap; = (pit1—pi), pnv+1 = 0. However, in the same manner as with feature selection,
we want to retain as much information from this integral as we can. One can think that
certain atmospheric portions are more important to convective processes than others and
that these portions are different for each state variable: we could typically suppose that
the relative humidity is really important relative to clouds in the lower troposphere, where
as the ice water content is typically correlated with precipitation at higher altitudes. In
this manner, we can then rewrite the last integral associated with a weighting function
ks(p) such that

. Po
6= [ ks
0
N (18)
~ Z ks(pi)o(pi) Api
i=1
With k4 being a deterministic function. The problem is then rephrased as such that we

need to find &, such that R? is maximized when using ¢ as a predictor. There are several
ways to tackle such a problem an we are going to go through them in the next paragraphs

First off, it is clear that our kernels k, depend on a certain number of trainable pa-
rameters, that are supposed to be fitted when we resolve the problem. While we reduce
the dimension of our variables vector ¢, we increase the dimension of our trainable pa-
rameters vector x, and we want this increase to be ideally small. Since we are performing
a discrete integration during our computation, one can want to search for N trainable
parameters each corresponding to the N values taken by ky(p;=1, n). There are multiple
ways to find such a kernel. We opted for two different way: Canonical Correlation Anal-
ysis and learning with a Kernel Layer.

On a second time, we can go further and seek to reduce the number of trainable pa-
rameters of the kernel in itself. We chose to develop a kernel based on a family function
depending on a few parameters that will be trained with an FFNN and the Functional
Kernel Layer described earlier.

2.3.1 Canonical Correlation Analysis

Given a state variable defined on N pressure levels ¢; _n, and the corresponding precip-
itation P, we can treat each sample these pair in our data as sampled from two column
vectors of random variables, with finite second moments. Canonical Correlation Analysis
(CCA) seeks an optimal vector k, to perform a linear combination of the random variables
in the vector ¢ into a single scalar, that we can write in the form kg - ¢, (with - being the
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scalar product). The objective is then defined as maximizing the correlation between the
precipitation and the linear combination of the state variable vector, i.e.

ks = argmax corr (k;)T -, P) (19)

kg

With corr (k;bT - @, P) representing the Pearson’s correlation coefficient p, such that for
two independent random variables X,Y with second finite moments,

E(XY) — E(X)E(Y)

0x0y

pxy = corr(X,Y) = (20)

. With ox = /E (X?) — E(X)? the standard deviation of the random variable X. In our
discrete case, we would compute the sample correlation using the matrices T" and F' such

that
NionNiat Nt NionNiat Nt NionNiat Nt

p= > TLh- > T ) h (21)
1=1 i=1 =1

Where T; = Zjvz”l (T);j(ky)jWe can then numerically compute our optimal k, and we
obtain a kernel for each 3D variable a kernel k4 with IV trainable weights parameters, one

for each pressure level.

However, it’s important to recognize the potential limitations of relying solely on lin-
ear correlation when applying CCA. The intricate dynamics of tropical precipitation are
often characterized by complex non-linear interactions between subgrid scale variables
and precipitation patterns. Linear correlation measures might fail to capture these in-
tricate non-linear associations, leading to an incomplete understanding of the underlying
processes. By exclusively relying on linear correlations, there is a risk of overlooking sig-
nificant relationships that may be better captured by more sophisticated techniques, such
as NN-based ones which can unveil complex non-linear relationships. To tackle CCA’s
shortcomings, we introduce in the next paragraph a NN-based kernel discovery method.

2.3.2 Neural Network Kernel Layer

Another way to discover kernels with one trainable parameter per pressure level for each
variable is to use Neural Networks, quite similar to the one proposed for feature selection.
We are taking the same network, but adding a first neuron layer without biases, ensuring
we got a multiplicative kernel with /N parameters like in our definition. As such we’re opti-
mizing for an objective (lowest MSE) by twisting the weights of the multiplicative kernel.
Meaning that the single input on the second layer is the most informative combination of
all the pressure levels with respect to this neural Network architecture.

2.3.3 Function Kernels

If we want to reduce the dimension of our parameters x, we can reduce the size of the
aforementioned kernels. Indeed N parameters for single pressure level variables seem
high for empirical baselines which are supposed to be easily readable and reproducible.
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In this manner, we need a way to parametrize our kernels k,(p) with as few parameters
as possible. One way to attain this objective is to assign to k4(p) a fixed function form,
for example, ky(p) = ap + b, with a,b € R being trainable parameters. We then reduced
for each variable the dimension of the parameters from N to 2. We could think of a
wide range of functional families that could be suited for these kernels. In this study, we
tried Heaviside and Ramp functions, polynomials of varying orders, sine and cosines, and
sigmoids, and ended up using a 3-parameters function composed of a constant weight and
a Gaussian function, expressed as

0 =+ —— e (3 (22)

With o, € R, 0 € RT™. This functional form allows us to accentuate (in terms of
weighting) different atmospheric layers, centered around specific pressure levels controlled
by the parameter ;1 and with a specific height, controlled by o. The a parameter allows
us to still have smaller but non-zero weights outside of the region of interest.

2.4 Symbolic Regression

After reducing the number of features and integrating the pressure-level variables, we end
up with a few, typically under 6, distinct scalar inputs to feed into Symbolic Regression
(SR). All the techniques we developed earlier sought to allow the use of SR, which does
not perform well with a number of variables bigger than ~ 10. Unlike traditional regres-
sion methods that focus on numerical coefficients, Symbolic Regression aims to identify
mathematical formulas that best represent the interactions between input variables. No
predefined model serves as a starting point for symbolic regression; instead, initial expres-
sions emerge through random combinations of mathematical components like operators,
functions, constants, and variables, that are part of subsets that we can specify in the
start.

The strength of symbolic regression lies in its potential to uncover intrinsic dataset rela-
tionships, untethered by human assumptions or gaps in domain knowledge. This promotes
interpretability, enabling insights into the data-generating system, enhancing generaliz-
ability, and mitigating overfitting tendencies.

After fitting the training datasets, SR (using the library PySR) outputs a family of growing
complexity equations: Balancing accuracy and simplicity between these equations will be
done using a complexity-accuracy Pareto Plan, resulting in solutions along a Pareto front:
the front where it’s impossible to increase accuracy without increasing the complexity, and
vice versa .

3 Results

Now that we have precisely described the methods we are going to use, we present and
discuss here the results obtained with it. We will first see the methodology adopted to
train the neural networks and the associated technical details: we will briefly describe the
structure of the different networks used, the hyperparameters used for their training as
well as cross-validation methods.
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We will then see a simple example of parameterization by neural networks using only
relative humidity as a predictor: This will allow the reader to better understand the
physical meaning of the different metrics used, and the following results. Then, we will
see which variables appear to have the most predictive power with our FFNN architecture
and will comment on these results.

In the third part, it will be necessary to analyze the results obtained by the different
methods of "Kernel Learning", as well as to quickly analyze the meaning of the Kernels
obtained. This will finally allow us to approach the results of Symbolic Regression, where
we will present several candidate equations and study their different terms and meanings.
We will conclude the study by summarizing all the results obtained in Pareto precision-
complexity plans, which will allow us to draw a Pareto frontier and thus to have a global
vision of the work accomplished and to come

3.1 Methodology and Training procedures

The first part of our study was devoted to developing a neural network architecture

’ Parameters H Main Network \ Kernel Layer ‘
Layer 1 - KernelLayer(N,1)
Layer 2 Linear(N,256),GeLU() Linear(1,256),GeLU()
Layer 3 BatchNorm(256),Linear(256,128),GeLU() | Same as Main Network
Layer 4 BatchNorm(128),Linear(128,64),GeLU() | Same
Layer 5 BatchNorm(64),Linear(64,64),GeLLU() Same
Layer 6 BatchNorm(64),Linear(64,1),RELu() Same
Optimizer Adam Same
Learning rate || 1074 Same
Batch size 1024 Same
Epochs 5 Same

To train these models we ran some tests on the optimal number of samples to use. A
single time step of our ERAbS data gives us 1440 % 200 = 288000 sample, and we dispose of
365 * 8 = 2920 time steps per year, and multiple years. This means we have quite a lot of
data, in fact a largely sufficient amount for the small, sparse model that we are trying to
train. Our NN models have a number of trainables parameters typically of order O(10%),
while deep-learning forecasting models using 3D inputs might have around (O)(10%) (e.g.
[4]), therefore needing dozen of ERA5 complete years to train. In our case, we found
it sufficient to use around 15 time steps on the training sets, leading to around 5.10°
samples. This number of samples allows us to reach a plateau of minimum loss, while
being sufficiently big to prevent overfitting, all of that with a training times of around 5
minutes with a single 24-core AMD Epyc2 7402 CPU.

We perform an early stopping procedure, meaning that we stop the training when the

validation loss starts to rise, and we keep the model associated with the best validation
loss.
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Figure 1: (a): Univariate distribution density of ERA5 precipitation and the associated RH-only
NN-based predicted precipitation, log scale on the y- axis. (b) : ERA5 precipitation and corresponding
RH-Only NN-based predicted precipitation, conditional on CRH. The line represents the mean on each
CRH bins (every 0.01 CRH), and the top and bottom of the shadow respectively the 84th and 16th
quantile of each bin.

k-folds-like cross-validation We will use in this study cross-validation methods that
resemble the k-fold method, with k£ = 3 in our case, but with minor modifications. We
divide the training dataset and the validation datasets in 3 blocks, which all have the
same number of samples. We then train a first network with the training blocks 1-2,
and the validations blocks 1-2 ; a second network with training and validations blocks
2-3, and a third with blocks 1-3. Therefore we have trained three networks on different
datasets, giving us a minimal, maximal, and mean performance, allowing us to quantify
the variance in terms of accuracy of our networks, which we will express in the form
R? = mean +(max — mean).

3.2 RH-based NN example

Using R? as a unified measure to quantify informativeness between models may be useful
and necessary. However, a global R? does not really allow one to get a grasp on the differ-
ence in forecast quality between different geographies (e.g ocean and land), or precipitation
regimes. We train a model of the 'Main Network type’, using as input the full column of
Relative humidity, so an input size of 21. We follow the training procedures described in
the previous section. The R? obtained by this simple network is R? = 0.43 £ 0.02. We
present on figure 1 the univariate distribution of ERAb precipitation on the left and its
conditional distribution with Column Relative Humidity (CRH) on the right. We plot it
against this same distribution but with the NN-predicted precipitation, to get a clearer
view of what really lies behind "R? = 0.43 & 0.02". The Column Relative Humidity
humidity is defined as .

crir= SV _ ot 1% (23)

CWV; E 0 QSdp
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Figure 2: R? world map on the tropical latitudes and full longitudes, results obtained by
the RH-only NN-based predicted precipitation model. R? is computed on each grid
points over 100 samples in time.

and serve as a way to highlight different precipitation regimes: as seen on 1, the mean
precipitation scale exponentially with CRH. As we see on the precipitation univariate
plot on the left, our RH-based NN captures quite well the distribution for low to moderate
raining events, typically under 20 mm/3h, but misses out completely the more extreme
events, typically with precipitation over 30mm/3h. This underrepresentation of extreme
events is a corollary of an overrepresentation of the really low-rain events. It is specifically
visible in the second bin (1 to 2 mm/3h, on 1), with the overrepresentation on this single
bin compensating for the underrepresentation in every subsequent bin, due to the really
high number of low-precipitating bins. This a typical manifestation of the so-called drizzle
effect: our model is raining 'too ofen, and too few’. We have too many precipitating bins,
and thus they are precipitating an abnormally small amount of rain.

On the same figure, 1(b), we represent the true and predicted precipitation distribu-
tion, conditional on CRH. We can observe that the conditional mean of precipitation
is predicted quite well by our NN for moderate to high rain events (below 20mm/3hr),
but the variance is not captured as well. Our NN tends to stick to values near the mean,
another predictable effect from the fact that we are using a M SFE loss function In figure
2, we represent the R? on every grid point of our studies, obtained over 100 samples (i.e
100 times point) for every grid point. As such, we obtain a geographical breakdown of our
NN parametrization quality. As discussed earlier, we see that the problem is much easier
on oceans. However, we see a lot of huge drops in R? on land, typically on the African
and South America East Coasts. This drop is also worsened in areas with varying topog-
raphy, such as the Andes. This indicated that a model relying solely on thermodynamical
variables fails to generalize on our case from land to ocean. We will introduce further in
this study orographical variables that will help with a better generalization

With the above discussion, we have in mind what typically lies behind a specific av-
eraged score R? in terms of differences of geography or precipitation regimes. In the
following paragraphs which will be presenting our experiments and results regarding the
choice in variables and integration structures, we will be comparing their performance
solely based on their R? scores.
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3.3 Feature Selection

As proposed we start by shortening the number of input variables for our by comparing
their performances using the a satndard feed forward neural Network. We build one net-
work for each variables as input, meaning that the 2D variables NN will have an input
size of 1 and the 3D ones an input size of 21. One could argue that comparing them one
by one could bias our scale of informativeness for some variables, given that some might
not be informative on their own but only when coupled with others. Howewer it would
have been too computationnaly expensive to train networks on every combination.

On fig. 5 are provided the R? scores obtained by our 'Main Network’ using single 3D
variables with 5 differents methods. To have a first glimpse at how much information
each variable carrys, we made tests with the Full Vertical Profile, mass-weighted or not.
Here, 'mass-weighted’ means to that we multiply each inputs on a pressure level p; by the
corresponding dp;. This gives a rough weighting to the network and gives it information
on pressure levels repartition. Altough one could suppose that a Neural Network could
recreate these weights, given the number of trainable parameters (40.10%) it has, adding
mass-weighting proved to increase our overall R? performance on nearly all variables.

We see that solely temperature based variables, #,7 and DSE appears to have quite
low predictive power on their own, around R? = 0.2 with full levels. The wind speed
magnitude appears to carry nearly no information on it’s own, with R? close to 0. Vari-
ables that concatenate temperature and humidity tends to carry the most information :
07 ,RH are the best predictive variables with R? around 0.45, while M SE and 6, are very
close at 0.35. The ice and liquid water content, ¢; and ¢, also carry a lot of information
(R? respectively of 0.37 and 0.45) but their final use in our parametrizations will be de-
bated later in this study. Overall, our best candidates for a sparse analytical realtionship
seems to be variable to includes humididty and temperature in one mesure : RH and 67.
We will investigate these first results further to see if high scoring variables here convert
into high scores with kernel integration.

3.4 Kernel Learning
3.4.1 Canonical Correlation Analysis

To start our kernel finding journey, we first put in place a framework utilizing CCA. As
described earlier, we first find a kernel using the CCA methods. Once we found this
kernel, we run the CCA-Integrated variables trough 'main network’ FFNN and compare
their score to a regular integral with no weights, to see if we manage to scavenge more
informativennes from the full levels with our CCA than with a regular integration. We
see that the quality of the CCA is quite ambivalent: for the three variables shown in fig.
3,07, RH and ¢, we see some really noisy kernels; if we compare their scores to the results
provided in fig. 5, we see a small increase in R? on ¢;, and a worse performance on 67,
RH compared to a regular mass weighted integral. The limitations of the CCA, relying
on linear correlation analysis, already highlighted in the methodology description lead us
to non-linear methods of full kernel discovery.

21



3.4 Kernel Learning

3 Results

&

<; — 2002 i — 2002 — 2002
N, 2003 Q 2003 2003
20000 3 20000 j 20000 /
\ \
40000 \ 40000 \ 40000
g z ) g
= =3 =
60000 60000 60000
80000 80000 (/ 80000
> b N
— -
100000 100000 100000
-1 -0.5 0.0 05 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
CCAweights CCAweights CCAweights
(a) (b) ()

Figure 3: Kernels obtained with the CCA method, for (a) : 67, R? =0.31 +0.01 (b) : RH,

R? =0.29 4+ 0.02 and (c) ¢, R? = 0.21 £+ 0.01 . Parameters trained on the 100 to 1 hPa levels. The full
line represent the mean weights on the 3 folds, and the pale filled zone borders the max and min. The
two differents lines on each graph represent results on two different years, 2002 and 2003

3.4.2 Kernel Layer

Using the Full Kernel Layer method discussed in the Methodology section, we compute
the kernels for twelve 3D variables, presented in fig. 4. We use the 'Kernel Layer’ NN
architecture to discover the weights of the kernel, and then give as input the integrated
3D variables with the the weights we found to a ’Main Network’ NN architecture, giving
us a R? score, allowing us to quantify how much information we managed to keep with
this integration scheme.

On fig. 5, we resume the results obtained so far in terms of R? and compare the Kernel
Layer integration, standard integration and full-level inputs. The obtained results with
Kernel Layers surpass those achieved through standard integration, offering clear advan-
tages. Moreover, we managed to obtain R? comparable to the full 21 levels, indicating
that we are on a promising path. However, as seen in fig. 4 it is evident that certain noisy
kernels are associated with less informative variables, particularly those related to tem-
perature. This noise issue is further compounded by the complexity of the model, which
involves 21 parameters. The model’s lack of readability and interpretability is notable,
as the weights appear scattered and noisy, impairing our ability to discern meaningful
patterns. To address these shortcomings, there is a pressing need for a refined version
that strikes a balance between preserving prediction quality and smoothing out functions,
ultimately reducing the number of parameters while enhancing the model’s usability.

3.4.3 Function Kernels

As we’ve seen, the use of a NN-based Kernel layers provides ways to retain more infor-
mation than a non-weighted integration. However, we are still adding a lot of trainable
parameters, and these kernels are not easily expressed nor interpretable, with spurious
jumps in weight values for example. As discussed earlier, we will now try to learn kernel
using a kernel family function with 3 parameters. We represent on fig 6 the same 12
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Figure 4: Kernels obtained with the kernel layer methods, with parameters trained on the 1000 to 10
hPa (full levels). The R? score is obtained by a "Main Network’-type NN wich only use as an input
feature the variable integrated with the displayed kernels, and this kernel is fixed, i.e found and
optimized using another network

kernels as earlier. We chose to restrict the pressure levels to under 200 hPa because it
actually makes the learning more stable. If we take the full levels, the functions are not
as smooth and do not converge as well, sometimes making strangely huge peaks on the
levels above 200 hPa. Since it could be labeled spurious that these levels are good causal
predictors of convection, we discard them.

We see that the resultant R? is really comparable with the full kernel learning of the
networks. That is reassuring since it proves that we managed to lower the parameter’s
space dimension without compromising much. The decision to use 3D variables on pres-
sure levels below 500 hPa from ERA5 data is a prudent one, rooted in the avoidance of
causality problems. Atmospheric variables at higher pressure levels, typically above 500
hPa, can indeed exhibit causality challenges when attempting to relate them to precipita-
tion processes. This is due to the fact that variables at higher altitudes are often influenced
by, rather than causing, precipitation and convection. For example, the tropopause, the
boundary between the troposphere and the stratosphere, typically occurs at varying alti-
tudes but is often well above 500 hPa. Processes occurring near the tropopause are driven
by complex interactions between the stratosphere and troposphere and are not directly
tied to surface-level weather events like precipitation. [2] Therefore, variables at or above
the tropopause level are not suitable causal indicators for precipitation.

By focusing on pressure levels below 500 hPa, we mitigate the risk of including vari-
ables that are more likely to be influenced by precipitation and convection rather than
causing them. This approach ensures that the selected variables are more likely to cap-
ture the causal relationships between atmospheric conditions and precipitation, leading
to more accurate and physically meaningful subgrid parameterization models.
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Figure 5: R? scores obtained using different input variables for the same NN architecture, 'Main
Network’. For each variable, we use 5 different types of inputs. Two of them are composed of the full
pressure levels column (21 values), Full Vertical Profile, and Full vertical Profile (mass-weighted). The 3
others are composed of 1 value, being the result of different integration methods of the 21 values of the
Column. One is the Column Integral Mass weighted (eq. 17), and the two others are Kernel Integrals

(eq. 18), mass-weighted or not.
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We see that these new kernels provide nearly similar results to their 200 hPa counter-
parts for the most informative humidity-based variables RH,q,0. However, we see way
worse results for ¢; and ¢;. Indeed, the information carried by these variables seems to be
concentrated above the troposphere (500hPa) looking at the 1000-200 hPa kernels (fig.
6). However, this is not that damaging to our research since we are trying to privilege
prognostic variables, i.e. T//q/U based variables.

3.5 Symbolic Regression

The PySR library that we're using provides a framework allowing us to manually tune a
variety of hyperparameters. Here, we are using a custom loss function, a slightly modified
version of MSE to enforce the positive precipitation physical constraint, expressed as

L(G\(F),T;) = (ReLU(G\(F,)) — T;)? (24)

With F' and T being as always the features and target matrices. We provide the PySR
frameworks with a few operators: here, the main ones will be exp(), sin(), cos(), log(), RElu(), tan().
And we assign a specific complexity score to them. Each equation will have a higher com-

plexity score the higher the number of operators, constants, and variables there. Our
framework finds equations of increasing complexity, and the basic complexity quantifica-

tion in PySR is not suited for interpretable or readable equations.

Typically, since we aim to define a "readable" functional form, we need to avoid for-
mulations like sin arctan(z), which are almost never used in any analytical formulations
of physical laws or processes. However, from a computing point of view, sinarctan(x)
is not that "complex". There is a kind of gap between what us humans might con-
sider a complex equation and what might be actually a complex computation. Using
a 2 variables formulation, e.g f(x,y) = az + Sy might seem much less complex than
f(z) = e* —sin(arctan((x)), however the second equation as a lower dimensionality, so a
lower variance when training, etc. and is as straightforward to compute as the first ones
on a modern computer. In this manner, we assign a low complexity of 1 to each constant
and '+,* operators in the equations, a slightly higher complexity, 2, for variables, and
the ’/” and 'power’ operators. And finally, a complexity of 4 for each analytic function is
described at the start of the paragraph (sin(),exp()...). After obtaining a series of equa-
tions, we validate their performance on a validation set that we fold 3 times using the
same 3-fold methods as before, to obtain an estimation of its variance.

3.5.1 200 - 1000 hPa kernels

To develop our first family of equations, we will use RH ,q;,q;,0,,0.,05,0% as input variables.
We will all integrate them with the 20-100 hPa Gaussian function kernels we developed
earlier, and will add to RH ,0,,0,0% a normalization in the form of (for example for RH).

5
1 10

RH = D ki” (pi) RH (pi) Ap; (25)
2.104
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With D a normalization coefficient such that D = 10° Pa, the same for the four variables.
This transforms our integral to a weighted mean along the column and adds a parameter,
but more importantly, it normalizes the values of RH and 6’s based variables to values
around O(10'). This helps the Symbolic Regression to find good equations because a
great disparity in the values of the different input variables makes it harder for ML-based
models to converge to a satisfying solution. In all the following equations, variables are
kernel integrated and normalized with D for RH ,0.,0F,0%, but we dropped the overbar for
the sake of readability. After running our Symbolic Regression model, we ended up with
a family of increasing complexity functions, which will be summarized in the complexity-
performance Pareto Plan in the next paragraph. To get a first grasp of the type of
equations we obtained, we present one Pareto optimal equations (i.e you can’t lower its
complexity without lowering R?) using RH, ¢;, and ¢, and expressed as

P = ReLU(0.415¢; + ¢ + 107 e390RH) (26)

Here, we are using dimensional inputs, since ¢;,q; are expressed in Pakg.kg™!, due to the
multiplication by dp in the integral and the fact unlike RH they are not normalized by a
dimensional parameter. As such, this equation would need to include for example a mul-
tiplying factor in mm.h~! and a dividing factor in Pa for it to be dimensional. However,
the role of symbolic Regression is to potentially unravel new non-linear functional forms of
precipitation parametrization; we can easily twist these forms a posteriori to make them
obey at least dimensionality. The model’s predicted precipitation conditional distribution
on CRH is displayed on fig. 8 (a). We obtained with this model R? = 0.484-0.02, meaning
that we outperform our ’Main Network’ NN using the full 21 levels of Relative Humidity
and tens of thousands of parameters, which obtained R? = 0.43 £ 0.02. Considering that
the equation obtained does not use especially complex operators and intricate mathemat-
ical formulation, relying only on exponential and simple additions, it’s a good proof of
concept for the parametrization quality of Symbolic Regression. However, we obtain this
performance through the use of possibly non-causal pressure levels above 50 hPa that we
discussed earlier, and non-prognostic (diagnostic) variables ¢; and ¢;. These results serve
more as baselines to compare them to causal and prognostic models.

3.5.2 500 - 1000 hPa kernels

We are using in this section prognostic input variables namely RH,0,,0.,05,0%, with the
same normalization and training procedures as the last section with 200-1000 hPa ; but
we are using 50-100 hPa pressure levels with their associated kernels displayed on fig. 7.
We obtain another family of increasing complexity equations, that we will sum up in our
next section about the Pareto plan, but right now we will focus on one equation using
only RH and o,

P = ReLU((1.16RH )% RH o(=o0/(11.2RH+00))) (27)

Here, we are using non-dimensional inputs only. As such, this equation would need to
include for example a multiplying factor in mm.h~! for it to be dimensional. We displayed
the results obtained by this model in fig. 8 (b). We obtained R? = 0.38 £ 0.01. As we
can see, this model is noticeably worse than the one displayed on 8 (b). The mean is not
as well captured for CRH > 0.9, and more importantly the variance of the ground truth
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Figure 8: ERA5 precipitation and corresponding predicted precipitation, conditional on CRH. The
line represents the mean on each CRH bin (every 0.01 CRH), and the top and bottom of the shadow
respectively the 84th and 16th quantile of each bin. (a) : Results obtained with the model using 20-100
hPa, 26. R? = 0.4840.02. (b) : Results obtained with the model using 50-100 hPa, 27. R? = 0.38+0.01

distribution is badly reproduced into account compared to (a). However, we still perform
as well as 'Main Network’ NN taking as input the Kernel Integrated RH, which is the
input we are using in this equation (with o,). So our goal is still reached, since this model
is Pareto-Optimal compared to a NN based one, using only 7 trainable parameters : 3
for the RH kernel, 1 for the normalization terms, and 3 parameters in the RH equation.
The "Main Network’ with a kernel integrated RH has 42.10% trainable parameters. In the
final section, we will show 3 different Pareto-Optimal equations with these Kernels, using
prognostic variables that outperform this one.

An improvement over the above discussed could be to try to split the problem in two: on
one hand, a binary classification problem trained to develop a functional form fo that
predicts the onset of rain, i.e. ’Is it raining or not’. This functional form would be a
Heaviside function. On the other hand, we could train a functional form fp that only
accounts for precipitating bins only. This would mean that it would only be trained
on precipitating bins, alleviating dataset size problems in symbolic Regression (~ 5000
samples). However, we implemented this method which seem to be promising but did not
manage to develop models performing as well as the all-inclusive models.

3.6 Pareto Plan

the Pareto Plan presents a compelling case for the utility of Symbolic Regression. Al-
though Symbolic Regression exhibits a slightly lower accuracy compared to Neural Net-
work (NN), as we’ve seen with the two models cited in exemple above, its advantage lies
in its capacity for parsimonious model representation. The significance of this resides in
two key considerations.

Firstly, the simplicity of the Symbolic Regression models, as reflected by their lower
parameter count, lends itself to increased interpretability. In atmospheric science, un-
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Figure 9: Complexity-Performance Pareto Plane, here Number of trainable parameters - R2. The
Pareto Frontier is the continuous line in pale gray. The points labeled ’SR 200 to 1000 hPa’ and 500 to
1000 hPa’ represents the family of functions described in section 3.5.1 and 3.5.2, respectively. The "By,
Baseline’ represents the AN18 model (eq. )described at the start of our study. All the other groups are
computed with the 'Main Network’ NN type, with different inputs. '1 variable 21 levels’ represent 21
inputs values corresponding to each pressure levels of a single variable. ’2 variable 21 levels’ represent
42 inputs, the full pressure levels of two different variables. '1 variable 21 and 2D’ represent 22 input
values, the full pressure levels of a single 3D variable and a single 2D variable e.g orography or enthalpy
fluxes. ’2 variables 21 levels and 2D’ represent 43 inputs in the same manner. ’1 3D variables
integrated’ represent a single input being the result a Function Kernel Integration of the 3D variables.

derstanding the physical processes governing precipitation is of paramount importance.
Symbolic Regression generates analytical expressions that directly relate model input
variables to precipitation, thus providing valuable insights into the underlying physical
mechanisms. The parameters used in the formulations need to be dimensionnal, therefore
can be linked to certain characteristic dimensions of our problem; given that we are using
the same SR model, we can train these few parameters on a different part of the globe, use
these parameters to be informed on certain characteristics dimensions of the precipitating
systems in each part were we trained them.

Secondly, the reduced model complexity afforded by Symbolic Regression aligns with
the principle of Occam’s razor, favoring simpler models when performance differences are
not substantial. In cases where accuracy differences between Symbolic Regression and NN
models are marginal, the preference for simpler models is not only computationally effi-
cient but also aligns with the scientific principle of preferring simpler explanations when
they are equally effective. Moreover, models with fewer parameters tend to generalize
better to out-of-distribution or unseen data (Parsimony Rule); in a changing climate, this
generalization capability could be worth attention. To prove these claims, we represented
on 9 the sum up of all experiments carried this far. This figure is a complexity-performace
Pareto Plan, which forms a Pareto Frontier, shown in pale gray. As we can see, our best
SR models are obviously outperformed by NN models with full pressure levels inputs;
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Figure 10: Same Complexity-performance Pareto plane as in 9, but with R? computed only on Ocean
(LSM < 0.5)

however, this outperformance is not that huge. Using around /(10!) parameters com-
pared to O(10*) with NN, we reach R? near 0.48 with SR from 200 to 1000 hPa, and 0.45
with SR from 500 to 1000 hPa, these last models interesting us the most. This means that
while using fewer pressure levels, and even further integrating them, our models managed
to retain some key information, working with a really sparse number of parameters.

We also manage to outperform the linear AN18 By, Baseline that we try to build upon in
this study, by a noticeable margin, going from R? = 0.21 to R* = 0.41 for our best model.
However, this baseline was purposefully designed to parametrize ocean precipitation. To
compare our models on the same grounds we represent the figure 11 and 10, we present
on the Pareto plan the R? estimated respectively on land and on ocean, to assess the
generalization capability of the equations developed. On the land Pareto plan, 11, we
can see that while still being outperformed by NN models, our SR equations managed
to obtain R? around 0.2 for the best models, while the B;, baselines perform at around
R? = 0.03, which is expected considering that it was suited for an ocean prediction. The
use of orographical variables to enhance our land generalization capability helps our model
to attain this performance; we will go into more detail on this topic on the next section.
On the ocean comparison, fig. 10, we see that our SR equations still outperform the By,
baselines, and perform even better than the NN; however, this plot does not show the
results on all the NN we developed, only the 'simplest’ one, due to time limitations and
some computing issues on the Internship. If we had included the best-performing NN
showed on fog. 9 (e.g 21 levels + 2D), they would have beat our SR equations.

Finally, in fig. 12, we showed the onset prediction performance using the Mathews Cor-
relation Coefficient as our Performance Metric.
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3.7 Pareto optimal equations

To get a better sense of what these equations We present three Pareto-Optimal equations,
Py, P, and Pj, expressed as

P, = ReLU <)\1€>\2RH+>\30" + )\46_/\598++>\600>
P, = ReLU <)\16A2RH 4 Aot ) (28)

Py = ReLU (A (7 + A0,)” + A1)

With )\; being trainable parameters. Their values are displayed on the annex. As we can
see they all rely on exponential regarding T'/q based variables, namely a positive exponen-
tial for RH and a negative one for 6, which was predictable due to their relation to mean
precipitation. Using the exponential of relative humidity in parametrization equations for
tropical precipitation is justified for several reasons. As relative humidity approaches 100
percent, or 67 0 K, the air becomes increasingly saturated, which is a critical condition
for the formation of clouds and subsequent precipitation. Exponential functions naturally
capture this behavior, as they rise rapidly as their input approaches zero; in the same ways
they create a kind of 'moisture Threshold’: below a certain critical value, the exponential
term is really small (near zero), indicating limited moisture availability and therefore no
precipitation: this creates an onset-like behavior that is awaited in tropical precipitation

12].

Exponential functions also have a clear physical interpretation in the context of moisture-
driven processes. The rate of increase in precipitation with increasing humidity is governed
by the exponential coefficient, which can then be related to the sensitivity of precipitation
to changes in moisture.

Table 1: Scores of 3 Pareto-Optimal equations, with retrained parameters, evaluated on 20 random
days of 2003

Equations R? RZ . R%... MCC
P 0.405 £ 0.012 | 0.181 £0.005 | 0.473 £0.013 | 0.516 £ 0.007
Py 0.374 £0.011 | 0.060 £ 0.003 | 0.469 + 0.015 | 0.530 4= 0.009
Py 0.386 = 0.021 | 0.118 £0.010 | 0.468 = 0.017 | 0.523 +0.013

The utilization of orographical variables within the Symbolic Regression models reveals
a noteworthy performance discrepancy in predicting precipitation over land and specific
mountainous regions, as seen on 1. This divergence in R? values underscores the impor-
tance of incorporating orographic factors into precipitation parametrization. P, and Pj,
while having similar overall R?, perform way better on land than P,. That can also be
seen graphically on 13 and 14. The results of the P, equations appear to be much better
than the P, counterpart on really mountainous areas like the Andes or the East African
Mountains. This justifies our inclusion of orographical variables to try to generalize our
model to precipitation prediction on land.
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Figure 13: R? world map on the tropical latitudes and full longitudes, results obtained by the Py

model with parameters fitted on 2003 samples. R? is computed on each grid point over 80 samples from
the year 2002.
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Figure 14: R? world map on the tropical latitudes and full longitudes, results obtained by the P,

model with parameters fitted on 2003 samples. R? is computed on each grid point over 80 samples from
the year 2002.

The observed lower R? scores on land areas can be attributed to the complex inter-
play between topography and atmospheric dynamics. Mountains disrupt prevailing air
masses, leading to orographic lifting, which often results in enhanced precipitation on
windward slopes and rain shadows on leeward sides. By including orographical variables
in the modeling process, we acknowledge and account for these intricate interactions.
The models are thus better equipped to capture the localized variations in precipitation
patterns associated with elevation changes.
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Conclusion

In conclusion, this master’s thesis has undertaken a comprehensive exploration of subgrid
parametrization for tropical precipitation, leveraging advanced techniques such as Neural
Networks (NN) and Symbolic Regression. Through extensive feature selection using NN,
we successfully identified and harnessed key atmospheric variables. We then developed
a series of models to discover integrating kernels to reduce these variables from a dozen
pressure levels to a single predictor variable. Furthermore, our work extended to the in-
corporation of orographical variables, revealing promising prospects for improving model
accuracy, particularly in the context of land and mountainous regions.

These first steps culminated in the discovery of semi-empirical models with Symbolic
Regression, which managed to obtain nearly similar results as Neural Networks while
having only around 10 trainable parameters. We also managed baseline models present
in the literature on multiple metrics. Importantly, our approach has maintained model
sparsity, contributing to model interpretability, with readable equations

Looking ahead, there remain avenues for further exploration. While Symbolic Regres-
sion has yielded valuable analytical expressions, future research should delve deeper to
ascertain whether these equations represent the optimal representations of the underlying
physical processes. Additionally, assessing the model’s performance under changing cli-
mate conditions remains an essential step, offering critical insights into its generalizability
and adaptability.

Furthermore, the potential for expanding this research is vast. Incorporating time se-
ries data or broader geographical inputs could enhance the robustness and applicability
of the developed models. In this dynamic field of atmospheric science, ongoing inves-
tigations hold the potential to refine our understanding of precipitation processes and
contribute to improved climate models and forecasting tools. In light of these prospects,
this thesis represents a foundational step towards more accurate and versatile subgrid
parametrization for tropical precipitation, with ample room for future exploration and
advancement.
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