
Research internship

Improving climate extremes prediction :
downscaling approach

Field of study : Applied Mathematics and Machine learning

Scholar year : 2022-2023

Confidentiality notice

Non-confidential report and publishable on Internet

Author: Marine Berthier Promotion: 2024

ENSTA Paris Tutor: Host Organism Tutor:
Zacharie Alès Tom Beucler

Host organism: University of Lausanne
Address : Bâtiment Géopolis, UNIL Dorigny 1015 Lausanne - Switzerland

Acknowledgments
I would like to express my sincere gratitude to my supervisor Tom Beucler, director
of the ∂3AWN laboratory 1 and my co-supervisor Erwan Koch, director of ECCE,
for guiding me through that intriguing topic, giving me support throughout my in-
ternship and and precious feedbacks on my report. I would also like to thank Valérie
Chavez and Grégoire Mariethoz, members of ECCE, for the time they spent answer-
ing my questions and for allowing me to conduct this research project. Additionally,
I am grateful for the financial support provided by FGSE and HEC, and to Sabrina
Damiani for her administrative work.

My deep thanks also go to the laboratory members Milton Gomez, Saranya Ganesh
and Frederick Tam. Their warm welcome and willingness to share their knowledges
in Machine Learning have been precious to me.
I want to express my gratitude to the fellow interns and colleagues at the University
of Lausanne for their help and for the great working atmosphere.

Lastly, I wish to thank Zacharie Ales for accepting to be my ENSTA tutor.

1Data-driven atmospheric and water dynamics

2

Abstract
In an era when our global climate is undeniably warming and its consequences start
to show off, the ability to anticipate and assess the risks associated with extreme
climatic events is crucial for preserving human societies and ecosystems.
This research endeavors to address this imperative by employing predictive modeling
techniques to enhance the prediction of extreme events, especially heavy rainfalls
and storms. While statistical models, as described by Coles [6], have shed light on
the behavior of precipitation maxima, current climate models still exhibit limita-
tions in their resolution. In a context of predicting precipitation, local phenomena
are at stake : summer precipitation maxima, generally come from convective thun-
derstorms that are small in scale. For that reason we need to combine maxima
predictions with downscaling. Because standard interpolation algorithms fail to re-
alistically capture the spatial distribution of precipitation, more complex statistical
models and machine learning models will be explored. In this report I will explain
how a methodology for that purpose has been created and show the first results on
comparing the models using the Continuous Ranked Probability Score (CRPS).

KEY WORDS Downscaling, Extreme Value Theory, Generalized Extreme Value
distribution, Parametric Distribution Prediction, Machine Learning, Vector Gener-
alized Linear Model, Vector Generalized Additive Model

Internship context
I was looking for an internship in climate science, with the desire to apply the
statistical and probabilistic knowledge I acquired during my last semester focused
on data science at ENSTA. I wrote to Tom Beucler who is working on Machine
Learning in the atmospheric and weather science. He introduced me to the members
of ECCE : Expertise Center for Climate Extremes, which was just about to be
created. I became the first ECCE internship allowing me to work with Erwan Koch,
its director. I was both advised in statistics by Erwan Koch and in machine learning
and atmospheric science by Tom Beucler. This was also a great opportunity to
work in an interdisciplinary center : with people from the business studies and
from the environmental science fields. As part of the ∂3AWN lab, I attended the
weekly meeting where we dedicated an hour to discussing our latest research findings,
addressing challenges we encountered, sharing papers, and making conversations
about various topics related to machine learning. Those moments gave me very
interesting insight into the field.

3

Contents
1 Introduction 6

2 Main concepts 7
2.1 Mathematical framework for extremes prediction 7

2.1.1 Extreme Value Theory . 7
2.1.2 Finding the GEV parameters 8
2.1.3 What GEV enables . 8

2.2 Downscaling . 8

3 Preliminaries 10
3.1 Statistical methods . 10

3.1.1 Generalized Linear Model . 10
3.1.2 Generalized Additive Model 10
3.1.3 Vector Generalized Linear/Additive Model 11

3.2 Neural Networks . 11
3.2.1 Architectures of Neural Networks 12

4 Methodology 18
4.1 Data processing . 18
4.2 One metric to discrimate and to train the Neural Network : the CRPS 20

4.2.1 Parametric Distributional Prediction 20
4.3 Downscaling approaches and targets 22

4.3.1 Previous results on downscaling using interpolation 22
4.3.2 Downscaling precipitation maxima 23

4.4 Chosen downscaling framework and interest variables 24
4.5 Statistical models . 24
4.6 Navigating Neural Networks: challenges, insights, and solutions to

establish a protocol . 26
4.6.1 Training, validation and test set 29

4.7 Tested architectures arising from these reflections 29
4.7.1 Hyperparameter settings . 31

4.8 Transformers thoughts . 31

5 Results 32
5.1 Statistical models . 32
5.2 Hyperparameters choice . 35
5.3 CRPS results . 38

6 Further work 41

7 Conclusion 42

8 Appendix 45
8.1 CRPS Formula proof . 45

8.1.1 First lemma . 45
8.1.2 From the original definition of the CRPS 46

4

8.2 Hyperparameters search : U-Net . 47

5

1 Introduction
Acknowledging the limitations imposed by coarse-resolution climate models, re-
searchers have been investigating the process, called downscaling, consisting of gen-
erating higher-resolution projections of climate data at a local or regional scale for
decades. [4]. As the field of machine learning continues to advance, a diverse array
of neural network architectures has been explored : from Artifical Neural Networks
to Convolutional Neural Networks [13] and more state-of-the-art architectures like
U-Net [14] and Transformers [3] [9]. Usually when researchers evaluated the models
ability to predict extreme events, they used algorithms that predicted overall tem-
perature trends and then singled out the extreme values. However, this approach
has its limitations, as it might not fully capture the complex interactions and lo-
calized factors that contribute to the occurrence of extreme events. To address this
shortcoming, my research internship proposes a novel methodology that focuses on
forecasting extremes by directly targeting maximum values in a downscaling context.
The combination of Extreme Value theory and machine learning is already under
investigation [5], but in contrast to merely predicting maxima, our focus shifts to-
wards examining the parameters governing the associated probabilistic distribution.
They contain more information such as mean, standard deviation and quantiles.
Although some previous studies have tried predicting distribution patterns [1] [2],
my research stands out for exploring the Generalized Extreme Value distribution
parameters. You will learn in this report what methodology has been developped
and the first results obtained.

6

2 Main concepts
This section is dedicated to present the most important concepts that was at the
core of my research.

2.1 Mathematical framework for extremes prediction

2.1.1 Extreme Value Theory

Extreme Value Theory focuses on the statistical behaviour of the maxima Mn =
max(X1, ..., Xn) where X1,X2,..,Xn is a sequence of independent random variables
that have the distribution function F. Its behaviour can be theoretically known :

Pr {Mn ≤ z} = Pr {X1 ≤ z, . . . , Xn ≤ z}
= Pr {X1 ≤ z} × · · · × Pr {Xn ≤ z}
= {F (z)}n.

where z ∈ R
However in practice we almost never know the distribution function F. It can be
estimated empirically but small error on F can lead to significant discrepancies on
F n. Here comes the following powerful theorem :

If there exist sequences of constants {an > 0} and {bn} such that

Pr {(Mn − bn) /an ≤ z} → G(z) as n → ∞,

where G is a non-degenerate distribution function, then G belongs to the General-
ized Extreme Value (GEV) family of distributions, i.e., G can be written

G(z) = exp

{
−[1 + ξ(

z − µ

σ
)]−

1
ξ

}
defined on the set {z : 1 + ξ(z−µ

σ
) > 0} where the parameters satisfy −∞ < µ <

∞, σ > 0 and −∞ < ξ < ∞. µ is the location parameter, σ is the scale parameter
and ξ is the shape parameter.

The normalizing constants {an > 0} and {bn} are not a preoccupation as we have :

Pr {(Mn − bn) /an ≤ z} ≈ G(z)

for large enough n. Equivalently,

Pr {Mn ≤ z} ≈ G {(z − bn) /an}
= G∗(z),

where G∗ is another member of the GEV family. As a result the distribution of Mn

belongs to the GEV family.

7

The series of block maxima The block maxima Mn is defined as max(X1, ..., Xn)
as we usually look for maxima over a certain period of time : week, month, year,
... Xi could be for example the hourly total of precipitations and our time win-
dow will be the week or the month. We then generate a series of m block maxima,
Mn,l, ...,Mn,m, to which the GEV distribution can be fitted.

2.1.2 Finding the GEV parameters

The easiest way to find the GEV parameters is to use the maximum likelihood esti-
mation (there are some concerns about the regularity conditions that are explained
in the book of Coles [6])

Under the assumption that Z1, . . . , Zm are independent variables following the
GEV distribution, the log-likelihood for the GEV parameters when ξ ̸= 0 is

ℓ(µ, σ, ξ) = −m log σ − (1 + 1/ξ)
m∑
i=1

log

[
1 + ξ

(
zi − µ

σ

)]

−
m∑
i=1

[
1 + ξ

(
zi − µ

σ

)]−1/ξ

provided that

1 + ξ

(
zi − µ

σ

)
> 0, for i = 1, . . . ,m.

The case ξ = 0 requires separate treatment using the Gumbel limit of the GEV
distribution and leads to the log-likelihood

ℓ(µ, σ) = −m log σ −
m∑
i=1

(
zi − µ

σ

)
−

m∑
i=1

exp

{
−
(
zi − µ

σ

)}
.

2.1.3 What GEV enables

Having a distribution of probability for maxima is especially useful as
it enables us to look for quantiles and for information about extremes.
Estimates of extreme quantiles of the weekly/monthly maximum distribution are
then obtained by inverting the distribution function. We get

zp =

{
µ− σ

ξ

[
1− {− log(1− p)}−ξ

]
, for ξ ̸= 0

µ− σ log{− log(1− p)}, for ξ = 0

where G (zp) = 1−p, 1/p is typically referred to as a return period and zp the return
level associated with the return period since to a reasonable degree of accuracy, the
level zp is expected to be exceeded on average once every 1/p years. More precisely,
zp is exceeded by the weekly/monthly maximum with probability p.

2.2 Downscaling

In warm and humid regions, when warm air rises into the upper atmosphere, it cools
and condenses, forming clouds. When both the air is moist enough and there are

8

enough updrafts, these clouds can develop into storms and heavy rainfalls.

Convective storms happen at local scale. To offer qualitative risk assessment,
one needs precipitation at a high resolution. However Global Climate Models still
have coarse spatial resolution e.g 100 km for some of them. And those able to
have better resolution require lots of time and resources to compute at better scale.
Even when they managed to do it, they often struggle to represent certains types of
extreme events.

Two primary methods exist to extract data at local levels from the global climate
projections :

• numerical downscaling, often referred to as "dynamical downscaling," which
employs a nested Regional Climate Model

• empirical downscaling, which involves statistical and machine learning meth-
ods

Empirical downscaling is usually more computationally efficient and has also been
shown to reduce climates projections biases. It is important though to keep in mind
that while downscaling methods provide valuable insights, they tend to produce
extreme events that are less severe than observed, possibly due to assump-
tions of linearity and other factors [7].

We seek to determine the optimal approach for going from a 12 km resolution map
with meteorological and topological variables to a refined 2 km resolution map detail-
ing GEV parameters. This analysis involves a comparative assessment of statistical
methodologies and Machine Learning techniques.

9

3 Preliminaries
In this preliminary section, I offer an overview of the foundational statistical and
machine learning concepts that I learned during my internship and that are essential
for understanding the contents of this report. They will all be useful for parameters
distribution prediction and downscaling.

3.1 Statistical methods

3.1.1 Generalized Linear Model

General linear model is about writting the response variable y as a linear combination
of the predictors x1, x2, ...

y = β0 + β1x1 + β2x2 + . . .+ βnxn + ϵ

where β0, β1, β2, ..., βn are the coefficients associated with predictor variables x1,
x2, ..., xn and ϵ ∼ N (0, σ2) is the error term.
It is a powerful versatile tool in statistical modeling but happens to be unsuitable
to certain types of modelisation like if the range of y is restricted (if we want to
predict a binary variable). Enter GLM, Generalized Linear Model, that addresses
these limitations.

A GLM is made up of 3 things:

• The distribution family of the response variable, which is assumed to be a
member of the exponential family of distributions (like Gaussian, Bernoulli,
and Poisson)

• A linear predictor :

ηi = β0 + β1x1 + β2x2 + . . .+ βnxn + ϵ

• A link function that links the mean, E(yi) =µi, to the linear predictors. For
example for binomial we use the logit(p) = ln

(
p

1−p

)
function. So we have the

following equation for the GLM :

g(µi) = ηi

The GLM’s ability to accommodate different distributions and link functions allows
it to handle a wide range of data types and model complex relationships effectively.

3.1.2 Generalized Additive Model

Generalized Additive Models, GAMs, are statistical models that allow one to model
non-linear data. While a multiple linear model can be written as

y = β0 + β1x1 + β2x2 + . . .+ βpxp + ϵ,

10

a GAM has the general formula =

y = β0 + f1 (x1) + f2 (x2) + . . .+ fp (xp) + ϵ

Each linear component βjxj is replaced by a smooth nonlinear function fj (xj).

GAMs strike a balance between simple linear regression models, which are easy to
interpret but limited in capturing complex relationships, and more complex machine
learning models like neural networks, which are powerful in predicting complex
relationships but are harder to interpret. GAMs can capture nonlinear relationships
while allowing for interpretability and inference in the model results.

3.1.3 Vector Generalized Linear/Additive Model

Vector Generalized Linear Models (VGLM) are an extension of the traditional Gen-
eralized Linear Models that provide a more flexible framework for analyzing complex
data structures and non-constant variance. The biggest disadvantage of GLMs is
that they assume a fixed dispersion parameter, while VGLMs allow the disper-
sion to vary for each observation, accommodating overdispersion or underdispersion
that might be present in the data. VGLMs enable also the modeling of multiple
response variables simultaneously, incorporating correlations between them using
various working correlation structures.
Let’s take y, a Q− dimensional vector. VGLMs are defined through the model for
the conditional density

f(y | x;B) = g (y, η1, . . . , ηM)

for some known function g(·), where B = (β1β2 · · ·βM) is a d × M matrix of
regression coefficients to be estimated. We may also write B⊤ =

(
β(1)β(2) · · ·β(d)

)
so that βj is the jth column of B and β(k) is the kth row. The jth linear predictor
is then

ηj = β⊤
j x =

d∑
k=1

β(j)kxk, j = 1, . . . ,M.

Then the difference between VGLM and VGAM is the same as for GLM and GAM.
VGAMs replace the linear functions by smoothers such as splines. Hence, the central
formula is

ηi =
d∑

k=1

fk (xik)

where fk (xk) =
(
fk(1) (xk) , . . . , fk(Mk) (xk)

)⊤ is a vector of Mk smooth functions of
xk.

3.2 Neural Networks

A neural network is a computational model inspired by the structure and functioning
of human brain. It consists of interconnected artificial neurons, also called units,
organized in layers.

11

Figure 1: Basic architecture of a Neural Network

The most common type of neural network is the feedforward neural network, which
consists of an input layer, one or more hidden layers, and an output layer. Each
layer is composed of multiple neurons. Connections between neurons are represented
by weights and each neuron takes a weighted sum of the inputs. Then an activation
function (like a sigmoid, logistic or tanh function) is applied to the output of each
neuron. Its goal is to control the output range (to constrain the values into a
specific range), and also to introduce non-linearities as we want neural network to
learn complex patterns. Afterwards the result of the activation function is passed
to the next layer. This process is repeated layer by layer until the final output is
generated.

During training, the weights and biases are adjusted based on a chosen opti-
mization algorithm, such as gradient descent, to minimize the difference between
the predicted outputs and the desired outputs. This process is typically performed
using techniques such as backpropagation, which calculates and propagates the gra-
dients backward through the network.

3.2.1 Architectures of Neural Networks

Linear Neural Network A linear neural network (LNN) is a neural network that
only uses linear transformations in its layers. 2

2For the visualization : http://alexlenail.me/NN-SVG/index.html

12

Figure 2: Architecture of the most simple Linear Neural Network, with 2 inputs (for
example longitude and latitude) and 3 outputs (that could be the GEV parameters)

It can have several layers with different numbers of neurons.

Figure 3: Linear Neural Network with several hidden layers

In a dense linear layer, each neuron is connected to every neuron in the previous
layer. Mathematically, this operation can be represented as : y = W x + b

where:

• y is the output of the linear layer
• W is a weight matrix that determines the strength of the connections between

neurons
• x is the input to the linear layer
• b is a bias vector that is added element-wise

In practice Working with the GEV distribution requires to respect some con-
straints with the parameters : while µ can be any real, σ must be positive and for
precipitation we expect ξ to be between 0.1 and 0.7: so having ξ negative could
lead to problem durint the training part. For that reason we will need activation
functions.

13

Multilayer Perceptron Multilayer Perceptron is another type of artificial neural
network that consists of multiple layers of interconnected artificial neurons. Com-
pared to a LNN, activation functions are introduced.
For example to ensure that σ stays positive we add a Rectified Linear Unit, ReLU,
activation function: ReLU(x) = max(0, x). Pytorch allows the customization of an
activation layer, we can specify that only the scale parameter goes to a ReLU.

Figure 4: Artifical Neural Network operations - drawing from V7 lab

Convolutional Neural Network The Convolutional Neural Network (CNN) is
a type of neural network highly used in image recognition. The key component is
the convolutional layer. It applies a set of learnable filters, also known as kernels,
to the input image or feature map. These filters slide across the input, performing
convolution.

Figure 5: Kernel principle

Convolution enables us to extract local patterns and features by capturing spatial
relationships between pixels.
Working with CNN requires working with channels which refers to the depth dimen-
sion of the input data. Each channel in a feature map captures specific patterns in

14

the input data. In our case, channels will be precipitation, temperature,
humidity ... The number of channels is equal to the number of features.

Apart from those layers, it has pooling layers and fully connected layers. The pooling
layer follows the convolutional layer and reduces the spatial dimension of the data.
It aggregates neighboring values by taking the maximum (max pooling) or average
(average pooling) within a defined window size as seen in the following pictures. By
taking the maximum value within each pooling region, max pooling captures the
most prominent feature present in that region.

Figure 6: Max pooling principle

Figure 7: Classical CNN structure

15

Figure 8: U-Net structure

U-Net The U-Net architecture is named after its shape, which resembles a U.
It is a sort of CNN that consists of two main parts : a contracting path and an
expanding path. The contracting path is responsible for extracting features from
the input image, while the expanding path is responsible for reconstructing the
image from the features.

Transformer A transformer is a state-of-the-art type of deep learning model ar-
chitecture mostly used in Natural Language Processing. It was introduced in 2017
in the paper Attention is all you need [16]. It is composed of an encoder and a
decoder.

Figure 9: Transformer architecture from the paper

What is groundbreaking is the use of self-attention mechanism in both of them.

16

In the context of language processing self-attention allows the model to weigh the
importance of different parts of the input sentence when generating the output.
It can capture dependencies between words in a sentence, taking into account the
contextual relationships between them.
It uses 3 matrix : the query, the key and the value. The query Q represents the
piece of information that is seeking relevant information from the input sequence.
The key K represents information that is used to retrieve relevant information from
the input sequence. And the value represents the information associated with each
key.
Then we compute the attention that is mathematically written as :

Attention(Q,K, V) = softmax
(

QKT
√
dk

)
V .

Where softmax(x)i = exi∑N
j=1 e

xj

This step is done by the scaled dot-product attention and then the self-attention
mechanism happens in the Multi-Head Attention block :

Figure 10: Transformer architecture from the paper

17

4 Methodology

4.1 Data processing

Data type Thanks to David Leutwyler who works at MeteoSwiss, we obtained 11
years of simulated data in the past, from 1999 to 2009 and 11 years in the future, from
2079 to 2089 that were used for his collaboration in the paper ’Clouds in Convection-
Resolving Climate Simulations Over Europe’ [11]. Those are from HadGEM-driven
COSMO simulation, a type of atmospheric simulation that uses two different climate
models to produce its results. The COSMO (Consortium for Small-scale Modeling)
regional climate model is used to simulate the weather in a specific region, while
the HadGEM (Hadley Centre Global Environmental Model) global climate model
is used to simulate the weather for the entire globe. The model gives hourly data
at a 2 km resolution. Along with the coordinates : time, rotated latitude and
longitude (latitude and longitude values in the rotated coordinate system), we have
28 variables that display several climatic variables such as temperature at 2 meters
high, relative humidity or water vapour that depend on time, lat and lon.

Data format The hourly data are saved in a .netCDF format which is a file format
highly used for scientific data as it allows the storage of multidimensional data. It is
handled by the xarray library of Python. As the data resolution is 2 km, it requires
a large amount of memory, 1.9Tb for each year. The data are stored on a cluster
called Curnagl. Working with them requires working on the server. After setting
an interactive session, code is made with JupyterNotebook.
For downscaling purposes, we only keep 3 variables from the 28 displayed : T_2M,
the 2 meters surface temperature, TOT_PR the hourly total of the precipitation
and RELHUM_2M the relative humidity at 2 meters high. The measures are done
at 2 meters high to minimize the influence of the ground surface (grass, concrete,
water,...) on the measurement.

Variable extraction Using Xarray’s structures, we extract monthly precipitation
maximum while also recording the temperature and humidity conditions during
these peak precipitation periods. Looking at the data from the past, we have an
11-year dataset with a spatial resolution of 2 km on the Swiss map, producing 11
maxima for a particular month along with associated 11 temperature and humidity
conditions.
Our aim is to forecast the distribution for a specific month. However, due to the
limited sample size of only 11 instances, drawing probabilistic inferences becomes
challenging. The dataset lacks the necessary sample numbers to accurately deter-
mine distribution parameters or to effectively compare with the Continuous Ranked
Probability Score (CRPS). Therefore I combined two months so we can have a rea-
sonable number of samples and so saying that July and August maxima belong to
the same GEV distributions and trying to predict them using the temperature and
humidity conditions observed during those months.
It is important to cut the year into seasons/2-months and not to look at all the
maxima as in the GEV definition, Xi must be stationnary and precipitation depends

18

a lot of the time of the year.

Figure 11: Change in the distribution regarding the season

To make our model generalizable to Switzerland’s topography, we decided to add
altitude data from the NASA Shuttle Radar Topography Mission (SRTM). I accessed
these data through Open Elevation API, a free and open-source elevation API that
is easy to set up in Python. I considered first downloading and processing the data
myself, but Open Elevation API made the process much simpler.

Area of interest We focus on all Switzerland for the study but still work in a
rectangle.

Figure 12: Spatial area of interest

19

4.2 One metric to discrimate and to train the Neural Net-
work : the CRPS

4.2.1 Parametric Distributional Prediction

Parametric Distributional Prediction aims to predict the parameters of a probability
distribution and that’s what our neural networks are going to be trained for. During
the training phase, we will have a probabilistic approach meaning we will customize
a loss function that maximizes the likelihood or minimizes the distributional differ-
ences.

Figure 13: PDP principle

Minimizing distributional differences : the CRPS The Continuous Ranked
Probability Score (CRPS) is much used for Bayesian machine learning models where
the predictions are often not point-wise estimates but distributions. The expression
for comparing a single ground truth value y to a Cumulative Distribution Function
F is given by

CRPS(F, y) =
∫∞
−∞(F (x)− 1(x ≥ y))2 dx

where y is the ground truth value, F is the predicted CDF, 1(x ≥ y) is the indicator
function that equals 1 if x ≥ y and 0 otherwise, and the integral is taken over the
entire real line.

The CRPS happens to be a more state-of-the-art loss function and sometimes out-
perform the maximization of likelihood according to recent papers. [8]

When looking for the easiest way to implement the CRPS, I found an expression
that directly linked the CRPS to the GEV parameters. [12]

CRPS (Fξ, y) =

{
−y − 2Ei (logFξ(y)) + γ − log 2, ξ = 0

y (2Fξ(y)− 1)− 2Gξ(y)−
1−(2−2ξ)Γ(1−ξ)

ξ
, ξ ̸= 0

where
Ei(x) =

∫ x

−∞

et

t
dt

20

CRPS (Fξ,µ,σ, y) = σCRPS

(
Fξ,

y − µ

σ

)
.

The CDFs and otherwise required functions are given by Fξ,µ,σ(x) = Fξ

(
x−µ
σ

)
for ξ = 0 : Fξ(x) = exp(− exp(−x))

for ξ > 0 : Fξ(x) =

{
0, x ≤ −1

ξ
,

exp
(
−(1 + ξx)−1/ξ

)
, x > −1

ξ
,

Gξ(x) =

{
0, x ≤ −1

ξ
,

−Fξ(x)

ξ
+

Γu(1−ξ,− logFξ(x))
ξ

, x > −1
ξ
,

for ξ < 0 : Fξ(x) =

{
exp

(
−(1 + ξx)−1/ξ

)
, x < −1

ξ
,

1, x ≥ −1
ξ
,

Gξ(x) =

{
−Fξ(x)

ξ
+

Γu(1−ξ,− logFξ(x))
ξ

, x < −1
ξ
,

−1
ξ
+ Γ(1−ξ)

ξ
, x ≥ −1

ξ
.

Unfortunately when I tried to implement it with PyTorch, I needed the gamma
function, which is not available in PyTorch. This meant that there was no way to
compute gradients, and even when I tried to auto-implement the function, it was
still a large and unwieldy loss function.

For this reason, I demonstrate a CRPS formula that uses the expectation values and
is inspired by the Cira TensorFlow implementation [10].

CRPS(F, y) = EF |Y − y| − 1

2
EF |Y − Y ′|

However this one implies comparing two distribution samples. The chosen neural
network gives as output the three parameters of the GEV, we then use them to create
samples of the corresponding GEV distribution. Pytorch requires to be careful when
creating the samples : as for the precedent CRPS form, the computation of the
gradient requires the loss function to be the result of differentiable operations. For
that reason we are not using pre-created libraries that give sample of GEVs like
genextreme from scipy.stats but as we know the parameters of the distribution, we
know the cumulative distribution function F and so we can sample values from X
using a uniform random variable U .

X = F−1(U)

The inverse cumulative distribution function for a GEV distribution with parameters
ξ, µ and σ can be expressed as:

F−1(p) =

{
µ+ σ

ξ

[
(−(− log p)−ξ − 1)

]
, if ξ ̸= 0

µ− σ log(− log p), if ξ = 0

where 0 < p < 1 is the probability and F−1(p) is the value corresponding to the
quantile associated with p.

21

4.3 Downscaling approaches and targets

There are two main approaches in empirical downscaling : Super resolution and
Perfect Prognosis

Figure 14: Empirical downscaling main approaches

Super-resolution is done by taking low-resolution climate variable and using a neu-
ral network to learn the relationship between the low-resolution variable and high-
resolution variable. On the other hand Perfect Prognosis tries to build relationships
between large-scale atmospheric variables and local weather. In order to predict
heavy rainfall at a 2 km resolution : Super Resolution will use heavy rainfall at a
12 km while Perfect Prognosis will use temperature, relative humidity, pressure, ...

4.3.1 Previous results on downscaling using interpolation

The last summer intern implemented three interpolation techniques to do downscal-
ing on precipitation, temperature and humidity.

• Bilinear interpolation fbilinear (x, y) = axy + b1x+ b2y + c is the 2-dimensional
version of linear interpolation

• Bicubic interpolation is taking a cubic function in 2 dimensions fbicubic (x, y) =∑3
i=0

∑3
j=0 aijx

iyj

• Quintic interpolation fquintic (x, y) =
∑5

i=0

∑5
j=0 aijx

iyj

He implemented 6 metrics : RMSE, MAE, Structural Similarity Index (SSIM),
Hellinger distance, Perkins Skill Score and temporal and spatial autocorrelation.
The results showed that the quintic interpolation was the best of the three.

22

Though it was made to serve as baseline, it helps understand the first issues to tackle
with Super-Resolution. I adapted his code to downscale the precipitation maxima
of a particular month and year.

4.3.2 Downscaling precipitation maxima

Let’s consider the 2 km-resolution map depicting hourly precipitation maxima for
the month of July in 2008, which is visually represented in the graph labeled as
"Original Data." Some maxima can exceed 40 mm/h.

Figure 15: Downscaling of maxima

Subsequently, the grid is rescaled to a 12 km resolution and downscaling is per-
formed. An observation from the change in the abscissa is the omission of the most
remarkable maxima (ranging from 30 to 40mm/h) throughout the process.
The downscaling procedure is then applied to all monthly maxima recorded during
July and August across the 11 years. The reduction in local extreme events is cleary
apparent when examining the boxplot presentation of some grid points.

23

Figure 16: Boxplots of the maxima precipitation over July and August

4.4 Chosen downscaling framework and interest variables

To tackle the loss of extreme phenomena, we will focus on Perfect Prognosis.
As the goal of this project is to defined a clear methodology, I selected only tem-
perature and relative humidity as interested meteorological variables to predict the
3 GEV parameters. The topological ones are longitude, latitude and altitude.

What temperature and humidity should we take into account ?

Figure 17: Boxplots of the maxima precipitation over July and August

Since GLM, VGLM, VGAM and ANNs can’t take a high number of covariates, we
can’t give them the information of all the 12 km resolution grid-points as input. The
selection of neighboring data points to incorporate is a crucial parameter
we will explore starting when choosing which model to choose.

4.5 Statistical models

Using R : The models described in 3.1 are fitted by using R, and different
packages : SpatialExtremes and VGAM. The GLM model is fitted by using the
fitspatgev function which calcules the linear coefficient by maximizing the maximum
likelihood.

24

More precisely, we tried the following relationships between the location parameter
and the predictors. temp1 is a reference to the temperature of the closest neighbors,
temp2 to the second closest, ...

Model’s name Formula

Basic stationary model loc ~ rlon + rlat + alt
Adding temperature loc ~ rlon + rlat + alt + temp1
One neighbor loc ~ rlon + rlat + alt + temp1 + hum1
One neighbor and
normalized variables

loc ~ rlon + rlat + alt + temp_norm1 +
hum_norm1

One neighbor and
splines

loc ~ s(rlon) + s(rlat) + s(alt) + s(temp1) +
s(hum1)

Two neighbors loc ~ rlon + rlat + alt + temp1 + hum1 + temp2
+ hum2

Two neighbors and
splines

loc ~ s(rlon) + s(rlat) + s(alt) + s(temp1) +
s(hum1) + s(temp2) + s(hum2)

Four neighbors loc ~ rlon + rlat + alt + temp1 + hum1 + temp2
+ hum2 + temp3 + hum3 + temp4 + hum4

Four neighbors and
splines

loc ~ s(rlon) + s(rlat) + s(temp1) + s(hum1) +
s(temp2) + s(hum2) + s(temp3) + s(hum3) +
s(temp4) + s(hum4)

Table 1: Summary of tested formulas with corresponding models

All the models are tried with the GLM, VGLM and VGAM.
Here is for example a relation with the predictors that mu can have, like for a GAM
:

µ(x) = β0 + β1f1(lon) + β2f2(lat) + β3f3(alt) + β4f4(temp) + β5f5(hum)

Adding scale depending of predictors : The location parameter was the most
important in the first approach. However in a case of parameter distribution pre-
diction, it would be interesting to capture both the central tendency (mean) and
the spread (standard deviation). That is what we are going to do with the neural
networks, so to be able to compare them with statistical approaches we will also
predict the scale parameter with statistical models.

Criteria for model selection : The different models are then compared by using
the TIC criteria. The Takeuchi Information Criterion (TIC) [15] is used to
evaluate and compare the quality of two statistical models. The TIC is defined by:

TIC = −2 log(L) + k log(n)

where L is the likelihood function of the model (that should be the highest possible),
k is the number of estimated parameters in the model and n is the sample size, i.e.,
the number of observations.

25

The TIC is a goodness-of-fit measure that takes into account both the model’s fit to
the data (with the likelihood) and its complexity (with the second term). The goal
is to minimize the TIC. A model with a lower TIC is preferred as it manages to
explain the data well with a reasonable number of parameters.

CRPS After finding the best statistical model we calculate the associated CRPS
on the validation set. We get the location, shape, and scale from the model and
have to be careful at the link function used before getting them from R to Python.

4.6 Navigating Neural Networks: challenges, insights, and
solutions to establish a protocol

With the dataset prepared and the theoretical framework established, another chal-
lenge was devising a suitable protocol for training the neural networks. Several
issues emerged that lead to discussions.

Choice of outputs Initially, our objective centered around predicting the three
generalized extreme value (GEV) distribution parameters and using them to sample
from the distribution to apply the CRPS.
My initial approach involved using a LNN for parameter prediction. This approach
produced NaN (Not-a-Number) values rapidly because of the lack of activation func-
tion to contain the value of ξ. Indeed as we have :

F−1(p) =

{
µ+ σ

ξ

[
(−(− log p)−ξ − 1)

]
, if ξ ̸= 0

µ− σ log(− log p), if ξ = 0

the value of ξ could easily lead the samples to be infinite and the operations to
conduct to NaN.

However it turns out that ξ parameter is usually set to a constant in statistical
model due to the huge incertitude over this parameter. The difficulty to obtain ξ
with maximum likelihood estimation is showed when trying to predict the shape
parameter in R, it leads to warnings or even bugs.

Figure 18: Error while using R

This graph shows that it has little effect on the mean and standard deviation of the
distribution.

26

Figure 19: Behaviour of the distribution for different shape parameters

Given this information, what mostly matters is the prediction of the location and
scale parameters and set the shape parameter at its stationary value (when we look
at the monthly maxima over all the month of the 10 years data).
The ReLU activation function was put at the end of the NN to ensure that the scale
parameter is positive and the first results came out. However sometimes the outputs
were fully null tensors. In fact the CRPS happens to be a bit tricky :

Figure 20: Different types of distribution

The blue distribution is said to be the reference distribution. I compare the obtained
CRPS with samples from the same distribution, the second, the third, the fourth
and with samples that are only zeros.

27

Distribution 1 Distribution 2 Distribution 3 Distribution 4 Null samples

CRPS 0.00052 0.00135 0.00365 0.00168 0.00304

Table 2: CRPS Compared to Different Distributions

The set of null samples achieved a higher score than the set derived from the third
distribution. While it holds true that the third distribution lacks any resemblance
to the blue one, in the context of precipitation, preference leans towards having non-
zero samples. The fact that the zero-sample got a better score affects the training
of the neural network. Specifically, due to the application of the ReLU activation
function, the initial samples may assume partial null values. Given the satisfactory
score achieved, the optimization phase may struggle to guide these samples away
from the minimum associated with the zero-samples.
To overcome the problem, we decide to predict two quantiles of the distribution and
then get back to the parameters :

q1 = exp

{
−
[
1 + ξ

(
x1 − µ

σ

)]−1/ξ
}

q2 = exp

{
−
[
1 + ξ

(
x2 − µ

σ

)]−1/ξ
}

So let’s say we are taking the 90th and the 95th quantiles (which will be useful in an
extreme event context).
For the location parameter µ:

µ = q2 −
σ

ξ

[
1− (− log(1− 0.9))−ξ

]
For the scale parameter σ:

σ =
q2 − q1

(− log(1− 0.9))−ξ − (− log(1− 0.95))−ξ

In this context, the training works.

28

4.6.1 Training, validation and test set

Figure 21: First training -validation - test sets

The training-validation-test split derives from a partitioning of Switzerland into
three distinct geographical regions. The training set represents a significant portion
of the nation’s surface, focusing on the western region. This allocation ensures a
comprehensive incorporation of prevalent patterns : lakes, mountains, city, ... An
additional 15% of the territory is assigned to the validation set. The remaining con-
stitutes the test set, reserved for the final evaluation of the model’s generalizability
to unseen data instances.

4.7 Tested architectures arising from these reflections

For the baseline we start by only using topological variables : rlon, rlat and altitude
to predict the location and the scale parameters. Then we add the closest neighbor
and its temperature and humidity conditions, then add the second and the fourth.
With the following activation functions : ReLU - Sigmoid - ReLU - Abs.
As I said before 3.2.1, they are essential to keep the parameters of the GEV in the
right set z : 1 + ξ(z−µ

σ
) > 0.

The optimizer used is Adam and the learning rate is 0.0001.

Model Input
Model 0 rlon, rlat, alt
Model 1 rlon, rlat, alt, temp1, hum1

Model 2 rlon, rlat, alt, temp1, hum1, temp2, hum2

Model 3 rlon, rlat, alt, temp1,..,temp4, hum1,..., hum4

Table 3: ANN architectures

29

Here is the representation of Model 1

Figure 22: Model 1 architecture

U-Net inspiration To build the CNN I used the U-Net architecture as inspiration
and it gave this resulting architecture, where the input is the 12km resolution map
of temperature and humidity and the output is a 2km resolution map of the location
and scale parameter of the GEV.

Layer Description

Encoder - Conv2D 1 Input: in_channels, Output: 20, Kernel Size: 4,
Stride: 2, Padding: 1
Activation: ReLU

Encoder - Conv2D 2 Input: 20, Output: 20, Kernel Size: 4, Stride: 1,
Padding: 1

Decoder - ConvTranspose2D 1 Input: 20, Output: 20, Kernel Size: 4, Stride: 2,
Padding: 0

Decoder - ConvTranspose2D 2 Input: 20, Output: out_channels, Kernel Size: 4,
Stride: 3, Padding: 1

Decoder - ConvTranspose2D 3 Input: out_channels, Output: out_channels,
Kernel Size: 4, Stride: 2, Padding: 0

Table 4: Description of Layers in Conv-UNet Architecture

30

4.7.1 Hyperparameter settings

Hyperparameters are the settings of a machine learning model that are not learned
from the data. Tuning hyperparameters is the process of finding the best set of
hyperparameters for a given model and dataset. It is done thanks to the validation
set that the model has never encountered before. This can be a time-consuming
process, but it is important to do it in order to get the best possible performance
from the model.

Here are the tunable parameters in this particular case

• The learning rate, usually between 0.1 and 0.00001, that controls the speed of
the learning part. It determines how much the model’s weights are updated
after each training iteration.

• The number of layers and neurons. It determines the complexity of the model
however too many layers can lead to overfitting and difficult training.

• The number of neighbors taken into account. As for the statistical models, it
is possible to try a different number of neighbors to increase the complexity of
the problem.

• The quantiles. The first quantiles idea was to take the 90th and the 95th for
extreme studies purposes but others can be tested : 50th and 75th, 25th and
75th.

• The activation functions.

To find the best set one can use random search : trying first to find the best learning
rate with random values, then the number of layers, ... It is the fastest way but not
the most efficient. To enhance the tuning, one can do grid search and thus find the
best set of hyperparameters but it’s computationally expensive.

4.8 Transformers thoughts

Although I did not have enough time to train the transformer neural network I
coded, I will share some thoughts we had about positional encoding implementa-
tion. I found that some people on GitHub and YouTube use embedding layers with
learnable parameters to do positional encoding. However, I believe that this is not
the best way to do it, as it requires the network to learn the positional encoding.
Instead, I sticked to the method used by the original authors of the transformer
neural network, which is to use sinusoidal positional encoding. In our case, we have
a 2D map, so we can use a 2D sinusoidal positional encoding. We can also try using
the product of sine and cosine to encode the number of points in the grid. We also
looked at diffusion models and LSTM models to downscale the image. However, I
decided to try a encoder-MLP architecture for my first attempt.

31

5 Results

5.1 Statistical models

GLM with fitspatgev : Here, I present a selection of outcomes generated by
R during the model fitting process. It shows the spectrum of coefficients within
the models, while also displaying the consistent values assigned to scale and shape
parameters.

Figure 23: µ ∼ rlon + rlat + alt

Figure 24: µ ∼ rlon + rlat + alt + temperature + humidity

Figure 25: Model results for µ ∼ s(rlon) + s(rlat) + s(temperature)

The first TIC results illustrate well the positive impact of using splines.

Formula TIC
One neighbor and splines -1383909
One neighbor -1383908
Basic stationary model -1383911
Basic stationary model without alt -1383908
Two neighbors -1383901
Two neighbors and splines -1383901

We start seeing in these first results that more neighbors taken into account for the
prediction of µ doesn’t necessarily leads to better score. Let’s see if VGAM/VGLM
have the same issues.

32

VGLM - VGAM results with VGAM package Adding covariates at 12 km
resolution normally gives us valuable information to predict the location parame-
ter. While our objective is to maximize the information available, taking all the 12
km grid points as covariates in the models is impractical, it would have too much
parameters and requires too much data. For that reason we agreed to stop at 4
neighbors and I’ve got these results.

Formula Model TIC
One neighbor and splines VGLM -1393776
One neighbor VGAM -1383908
One neighbor (without altitude) VGAM -1392369
Basic stationary model VGLM -1393570
Basic stationary model VGAM -1393570
Two neighbor VGLM -1393913
Two neighbor VGAM -1393913
Two neighbor splines VGLM -1392544
Two neighbor splines VGLM -1392544
Four neighbor VGLM -1392823
Four neighbor VGAM -1392823
Four neighbor splines VGLM -1392823
Four neighbor splines VGAM -1394313

Splines definitely leads to better scores and again sometimes less information hap-
pens to perform better in terms of TIC as for the ’one neighbor and splines’ and
’two neighbors and splines’ with VGLM.

The link functions used are : identity for location, loglink 3 for the scale
and logofflink 4for the shape.

Scale determination with VGAM Adding the determination of the scale pa-
rameter leads to a TIC of -1396196 for the VGAM - four neighbor splines model.
Here are an example of the changes of value it can lead to for location and scale :

3https://search.r-project.org/CRAN/refmans/VGAM/html/loglink.html
4https://www.rdocumentation.org/packages/VGAM/versions/1.1-6/topics/logofflink

33

Figure 26: Location and scale determining

Predicting location and scale leads to better adjustment :

Figure 27: Histogram and predicted PDF for VGAM with four neighbors and splines
on trained data (here all the map was used for training)

34

Figure 28: Histogram and predicted PDF for VGLM with two neighbors and splines
on trained data (here all the map was used for training)

Despite looking to fit more the data, there is a slight change in the CRPS
scores of the two models : 0.0026 for VGAM - 4 neighbors and splines
and 0.0027 for VGLM - 2 neighbors and splines

Seeing the results made me think that I should have taken 3-hours accumulated
precipitation maxima or daily accumulated precipitation maxima to have maxima
that have higher values and maybe I would have seen the tendency more clearly.
Also the lack of maxima number appears here.

5.2 Hyperparameters choice

ANNs : I employed a grid search methodology to find the optimal set of hy-
perparameters from the previously mentioned options. I printed the model, the
hyperparameters and the score for each architecture tried :

Figure 29: Part of the hyperparameters search

35

The architecture that achieved the best CRPS on the validation set is as follows:

• Learning rate: 0.001

• Predicted quantiles: 50 and 75.

• Number of hidden layers: 3

• Number of neurons in each layer: 20

This architecture results in a CRPS of 0.0022 on the validation set.

U-Net : This U-Net inspired architecture has less hyperparameters to find as it
needs to be able to go from a 12 km map to a 2 km map so it has a setup of kernel
dimension, padding, stride that ensures to have a higher resolution map of 2km.
As a result, the conventional hyperparameters found in standard CNNs, including
kernel dimensions, padding strategies, and stride configurations, are non-adjustable
with this framework.

I also often displayed the training and validation losses of the models to look for
potential overfitting.

Figure 30: Checking the training - validation losses to detect potential overfitting

I also showed a comparison of the validation curves for different learning rates to
see the impact on the convergence.

36

Figure 31: Validation curves

The two hyperparameters tested are the learning rate and the quantiles and here
are some runs results.

Figure 32: Trying different learning rates for quantiles 90 and 95th

The best setup is the quantiles 25 and 75 and a learning rate of 0.001.

37

5.3 CRPS results

On the training set we have the following results :

Model GLM VGAM ANNs U-Net

CRPS 0.0028 0.0026 0.0022 0.0022

Table 5: CRPS scores for the training set

On the validation set (only for ML architecture) we have the following results :

Model ANNs U-Net

CRPS 0.0022 0.0021

Table 6: CRPS scores for the validation set

On the testing set for temperature and humidity conditions of August, we have the
following results :

Model VGAM ANNs U-Net

CRPS 0.0033 0.0034 0.0031

Table 7: CRPS scores for the testing set

A better CRPS is a smaller one so we could say that ANNs happens to not improve
predictions but doesn’t seem to change that much as the change in the CRPS is quite
small as there is a significant change of 0.001 between the scores of the training and
the testing sets. For that reason we need to look at the predicted distributions to
visualize the changes.

Figure 33: U-Net

38

Figure 34: ANN performance on the test set

Figure 35: Best statistical model performance on the test set

What we see on these combined histograms and PDFs emphasize the need to con-
sider both the CRPS and the shape of the distribution when evaluating model
performance. While U-Net exhibits better performance on the CRPS scale, it gen-
erates a more tightly concentrated distribution (as evidenced by its smaller standard
deviation). Therefore, in scenarios where our focus lies on predicting unprecedented
extremes from the tail of the distribution, statistical models might offer improved
results.

Explaining better results for statistical models : VGAM is a powerful tool
as the functions are polynomials and determined by splines. The obtained results
show that in a case of prediction of distribution parameter, the statistical model
is complex enough not to be outperform by ANNs : this might not have been the

39

case if we were working on maxima directly. The CNN inspired by U-Net performs
slightly better that VGAM as it can capture spatial dependencies without relying
on VGAM or ANN that takes lon, lat as input. This is something that will have to
be explored.

40

6 Further work
Enhancing storm prediction : Other meteorological variables can be used. At-
mospheric instability can be measured with the CAPE (Convective Available Poten-
tial Energy) which indicates the potential for upward motion and the development
of powerful updrafts.

Better model training : We could use patches to train U-Net and then have
more training inputs. Patches could have these form : or could intersect be sliding
from left to right.
We could also try cross validation with patches/fold where one or some rectangles
could be used for validation and the others for the training.

Figure 36: Cross validation set-up

The transformer also needs to be trained.

Testing robustness to climate change : What motivates the use of tempera-
ture and humidity as predictors and the parameters as output is that this approach
might help the model being robust in a future climate by having learned relationship
between storm, temperature and humidity.

Using more the past intern work : dig into super resolution to compare them
better metrics : MSE, RMSE, Perkins score

I hope that this report will be useful to future people working on the subject.

41

7 Conclusion
This internship gave us the opportunity to work with the Continuous Ranked Proba-
bility Score, CRPS, within the context of predicting the GEV parameters. Through
this process, I encountered issues associated with the use of this scoring method.
In conclusion, my findings underscore that by capturing nuanced spatio-temporal
patterns, the CNN-U-Net inspired network could help achieving a good prediction.
However, when it comes to predicting parameters and not directly the maxima,
statistical models can offer great performance. It’s crucial then to consider the ap-
plication when looking at the prediction distribution and give enough consideration
to the distribution tail for a comprehensive exploration of extreme scenarios. By
doing this internship and this report we build a methodology that holds potential
for future researchers to work on that topic.

On a personal matter, I gradually get familiar with neural networks, hyperparame-
ters search, and training-validation-testing set, allowing me to have a better practice
and understanding of machine learning basics. I learned how demanding machine
learning is and the internship has given me a solid foundation to build upon as I
continue my journey in ML related to climate. I also had the opportunity to work
extensively with Python and R. These skills are super practical and I can already
see how useful they’ll be in the future.

One of the most inspiring aspects of this internship was witnessing the potential
impact of climate-related research with interdisciplinary work. The prospect of
contributing to the establishment of climate-focused centers and engaging in cross-
disciplinary collaborations made me really enthusiast for the future of this field and
I look forward to seeing the next ECCE’s projects (hoping to be part of).

In conclusion, these three months have been an awesome research experience and
I’m very thankful to ECCE for giving me this opportunity.

42

References
[1] Sándor Baran and Ágnes Baran. Calibration of wind speed ensemble forecasts

for power generation. Quarterly Journal of the Hungarian Meteorological Ser-
vice, 125(4):609–624, October–December 2021.

[2] Elizabeth A. Barnes, Randal J. Barnes, and Nicolas Gordillo. Adding uncer-
tainty to neural network regression tasks in the geosciences. Atmospheric and
Oceanic Physics, 2021. Submitted on 15 Sep 2021.

[3] Jorge Baño-Medina, Rodrigo Manzanas, and José Manuel Gutiérrez. Con-
figuration and intercomparison of deep learning neural models for statistical
downscaling. Geoscientific Model Development, 2020.

[4] R. E. Benestad. Empirical-statistical downscaling in climate modeling. Eos
Trans. AGU, 85(42):417–422, 2004.

[5] Siddharth Bhatia, Arjit Jain, and Bryan Hooi. Exgan: Adversarial generation
of extreme samples. Association for the Advancement of Artificial Intelligence,
2021.

[6] Stuart Coles. An Introduction to Statistical Modeling of Extreme Values.
Springer Science & Business Media, August 2001.

[7] H. J. Fowler, S. Blenkinsop, and C. Tebaldi. Linking climate change modelling
to impacts studies: Recent advances in downscaling techniques for hydrological
modelling. International Journal of Climatology, 27:1547–1578, 2007. Published
online 14 September 2007 in Wiley InterScience.

[8] Manuel Gebetsberger, Jakob W. Messner, Georg J. Mayr, and Achim Zeileis.
Estimation methods for nonhomogeneous regression models: Minimum contin-
uous ranked probability score versus maximum likelihood. Monthly Weather
Review, 146(12):4323–4338, 2018.

[9] Firas Gerges, Michel C. Boufadel, Elie Bou-Zeid, Hani Nassif, and Jason T. L.
Wang. A novel deep learning approach to the statistical downscaling of temper-
atures for monitoring climate change. Association for Computing Machinery,
2022.

[10] Katherine Haynes, Ryan Lagerquist, Marie McGraw, Kate Musgrave, and Imme
Ebert-Uphoff. Creating and evaluating uncertainty estimates with neural net-
works for environmental-science applications. Artificial Intelligence for the
Earth Systems (AIES), 2023.

[11] Laureline Hentgen, Nikolina Ban, Nico Kröner, David Leutwyler, and Christoph
Schär. Clouds in convection-resolving climate simulations over europe. Jour-
nal of Geophysical Research: Atmospheres, 124(7):3849–3870, 2019. Research
Article, Free Access.

[12] Alexander Jordan, Fabian Krüger, and Sebastian Lerch. Evaluating probabilis-
tic forecasts with scoringrules. Journal of Statistical Software, 2019.

43

[13] Jie Xiang* Lifeng Zhang Fuhan Zhang Li Xiang†, Jiping Guan†. Spatiotemporal
model based on transformer for bias correction and temporal downscaling of
forecasts. Frontiers in Environmental Science, 10, November 2022.

[14] Yingkai Sha, David John Gagne II, Gregory West, and Roland Stull. Deep-
learning-based gridded downscaling of surface meteorological variables in com-
plex terrain. part ii: Daily precipitation. American Meteorological Society, Au-
gust 2020. Department of Earth, Ocean and Atmospheric Sciences, The Uni-
versity of British Columbia, Vancouver, British Columbia, Canada; National
Center for Atmospheric Research, Boulder, Colorado; BC Hydro, Burnaby,
British Columbia Canada.

[15] R. Shibata. Statistical aspects of model selection. In J.C. Willems, editor, From
Data to Model. Springer, Berlin, Heidelberg, 1989.

[16] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, A. Kaiser,
and I. Polosukhin. Attention is all you need. Advances in Neural Information
Processing Systems, pages 5998–6008, 2017.

44

8 Appendix

Internship Schedule

Week Activities
Week 1 -2 Reading papers, being able to use the cluster
Week 3 Reproducing what the past intern did. Manipulating the

data using Python. Reading about GANs and super reso-
lution models.

Week 4 - 5 Reading about GAN/Transformer/Diffusion models and
trying implementation of the CRPS for the parameter pre-
diction approach.

Week 6 Writing my first NN (linear) and trying to train it : prob-
lems of the shape parameter value.

Week 7 Struggles with the CRPS and first statistical models : try-
ing GLM and VGAM with R.

Week 8 - 9 Adding complexity to the Neural Networks : activation
functions, more layers. Implementation of the U-Net and
of the Transformer. Changes in dataset : from small part
of Switzerland to all the country.

Week 10 - 11 Managing the use of both Python and R. Training the Neu-
ral Networks, start working on final results

Week 12 - 13 Report writing, results showing : PDF and histograms.
Discussing the futur of the project : writing an article.

8.1 CRPS Formula proof

8.1.1 First lemma

Let X and Y be independent real random variables with finite expectations. F is
the distribution function of X, and G is the distribution function of Y. We use

|X − Y | =
∫ +∞

−∞

(
1(X≤u<Y) + 1(Y≤u<X)

)
du

E[|X − Y |] =
∫ −∞

x=−∞

∫ +∞

y=−∞
|x− y|dF (x)dG(y)

E[|X − Y |] =
∫ +∞

x=−∞

∫ +∞

y=−∞

∫ +∞

u=−∞
(1(X≤u<Y) + 1(Y≤u<X))dudF (x)dG(y)

Fubinis theorem enables us to write

∫ +∞

x=−∞

∫ +∞

y=−∞

∫ +∞

u=−∞
(1(X≤u<Y))dudF (x)dG(y) =

∫ +∞

x=−∞

∫ +∞

u=−∞
1x≤udF (x)

∫ +∞

y=v

dG(y)

45

=

∫ +∞

u=−∞

(∫ u

x=−∞
dF (x)

)
(1−G(u)) =

∫ +∞

u=−∞
F (u)(1−G(u))du

Likewise :

∫ +∞

x=−∞

∫ +∞

y=−∞

∫ +∞

u=−∞
(1(Y≤u<X))dudF (x)dG(y) =

∫ +∞

u=−∞
G(u)(1− F (u))du

Since the two parts of the integrand are integrable on their respective sets of
definitions, the integral separates and we obtain :

E[|X − Y |] =
∫ +∞

u=−∞
F (u)(1−G(u))du+

∫ +∞

u=−∞
G(u)(1− F (u))du

For X and Y having the same distribution function :

E[|X − Y |] = 2

∫ +∞

u=−∞
F (u)(1− F (u))

8.1.2 From the original definition of the CRPS

CRPS(F (z), y) =

∫ ∞

−∞
(F (z)−1(z ≥ y))2 dx =

∫ ∞

−∞
(F (z)2− 2F (z)1(z≥y)+1(z≥y))dz

Let’s show that

CRPS(F, y) = EF |X − y| − 1

2
EF |X −X ′|

with X and X ′ which has the same distribution function F

EF |X − y| =
∫ ∞

x=−∞
(

∫ +∞

u=−∞

(
1(x≤u<y) + 1(y≤u<x)

)
du)dF (x)

=

∫ ∞

u=−∞
(

∫ +∞

x=−∞
1(x≤u<y)dF (x))du+

∫ ∞

u=−∞
(

∫ +∞

x=−∞
1(y≤u<x)dF (x))du

=

∫ ∞

u=−∞
(

∫ u

x=−∞
1(u<y)dF (x))du+

∫ ∞

u=−∞
(

∫ +∞

x=u

1(y≤u)dF (x))du

=

∫ ∞

u=−∞
F (u)1(u<y)du+

∫ ∞

u=−∞
1(u>y) − F (u)1(u>y)du

=

∫ ∞

−∞
(F (u)− 2F (u)1u≥y + 1u≥y)du

Hence :

46

EF |X−y|−1

2
EF |X −X ′| = 2

∫ +∞

u=−∞
F (u)(1−F (u))du+

∫ ∞

−∞
(F (u)−2F (u)1u≥y+1u≥y)du

=

∫ ∞

−∞
(Fu2 − 2F (u)1(u≥y) + 1(u≥y))du

= CRPS(F (u), y)

8.2 Hyperparameters search : U-Net

Figure 37: Testing the learning rate for quantiles 50 and 75

47

	Introduction
	Main concepts
	Mathematical framework for extremes prediction
	Extreme Value Theory
	Finding the GEV parameters
	What GEV enables

	Downscaling

	Preliminaries
	Statistical methods
	Generalized Linear Model
	Generalized Additive Model
	Vector Generalized Linear/Additive Model

	Neural Networks
	Architectures of Neural Networks

	Methodology
	Data processing
	One metric to discrimate and to train the Neural Network : the CRPS
	Parametric Distributional Prediction

	Downscaling approaches and targets
	Previous results on downscaling using interpolation
	Downscaling precipitation maxima

	Chosen downscaling framework and interest variables
	Statistical models
	Navigating Neural Networks: challenges, insights, and solutions to establish a protocol
	Training, validation and test set

	Tested architectures arising from these reflections
	Hyperparameter settings

	Transformers thoughts

	Results
	Statistical models
	Hyperparameters choice
	CRPS results

	Further work
	Conclusion
	Appendix
	CRPS Formula proof
	First lemma
	From the original definition of the CRPS

	Hyperparameters search : U-Net

