Extracting road networks from satellite images
with neural networks to contribute to risk mitigation

Machine Learning project - Douglas Stumpp

Abstract

Geological hazards can cause significant damage
to populations and infrastructure. In order to ef-
fectively respond to these hazards, it is crucial to
have access to accurate maps and accessibility in-
formation. This information can help emergency
stakeholders to quickly establish safe evacuation
routes and provide aid to affected areas.

In this work, we are exploring the use of convolu-
tional neural networks (CNNs) to automatically
extract roads and street networks from satellite
images. By leveraging the power of CNNs, we
aim to develop a fast and reliable method for pro-
ducing detailed maps of disaster-affected areas,
which can be used to support emergency response
and risk management efforts. This work is still
in progress, but CNNs seems to be a promising
approach for this task.

1. Introduction

Geological hazards such as volcanic eruptions, landslides,
earthquakes, and floods pose a significant threat to popula-
tions, particularly in developing countries. To mitigate the
risks associated with these hazards, it is essential to have
access to maps and accessibility information during risk
assessments, management, and crisis response.

Remote sensing data, such as satellite images, can be used
to gather information about the state of infrastructure in
areas that may be affected by geological hazards. However,
manually extracting roads and street networks from these
images can be time-consuming and error-prone.

To address this challenge, this project proposes to use a con-
volutional neural network (CNN) to automate the extraction
of roads and street networks from satellite images. By treat-
ing this task as a computer vision problem, the proposed
CNN is able to quickly and accurately extract the necessary
information from the images, providing valuable data for
risk assessment and crisis response.

2. Data

This work focuses on the DeepGlobe Road Extraction
Dataset (Demir et al. 2018), available online!.

It consists of a total of 8’570 satellite images captured over
Thailand, Indonesia, and India. The original dataset has
already been split into a training set, a validation set, and a
test set. However, the validation set provided on kaggle is
missing its labels. Therefore, we recreated another one from
the training set (20%), leading to this final split: Training set:
4’981 images (68%); Validation set: 1245 images (17%);
Test set: 1’101 images (15%).

Figure 1. Example of a training instance with satellite image (left)
and its associated mask (right).

The original images consist of 3 channels (Red-Green-Blue)
made of 19°584 x 19’584 pixels, that have been downsam-
pled to 1’024 x 1’204 pixels on the dataset provided on
kaggle. Each training instance is associated with a labeled
mask, which is an image of the same dimensions with road
and non-road pixels (Figure 1.). Note that both the satellite
images and the masks have the same shape (1024, 1024,
3), where the mask channels are identical for each color-
band. Therefore, the task of road extraction is formulated as
a binary classification problem, where the neural network
must predict (one channel of) the mask, depicting the road
network from the satellite image.

'nttps://www.kaggle.com/datasets/
balraj98/deepglobe-road-extraction—-dataset

https://www.kaggle.com/datasets/balraj98/deepglobe-road-extraction-dataset
https://www.kaggle.com/datasets/balraj98/deepglobe-road-extraction-dataset

Machine Learning SA22: Peer-review

3. Methodology

3.1. Data preprocessing

The dataset consists of images and masks with a resolution
of 1024 x 1204 pixels. These are organized into folders
for the training, validation, and testing sets. The dataset
also includes CSV files that provide the pixel classification
information and the paths to the images and masks. We used
the pandas library to manipulate the data as DataFrames to
prepare the association of each pixel’s RGB values with
its corresponding binary class (i.e., 1 for road pixels and
0 for background pixels), and to generate the training,
validation, and testing sets as described earlier. To prevent
RAM overcharge, we downsampled the size of the instances
to 256 x 256 pixels before feeding them to the CNN. While
we are still working on finding a more effective solution
to this issue, the current method has produced reliable and
performant results.

3.2. Convolutional Autoencoder

The convolutional neural network’s architecture proposed
for this project is taken® from the U-net CNN of Yang et al.
2022, who simplified the Convolutional Autoencoder (CAE)
of Ronneberger, Fischer, and Brox 2015.

The U-net is composed of a encoding path followed by a de-
coding path (Figure 2.). The encoder consists of a repeated
downsampling application using one 2 x 2 convolution ker-
nel with 1 x 1 strides, zero padding, and L1 regularization
penalty on the layer’s outputs to avoid overfitting. Then fol-
lows a Rectified Linear Unit (ReLU) activation function and
a2 x 2 max pooling operation with 2 x 2 stride and valid
padding. After each application of a convolutional layer,
the results are copied for later skip connections. Such skip
connections should offer the integration of local and global
features during decoding, such that the output is more reli-
able. Then, the decoder consists of a repeated upsampling
of the feature map using a 2 x 2 deconvolution with 2 x 2
strides, valid padding and L1 regularization, a concatenation
with the corresponding cropped feature map from the encod-
ing path (i.e., the copied layers), and a 2 x 2 convolution
with 1 x 1 strides and zero padding, followed by a ReL.U.
Finally, the last layer making the prediction is once again
a convolutional layer only using the sigmoid function to
normalize the output between 0 and 1.

Because the sigmoid function maps any real-valued number
to a value between 0 and 1, it can be easily interpreted as a
probability. So, for each pixel constituting the output of the
sigmotd function, if it’s value is close to 0, it means that the
input pixel is more likely to belong to the road class, while
if the output is close to 1, it means that the input pixel is

’related to my master thesis.

more likely to belong to the background class.

input_2 input: | [(None, 256, 256, 3)]

[(None, 256, 256, 3)]

InpufLayer | output:

y

convzd_§

Conv2D

input: | (Nonme, 256, 256, 3)

(None, 256, 256, 8)

output:

max_pooling2d 3

input: | (None, 256, 256, 8)

MaxPooling2D

output: | (None, 128, 128, 8)

convzd 9

input: (None, 128, 128, 8)

Conv2D

output: | (None, 128, 128, 16)

1

ax_pooling2d_4

input:

(None, 128, 128, 16)

MaxPooling2D

output:

(None, 64, 64, 16)

convZd 10 | input:

(None, 64, 64, 16)

Conv2D output:

| (None, 64, 64, 32)

e

max_pooling2d_s

input:

(None, 64. 64, 32)

MaxPooling2D

output:

{None, 32, 32, 32)

)

conv2d 11 | input: | (None, 32, 32,

32)

Conv2D

output:

(None, 32, 32,

64)

l

convzd_transpose_3

input:

(None, 32, 32, 64)

Conv2DTranspose

output:

(None, 64. 64, 64)

AN

tf.concat_3

input:

[(None, 64, 64, 32), (None, 64, 64, 64)]

TFOpLambda

output:

(None, 64, 64, 96)

|

conv2d 12

(None, 64, 64, 96)

Conv2D

output:

(None, 64, 64, 32)

input:

conv2d_transpose_4

input:

(None, 64, 64, 32)

Conv2DTranspose

output:

(None, 128, 128, 32)

l

tf concat_4

input:

[(None, 128, 128, 16), (None, 128, 128, 32)]

TFOpLambda

output:

(None, 128, 128, 48)

|

conv2d 13 | input:

(None, 128, 128, 48)

Conv2D output:

(None, 128, 128, 16)

\

conv2d_transpose 3

input: | (None, 128, 128, 16)

Conv2DTranspose

output: | (None, 256, 256, 16)

o,

tf. concat_3

input: | [(None, 256, 256, 8), (None, 236, 236, 16)]

TFOpLambda

output: (None, 256, 256, 24)

conv2d 14 | input: | (None, 2

56,256, 24)

ConvZD | output: | (None, 256, 256, 8)

conv2d 15 | input: | (None, 256, 256, §)

Conv2D | output: | (None, 256, 256, 1)

Figure 2. Schematic U-net architecture.

Machine Learning SA22: Peer-review

3.3. Loss Function

We chose the binary cross-entropy loss function for this
binary classification problem. Defined as the negative log-
likelihood of the true labels given the predicted probabilities,
it directly measures the difference between the predicted
probabilities (output of the sigmoid activation function) and
the true labels (0 or 1) of the pixels in the image. Mathemat-
ically, it can be written as:

N

70) =~ > i 1og(plye)) + (1) log(1 —p(y:),
=1

ey

where NV is the number of samples, y; is the true label (0
or 1), and p(y;) is the predicted probability (output of the
sigmoid function). 6 being the usual model parameters
vector.

The binary cross-entropy loss function has the following
properties:

¢ It is a continuous and differentiable function, which
makes it suitable for training a neural network using
gradient descent.

e It has a global minimum, which means that it is pos-
sible to find the optimal set of model parameters that
minimize the loss.

* It penalizes large errors more than small errors, which
encourages the model to be more confident in its pre-
dictions.

It is sensitive to the relative order of the predicted
probabilities and the true labels, which means that it
can accurately measure the difference between the two.

Therefore, measuring the difference between the predicted
probabilities p(y) (output of the autoencoder) and the true
labels y (0 or 1) of the pixels, will guide the optimization
process of the autoencoder during training.

3.4. Optimizer

The optimizer used for our CNN is Adam (Adaptive Mo-
ment Estimation), which combines the benefits of the SGD
(Stochastic Gradient Descent) and RMSProp optimization
algorithms. One advantage of Adam is that it uses adaptive
learning rates, which means that the learning rate for each
parameter is updated based on past gradient information.
This can help the optimization process converge faster and
more accurately, making it a well-suited candidate for the
use of a convolutional autoencoder for binary classification
of RGB images.

4. Results

4.1. Model performance

We trained our CNN for 50 epochs (~7h) while considering
a patience of 3 on the validation loss for early stopping. We
also used the validation set for cross-validation and saved the
best model and weights. The resulting plots (Figure 3, 4.) of
the training and validation loss and accuracy over the epochs
demonstrate the reliability of these results and, associated
with our regularization method and early stopping confirm
that it did not suffer from overfitting.

Training history

0.8
0.6 _
—_ —— fraining_loss
-0 o
o training_accuracy
0.4 +
0.2

0 10 20 30 40
Epoch

Figure 3. Training loss and accuracy over the epochs.

Validation history

0.8
0.6 ;
— — validation_loss
\9‘
o validation_accuracy
0.4 1
0.2 1
0 10 20 30 40

Epoch

Figure 4. Validation loss and accuracy over the epochs.

Machine Learning SA22: Peer-review

4.2. Evaluation metric

To provide a more detailed breakdown of the model’s per-
formance, we generate a confusion matrix (Figure 5.) on
the validation set by comparing the model’s predictions on
the validation instances and the validation masks (Figure
6.). To produce the confusion matrix, the outputted pre-
dictions made by the CNN had to be reshaped into a 1D
array, and each pixel value (standing between 0 and 1 from
the sigmoid function) had to be associated with either O
or 1. One would think that using a threshold of 0.5 would
be straightforward (0 if < 0.5 and 1 if > 0.5). However,
it appears that the outputted pixel values are not evenly
distributed between 0 and 1. Therefore, the threshold was
chosen subjectively based on the distribution of the values
and the best Categorical prediction.

Confusion Matrix le7
-7
True Negative -6
o - 74371845
91.2%
5
©
© 4
T
<
3
False Negative =
- 1756926 ; 2
1
0 1
Predicted

Figure 5. Confusion matrix regarding every pixel prediction on the
validation set.

Then, the evaluation metric chosen for our binary classifi-
cation of pixels in an image is the F1 score (Equation (2)).
The F1 score combines precision and recall, and is defined
as the harmonic mean of the two. In the context of image
classification, precision would be the fraction of pixels that
were correctly classified, while recall would be the fraction
of pixels belonging to a particular class that were correctly
identified. The F1 score is a good choice for evaluating
binary classification of pixels in an image because it takes
into account both the false positives and the false negatives,
which are both important considerations in this task.

- 2T P,
"~ 2TP,+ FP, + FN;’

F1, 2)

where T'P; is the number of pixels that are correctly pre-

Satelite image Raw prediction

200

250 100 150 200 250

Mask

Categorical prediction

Figure 6. Model Raw and Categorical predictions over a validation
instance compared to the ground truth and its mask.

dicted as road pixel, F'P; is the number of pixels that are
wrongly predicted as road pixel, and F'N; is the number
of pixels that are wrongly predicted as non-road pixel for
image i. Therefore, for n images, a final score defined as
the average of the F1 scores among all images would be:

1 n
Fl=— F1; 3
n; 3)

The evaluation metrics for our model on the validation set
are as follows:

e Precision = 0.33%
¢ Recall =0.51%

* F1 =0.40%

4.3. Test predictions

We present here some raw predictions made by our CNN on
the test set, depicting the great performance of our (complex)
model for our (simple) classification problem.

Machine Learning SA22: Peer-review

Satelite image

et 7EJ]

Raw prediction

200 4 ¥

100 150 200 250 50 100 150 250

Satelite image Raw prediction
\ z \

200

250 4 |
250 250

Figure 7. Predictions made on the test set.

5. Discussion

The raw predictions made by the CNN are highly accurate.
It is able to correctly recognize both main roads and smaller
paths. However, this is the main reason why our precision,
recall, and F1 score are low. The ”ground truth” depicted
by the mask labels only considers well-established roads, so
although our model performs the task effectively, it exceeds
the capabilities of the labels, which is not ideal. While this
high performance on the validation and test sets may not be
desirable in some contexts, in the scope of geological haz-
ards it is actually beneficial. This is because, in emergency
situations, the ability to accurately identify smaller paths
can help stakeholders quickly determine if hard-to-reach
areas can be accessed or not.

To further improve our model, it may be helpful to consider
using other regularization techniques such as dropout layers
or L2 or L1L2 penalties to prevent overfitting. Addition-
ally, using data augmentation to generate more training data
could also be helpful. Finally, finding an appropriate thresh-
old for making categorical predictions remains a challenge
that has not yet been fully addressed in a scientifically rig-
orous manner. However, implementing this strategy is only
to help reduce the complexity of the CNN and improve the
model’s performance according to our various evaluation
metrics.

6. Conclusion

Based on the results of our experiment, it appears that our
autoencoder is able to make reliable predictions of road
networks from RGB satellite images. The raw predictions
made by the autoencoder are highly accurate, and it is able
to correctly recognize both main roads and smaller paths.
However, this high level of performance may not be desir-
able in all contexts, as it can lead to low precision, recall,
and F1 scores, but are useful in the scope of geological
hazards.

7. Code availability

The python code developed and used to pro-
duce this project is available at this GitHub
repository: https://github.com/Goudals/

RoadDeepGlobe_AutoEncoder/tree/main.

Acknowledgements

I would like to thank my peers for their precious feedback
that helped me implement, improve and achieve this project.
Also, I would also like to thank Tom Beucler and the TAs
of the Machine Learning for Earth and Environmental Sci-
ences SA22 course for their availability and help during the
semester.

References

Demir, 1. et al. (June 2018). “DeepGlobe 2018: A Chal-
lenge to Parse the Earth through Satellite Images”. In:
2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW). ISSN: 2160-
7516, pp. 172-17209. DOI1: 10.1109/CVPRW.2018.
00031.

Ronneberger, O., P. Fischer, and T. Brox (2015). “U-Net:
Convolutional Networks for Biomedical Image Segmen-
tation”. In: Medical Image Computing and Computer-
Assisted Intervention — MICCAI 2015. Ed. by N. Navab
et al. Cham: Springer International Publishing, pp. 234—
241. ISBN: 978-3-319-24574-4. DO1: 10.1007/978~
3-319-24574-4_28.

Yang, S. et al. (2022). “Automatically Extracting Surface-
Wave Group and Phase Velocity Dispersion Curves from
Dispersion Spectrograms Using a Convolutional Neu-
ral Network”. In: Seismological Research Letters 93.3,
pp. 1549-1563. 1SSN: 0895-0695. por: 10 . 1785/
0220210280.

https://github.com/Goudals/RoadDeepGlobe_AutoEncoder/tree/main
https://github.com/Goudals/RoadDeepGlobe_AutoEncoder/tree/main
https://doi.org/10.1109/CVPRW.2018.00031
https://doi.org/10.1109/CVPRW.2018.00031
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1785/0220210280
https://doi.org/10.1785/0220210280

