
Comparing algorithms for storm cluster detection

Jonathan Cotasson

November 2022

Abstract

In the year 1951, natural hazards have had an im-

portant impact in the USA. Across the country,

various types of storms or other events have dam-

aged proprieties or crop. Tornadoes, hail and thun-

derstorm wind, hurricanes, avalanches, drought,

and even more disasters occurred and impacted the

life of billions of people. In this project, my aim is

to use machine learning algorithms to define cluster

zone of their appearances.

1 Introduction

This project will expose the methods of data acqui-

sitions for natural hazards in the USA in a given

period. I will then use this data to predict where

those hazards tend to develop. A real world appli-

cation for this environmental question would be to

see where they do the more damage on proprieties

or crop. To be able to find those clusters, I will use

two different algorithms: K-means and DBSCAN.

They both are unsupervised classification but the

latter one is capable of dense clustering and not the

former one. It will be interesting to see what both

are capable to predict and how they differ as well.

The clustering methods depends on each research

and data set. The scientific literature [1] [2]also

suggest other machine and deep learning method

to analyze natural hazards. Regardless, this work’s

aim is to show what is possible to do with the cho-

sen methods.

The scientific question is the following. Where did

extreme event occur in the USA in 1951?

2 Data and Methodology

2.1 Data

For this research, I have gathered an important

data-set from the National Oceanic and Atmo-

spheric Administration (NOAA) which works for

the US Department of Commerce. They freely give

access to storm data in large ”csv” files. In ma-

chine learning, the more you feed your algorithm

with data, the more precise your results will be. I

chose the data file with all occurrences of natural

hazards in the USA in 1951. It is one of the earliest

data sets available and I find it interesting to figure

out what could the first results look like, regarding

natural hazards.

2.2 Methodology

This whole script work is done with Python coding

language As I mentioned before, I will use K-means

and DBSCAN in this paper. Both are unsupervised

machine learning algorithms. This means that the

models are not supervised using training data sets.

The models finds hidden pattern with the help of

the given data, it groups data by finding similari-

ties.

2.2.1 K-means

K-means is the first algorithms I want to use. It

basically measures the mean squared error of each

data point from a general average. In a 2D plan, it

is the same but measuring the euclidean distance.

In this project, I want to find storm clusters and

1



figure out in which region they are particularly im-

portant. For this algorithm, I have to randomly se-

lect distinguished data points and make then initial

clusters. Each other points will then measure its

distance to those initial clusters and be assigned to

the cluster where they are the closest. When each

data point is related to a cluster, I calculate the

mean of each cluster and start over again. Each

iteration should have different result at first but

shows similarities after a few tries. Once the clus-

ters no longer change, we may have found the real

clusters. To find the right number of clusters, we

have to try a few times the workflow above and plot

the cluster means in an ”elbow plot”. In this type

of plot, we can easily see were the elbow is and how

many clusters, or Ks we should use.

2.2.2 DBSCAN

The second algorithm is DBSCAN, which means

Density-Based Spatial Clustering of Applications

with Noise. While K-means can be useful, DB-

SCAN works with density clusters and seems to be

more efficient. This algorithm can handle ”nested

clusters”. The first step of this method is to assign

a few core points within our data. To find these core

points, we will give each point a buffer zone of the

same size. We then look at how many other points

are overlapped by each point’s buffer zone. The

points with the more overlaps are the initial core

points. Those points will then spread around to ev-

ery point within its buffer zone until they can not

spread any more. The the points that are nearly in

the buffer zones of the points at the extremities of

the clusters are non-core points. Those points will

be assigned to the closest buffer without being able

to spread even more. That is how density clusters

are formed and we repeat the same with every ini-

tial clusters. The points not assigned to any cluster

are the outliers, they represent extreme data and

are not representative.

3 Results

After importing the data set on Google Colab, I can

show you the variables interesting for this project.

As we can read in Fig. 1, the main variables are the

latitude, the longitude, the date, and the state. I

have to specify that the coordinates are those of the

beginning of each event. The end of some events did

not have data so it was not important to mention

them in this case.

Figure 1: Data set main variables

We saw in our book reference [3] in class and

with our notebooks, how to create cluster plots

with data. The next figure 2 expresses the clusters

in reference with the latitude and longitude axis.

Figure 2: K-Means cluster plot

We can observe five different clusters in this plot.

A number that could be correct based on the size

of the region of interest and regarding the data set.

We can verify if this number is correct using the

elbow plot. This type of plot graphically shows the

number of clusters that should be chosen for a given

problem. As his name suggest, an elbow is visible

2



at the point where the optimal number of clusters

is met.

Figure 3: Elbow plot

This one can be tricky but 4 is the point at which

adding additional clusters does not significantly im-

prove the compactness and separation of the clus-

ters, and is therefore a good choice for the number

of clusters. I can now change the initial number

of clusters and see want kind of results we obtain.

The clusters seem to be well distributes, except for

Figure 4: K-Means using 4 clusters on the USA

map

the extreme values that have been assigned to the

nearest cluster. We can also visualize the same re-

sult using DBSCAN. Note that this second algo-

rithm automatically chose to perform with 5 clus-

ters. The next step for this work is to evaluate the

performance of those two algorithms. For this, I

share a part of my code that enabled me to get the

Figure 5: DBSCAN clusters on the USA map

scores of both algorithms. We can see on the the

bottom of the figure 6 that the K-Means have a

higher coefficient score than the DBSCAN.

Figure 6: K-Means and DBSCAN scores

The silhouette coefficient for a sample ranges

from -1 to 1, where a value of 1 indicates that

the sample is well-separated from the other clus-

ters, and a value of -1 indicates that the sample is

poorly separated and should be assigned to a dif-

ferent cluster.

3



4 Discussion

Regarding the results of this project, their are sev-

eral information to discuss. First of all, the extreme

values should not be taken into account. Specially

using the DBSCAN method, we can see that the

results can appear to be surprising. We can see

that 4 out of the 5 clusters seem adequate, but the

orange clusters is distributed across the USA map.

Some of those values could, or should be assigned

as outliers. This means that they should not be as-

signed to any of the clusters. Following the elbow

plot 3, I could have chosen only 3 clusters as the

silhouette score was the highest at that point.

The K-Means algorithm outscored the DBSCAN

on this project. A reason for that is maybe that

the region of interest was to large for a DBSCAN,

as it operates better for dense clustering situations.

One could easily see that the East side of the United

Stated is at risk concerning natural hazards. The

results show that only a couple of events occur on

the West coast. They are extreme data as they do

not fit in any clusters.

5 Conclusion

To conclude this work, I could advance that both

algorithms were relatively accurate regarding their

score 6. DBSCAN does not seem to fit well for this

specific case as the data is not dense enough. An-

other algorithm I could have used is Gaussian Mix-

ture Model. A Gaussian Mixture Model (GMM)

[3] is a probabilistic model that assumes that the

data is generated from a mixture of several Gaus-

sian distributions. GMMs can be used for cluster-

ing by assuming that each cluster corresponds to

a different Gaussian distribution. GMMs are good

for finding clusters of arbitrary shape and can han-

dle overlapping clusters, but they can be sensitive

to the initial parameter estimates.

To answer the initial question of this paper, we can

observe on the maps 4 5 that extreme events occur

in the center and the East side of the USA.

6 Other resources

Link to the data-set used: here

Complete Python code: Click here for the complete

Colab notebook

References

[1] D. J. Gagne II, S. E. Haupt, D. W. Nychka,

G. Thompson, Interpretable deep learning for

spatial analysis of severe hailstorms, Monthly

Weather Review 147 (8) (2019) 2827–2845.

[2] M. Tonini, M. D’Andrea, G. Biondi,

S. Degli Esposti, A. Trucchia, P. Fiorucci,

A machine learning-based approach for wildfire

susceptibility mapping. the case study of the

liguria region in italy, Geosciences 10 (3) (2020)

105.

[3] A. Géron, Hands-on machine learning with

Scikit-Learn, Keras, and TensorFlow, ”

O’Reilly Media, Inc.”, 2022.

4

https://drive.google.com/drive/folders/1MUs64WT0GsBKKn27ArXNDci2wE-OYDnz?usp=sharing
https://colab.research.google.com/drive/1bq61lnS7DJSe1zcfccMtj7dHVp_3UqJK?usp=sharing

	Introduction
	Data and Methodology
	Data
	Methodology
	K-means
	DBSCAN


	Results
	Discussion
	Conclusion
	Other resources

