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Abstract
Tropical cyclones form at very precise atmo-
spheric and oceanic conditions, therefore it can be
hard to apprehend all the mechanisms involved.
This paper focus on the unsupervised classifi-
cation of formed cyclones via their localisation
in intertropical basins and their environmental
conditions. KMeans and DBSCAN were com-
pared with different hyperparameters. KMeans
showed better results for the classification. Three
groups were identified showing that cyclones tend
to group more according to the environmental
predictors, in particular humidity, convection and
moisture.

1. Introduction
Knowledge on tropical cyclones has evolved a lot up to
know. Knew observations, technologies and discovers
in many fields have permitted a better understanding of
the dynamics involved in those meteorological phenomena
(Emanuel & Center, 2018). Nowadays, a tropical cyclone
is defined as an intensified circular storm formed over the
inter-tropical seas, and gathering its energy from warm wa-
ters below, It is driven by a low atmospheric pressure core
generating strong winds and precipitations. The nomen-
clature depends on the intensity and on the oceanic basins
it occurs. In the western North Pacific for example, those
storms are called typhoons (Zehnder, 2022). The ensemble
of their conditions and mechanisms of formation is called
cyclogenesis and is the main topic of this paper.

The conditions for the intensification of a depression into
a tropical cyclone are very precise and involve processes
from Atmospheric and oceanic dynamics, as well as bio-
geochemistry (Emanuel & Center, 2018). They include
temperature and depth of the oceanic surface layer, already
existing atmospheric circulation with conditions favourable
to the formation of convective clouds, humidity, geographic
position, and wind speed gradient (Zehnder, 2022). Tropical
cyclogenesis is a continuous process occurring and evolving
at different spatiotemporal scales. Involved dynamics are
influenced by external environmental as well as internal fac-

tors, generating feedbacks impacting the genesis. Vertical
wind shear, oscillation interactions, convective evolution,
and friction can be contributing factors for the development
and the evolution of tropical cyclones (Tang et al., 2020).
Those events are very destructive and deadly. A better un-
derstanding of their mechanics could upgrade the way they
are apprehended and significantly improve their prevention
and risk assessment. There are plenty of methodologies to
work with cyclogenesis. In this paper, it was studied using
an unsupervised machine learning approach.

Two clustering algorithms, sickit-learn’s KMeans and DB-
SCAN, were used on a dataset containing points of formed
cyclones over seven tropical oceanic basins and eleven as-
sociated environmental variables. The goal was to compare
the algorithms and identify groups in the dataset to analyse
how the basins and environmental predictors were put to-
gether. The clusters were compared using bar graph for the
basins and boxplot for the predictors.

2. Dataset
The dataset consists in a netCDF file containing 11 environ-
mental variables linked to the formation of tropical cyclones.
They are climatological tropical cyclone formation proba-
bility (CLIM), percent of the area covered by an r=500km
circle covered by land (PLND), average weekly Reynold’s
SST (RSST), average 850-200 hPa vertical shear (VSHD),
average 850 hPa relative vorticity (RVOR), average vertical
instability parameter (THDV), average 850 hPa horizontal
divergence (HDIV), amount of sustained deep convection
(PCCD), mid- to upper-level moisture (BTWM), average
mean sea level pressure (MSLP), average 850 hPa hori-
zonal temperature advection (TADV), and mid level relative
humidity (MLRH). The dataset is linked to the work on
cyclogenesis prediction by the regional and mesoscale me-
teorology branch (RAMMB) at the cooperative institute for
research in the atmosphere (CIRA). However, their work
isn’t addressed in this paper.

The dataset comes in three dimensions: time, lattitude and
longitude. The time goes from 1995-01 01T18:00:00 to
2010-12-23T12:00:00, the lattitude from -45° to 45°, and
the longitude from 0° to 359°. The values of the 11 variables
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Figure 1. Map of tropical cyclone formation probability oceanic basins.

Figure 2. KMeans silhoutte scores in function of the number of clusters k.

Figure 3. KMeans inertias in function of the number of clusters k.
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for each set of coordinates represents the conditions at which
a tropical cyclone actually formed. Those are called the
true positive datapoints and represents the data used in this
project. A sample of the conditions for which a cyclone
didn’t form, the true negative datapoints, is also available
but it wasn’t used in this paper because the focus was on the
effective formation of cyclones.

3. Methodology
First, to determine in which oceanic basin each sample be-
longs, a categorical variable representing the basins was
added to the dataset. The basins were defined using the
tropical cyclone formation probability map made by the
RAMMB (Fig.1). A black and white map with the same di-
mensions was loaded. The pixels were used as geographical
coordinates and assigned a variable between 1 to 7 in func-
tion of the basin they represented as follow: N.Atlantic (1),
N.Indian (2), N.-W.Pacific (3), N.E.Pacific (4), S.Atlantic
(5), S.Indian (6), and S.Pacific (7). The result was merged
with the dataset to assign a basin to each true positive
point. After some NaN cleaning, the data were reshaped in
(n samples, n features) format as required for the clustering.
The data were also scaled using StandardScaler class from
sickit-learn.

3.1. KMeans

A KMeans model was trained with a number of clusters k
going from 2 to 10, to find which one fitted the data the
best. The method of initialization was ”k-means++” and the
K-means algorithms tried were ”lloyd” and ”elkan”. The
number of initial centroı̈ds was set to 100 in order to have a
stronger model without taking too much computation time.
The performance metrics used were only silhouette score
and inertia, since there were no true labels for this dataset.
Those metrics were extracted and plotted in function of k
to find the best value. The clusters were then predicted
with the best models. The distribution of the basin variable
was represented using bar graph, and the environmental
predictors using boxplots.

3.2. DBSCAN

Unlike KMeans, DBSCAN is a clustering algorithm based
on density (Shubert et al., 2017). It doesn’t need an pre-
initialization of the number of clusters and allows to get
rid of the noise points of the dataset. It has two major hy-
perparameters: ”eps” and ”min samples”. The latter was
determined with different epoch of the model and a range
from the default one 5, to 100. The biggest numbers were
expected to work better because they seem to be more ap-
propriate for large and noisy datasets (Shubert et al., 2017).
The second hyperparameter was determined using the sickit
learn’s k-nearest neighbors method with the min samples

Figure 4. K-nearest neighbors method for DBSCAN.

value as the n neighbors parameter. The most appropriate
values to use should be in the elbow of the graph were the
slope is the bigger (Mane, 2020). The metrics used to cal-
culate the distance between the instance were ’euclidian’
and ’manhattan’. The resulting DBSCAN model was then
fitted to the data. The distribution was also represented as
bar graph and boxplots, but the noise points were excluded.

4. Results
4.1. KMeans

For the ”lloyd” algorithm. The silhouette score (Fig. 2)
and inertia (Fig. 3) graphics show that the best number of
clusters is 3, with respective values of 0.185 and 1.72 x 106.
The computation with the ”elkan” variation give the same
results, so only the ’lloyd’ algorithm is considered for the
graphic vizualisation. The low silhouette score shows that
the model don’t do very well with the dataset.

The bar graph (Fig.5) shows that the first cluster groups a big
part of the points from all the basins, with the most frequents
being N.W. and N.E. Pacific. The second cluster have a
majority of N.Atlantic points, but both N.Pacific basins are
also well represented. The third cluster is dominated by
N.Atlantic and N.E. Pacific.

On the three boxplot graphs (Fig.8), the variable TADV is
ditributed around 0 and have outliers covering the whole
range from negative to positive. It seems however that
the values are higher in cluster 3. Every cluster shows a
relatively even distribution of the values between negative
and positive. It could be explain by the fact that points from
every basins are present in all three clusters. However, the
first cluster shows positive dominating values for MLRH
and PCCD, and negative dominating values for BTWM
and PLND. In the cluster 2, the variable PLND isn’t much
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Figure 5. Bar graphs of the basins frequency for KMeans clusters.

Figure 6. Bar graphs of the basins frequency for DBSCAN clusters.

represented, but shows a dominance of positive values. The
boxplot shows that PCCD and MLRH are mostly spread in
the negative, while BTWM and HDIV dominated mostly the
positive values. The cluster 3 shows the clearest tendency,
with a PLND variable largely dominated by positive values,
and THDV being mostly spread in negative domain.

4.2. DBSCAN

The graphic analysis from the graph of the k-nearest neigh-
bors (Fig.4) helped choosing 1.1 as value for the ”eps” hy-
perparameter. The metric kept for the distance is ”euclidian”
because ”manhattan metric generated too much clusters
and noise points. After many tries, the used value for the
min samples parameter was 60, who gives 2 clusters, 68665
noise points and 0.067 as silhouette score. This model seems
to do even worse than the KMeans on the dataset, the results
could therefore not be very reliable.

The algorithm put almost all the points in the first cluster,
and around 120 points from the N.Atlantic basin in a second
cluster (Fig.6). The boxplot (Fig.7) shows that the first
cluster have an even distribution of all the variables. The
second cluster shows high values for MSLP and THDV,
spread around zero for HDIV and MLRH, and negative
dominating values for all the other variables.

Figure 7. Boxplots for the environmental predictors of DBSCAN
clusters.
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Figure 8. Boxplots for the environmental predictors of KMEans clusters.
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5. Discussion
The results from the basins classification doesn’t seem to
show any clear tendency. Only the N.Atlantic, N.W. and N.E
Pacific appears to be grouped more often with the KMeans.
But they have also more points in the dataset, so it could
be why they are more likely to be present in the clusters.
The small group from N.Atlantic basin separated by the
DBSCAN have differents environmental conditions than the
other points, and it can explain why it is separated. It has
high values of mean sea level pressure and vertical instabil-
ity parameter. It could represent a small group of cyclones
formed with those particular conditions. The environmen-
tal conditions for cyclogenesis are very precise and all the
points from the dataset come from the intertropical zone.
Therefore, the global conditions of formation are very simi-
lar and it could be why the two clustering algorithms tend
to group all the basins together. Also, the structure of the
dataset could not be very favorable for clustering algorithms.

Environmental predictors analysis showed some differences
between the KMeans clusters. The first groupe have more
positives values for mid relative humidity and sustained deep
convection, and more negative values for mid- to upper-level
moisture. By contrast, the second group have more negative
value for mid relative humidity and sustained deep con-
vection, and more positive values for mid- to upper-level
moisture. This could shows two group of tropical cyclones
formed with opposite conditions of humidity, convection
and moisture. The variable representing the percentage
of land coverage close to the area, who wasn’t well repre-
sented in the two first group, shows a large domination in
the positive values from the third group. There is also a
domination of the negative values for the average vertical
instability parameter, and higher value for the average 850
hPa horizonal temperature advection. This group could put
together cyclones formed closer to land covered area with
a tendency for negatives vertical instability parameter and
high horizontal temperature advection.

6. Conclusion
The KMeans algorithm did better than the DBSCAN algo-
rithm to the classification of the cyclogenesis true positive
datapoints, although either having very high performance
scores on this dataset. The similarities in the formation of
the cyclones seem to depend more on their environmental
conditions rather than on the location of their formation.
Further analysis with other algorithms or parameter could
bring different methodologies and point of views to develop
the analysis. A comparison with the true negative points
could also be instructive to understand the differences with
the environmental conditions at which tropical cyclones
don’t form.

Links
• Dataset: https://unils-my.sharepoint.
com/personal/milton_gomez_unil_
ch/_layouts/15/onedrive.aspx?
id=%2Fpersonal%2Fmilton%5Fgomez%
5Funil%5Fch%2FDocuments%2FJeremie&
ga=1

• Code: https://github.com/
jejefragniere/MLEE_final_project/
blob/main/Dev/MLEE_final_project.
ipynb

• TCFP image: https://rammb.cira.
colostate.edu/projects/gparm/images/
TCFP_basins.gif
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