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Predicting proglacial lake discharge
using machine learning algorithms

Faye Perchanok1

Abstract
Greenland is home to some of the most valuable
climate change information. The ice sheet and
surrounding watershed systems provide insight
into the future of sediment transport, discharge,
and the consequences of a rapid increase in melt-
ing. Predicting discharge from the outflow of a
pro-glacial river could provide further and valu-
able comprehension into river dynamics in a cli-
matically important area. Using Python to train
and test a yearly discharge dataset using regres-
sion and a decision tree predicted a steady annual
increase in discharge, consequently elevating sed-
iment transport.

1. Introduction
Sediment Transport in proglacial rivers provides vital infor-
mation for predicting morphodynamics. Greenland glaciers,
ice sheet, and linked watersheds hold some of the most
important information on sediment transport properties.
Proglacial streams, such as those found at the Greenland
Ice Sheet (GIS), have distinct characteristics that affect data
collection, measurements, analysis, and predictions. Firstly,
their sediment transport flows have a stronger link to air
temperature than to precipitation events, which favours pre-
dictability (Mao et al. 2018). Alternatively, due to the high
turbidity and bedload transport, the tracking of sediment
transport is only possible in a short summer period where
melt flows are inhibited by lower temperatures and runoff is
groundwater-dominated(Mao et al. 2018).

Transport dynamics in proglacial rivers are complex and
hitherto , are not fully understood. Understanding and pre-
dicting river discharge is a parameter that could be partic-
ularly useful in furthering sediment transport research, as
discharge is measureable in the Greenland proglacial area,
and is a well-developed aspect of hydrology with many ap-
plications. It is expected that the sediment transport from
the GIS will be accelerated due to climate change, heavily
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altering global oceanic sediment configuration and impact.
Discharge data will provide valuable information regarding
ice sheet surface mass balance, hydrology, and sediment
release (Noel et al. 2018).

My masters thesis will focus on dating sediment transport
along a proglacial river in Greenland to gain insight into its
transport dynamics. The dataset used contains yearly dis-
charge along Watson River (Qinnguata Kuussua ). Machine
learning algorithms were used to create forecasting models
to simulate future discharge by observing trends and using
linear regression and decision trees.

Figure 1. (A) Greenland Ice Sheet (GrIS) catchment after Lindbäck
et al. (2015) (Hasholt et al, 2018);(B) proglacial area (Hasholt
et al, 2018); and (C) Watson River and the fjord Kangerlussuaq
(Hasholt et al, 2018).

2. Data
Beginning in 2006, a hydrometric station has operated in the
settlement of Kangerlussuaq, located on the Watson River
in southern west Greenland (Noel et al. 2018). The hydro-
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metric station collects water stage measurements, which are
converted into hourly discharge (Hasholt et al.2018). The
station was firstly established by the University of Copen-
hagen, Department of Geosciences and Natural Resource
Management, and was taken over by the Geological Survey
of Denmark and Greenland in 2013, who have continued
the monitoring as part of the Programme for Monitoring of
the GIS (Hasholt et al. 2018).

This data set was chosen because of the range of dates
available with the discharge. The years 1949 - 2021 have
recorded or calculated discharge, which is the biggest time
frame available for discharge in this river.

3. Methods
To compare different machine learning algorithms, linear
regression and a decision tree were used to compare their
results for predicitng future discharge of Watson River. The
first step in creating the code for this project was to organize
the data in a table in python and replacing all the empty
values with NaN values. Then, the years with NaN values
were removed to ”clean” up the data.

Linear Regression is based on supervised learning to per-
form a regression task (Maulud and Abdulazeez, 2020).
The model targets a specific prediction value based on inde-
pendent variables (Maulud and Abdulazeez, 2020).In this
project, it is used as a forecasting tool.Linear regression was
firstly used to model the data points and create a regression
line. The data set was split into a test and training set. The
years 1949 - 1999 were chosen as training years, and 2000
- 2021 were chosen as test years, which is approximately
28% data in the test set and 72% data in the training set. The
training set was trained and plotted, with a set of predictions
produced from the linear space array.

A decision tree was then created for this data set, to train
and adjust hyperparameters. A decision tree is a form of
supervised learning wherein predictions can be done based
on a previous data set. This was done as a comparison tool
with the linear regression. The decision tree was created
by scattering all of the data, then the training and test data,
which was split using a test size of 20%, number of samples
at 1000, random state set to 42, and noise at 0.4.

Finally, the mean squared error (MSE) and the root mean
square error (RMSE) were calculated to show the accuracy
of the results. This was done using the ”r2 score” and
”mean squared error” metrics from sklearn.

4. Results
What was observed with this regression prediction, was a
slight, and consistent overall increase with time. Therefore,
predictions for the future have increased values from the

Train Error Value
RMSE 0.48
MSE 0.13

Table 1. Root mean squared error (RMSE) and mean squared error
(MSE) from the decision tree training data

Test Error Value
RMSE 0.51
MSE 0.12

Table 2. RMSE and MSE from the decision tree testing data

training and testing set. Conversely, the data was very noisy
and inconsistent, and therefore the predictions found seem
to under fit the data and are perhaps not an appropriate gauge
of future discharge.

Figure displays the 3 graphs produced using linear regres-
sion. The first graph is all of the data plotted, where an
increasing trend with the data is observed, although the data
points are quite scattered. The second graph shows the train-
ing set, from the years 1949-1999, and a regression line
from 2020-2040 plotted to view how it was trained. The last
plot shows the test set and the regression line produced with
the data from 2000-2020. The data is quite scattered and the
regression line is quite under fitted, however it still displays
the broad trend of general increase.

Figure 2. Sample of data set, with yearly discharge, uncertainty,
and location of collection (as a number). Discharge data in the last
column is the cleaned up data, with NaN values removed.

Table 1 shows the root mean squared error (RMSE) and
the mean squared error (MSE) of the training set. The root
mean squared error:√

1

n
Σn

i=1

(xi − yi
σi

)2

,is the proportion of the variance in the dependent variable
that is predictable from the independent variable as a per-
centage. As it is calculated to be 48%, this shows heavy
variance, with 100% being no variance between the vari-
ables. The mean square error is calculated as the average of
the square of the errors:

D∑
i=1

(xi − yi)
2
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,a larger number indicating a higher error. A 13% error in
the training set is a low number, indicating less error. Table
2 shows the RMSE and MSE for the test data, with similar
findings of a low RMSE (high variance) and low MSE (low
error).

Figure 3. Annual Discharge plots, the top plot is from all of data
to create a regression line. The middle plot is with training data,
and a regression line from 2020-2040. The bottom plot is the test
data, from 2000-2020. As can be seen in all of the plots, the data
is highly scattered and the regression lines do not fit the data that
factors in the fluctuations.

Predicting discharge of the Watson River is important in
understanding sediment transport processes. The regression
line produced suggests a steady and linear increase in annual
discharge. This result does not correlate with the study
done by Hasholt et al. (2018), which found significant

seasonal and annual fluctuation in discharge - no significant
trend could be detected from the 11 year observation period
(Hasholt et al.2018).

Figure 4. Decision tree scatter plots of A) all data B) training set
C) test set.

5. Discussion
There is evidence of accelerated ice loss on the GIS, which
is one of the largest sources of contemporary global sea rise
(Box et al. 2022). Although it is a major climate change
indicator, many factors involved in GIS hydrology are diffi-
cult to quantify. Gaining insight into the discharge history
and potential forecast can help bridge knowledge gaps in
GIS information. While the errors calculated for the deci-
sion tree showed little error, the linear regression curves
plotted initially, visually show under fitting. With this under
fitting taken into consideration, and the statement of further
research required to properly analyze the discharge - sedi-
ment transport relationships, the increasing trend supports
the assumption that sediment transport and sediment dis-
charge alter the erosive capacity of the ice sheet (Hasholt et
al. 2018). The increase in sediment transport discharge has,
and will continue to have consequences in the surrounding
deltas, with expansion predicted to continue (Hasholt et al.
2018).

Figure 5. Scatter plot of predictions. Black points indicate correct
predictions, red points indicate incorrect predicitons.



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Machine Learning for Earth and Environmental Sciences SA22

6. Conclusion
The decision tree model has shown to be more accurate than
the linear regression model, with the linear regression plots
showing under fitted curves. The discharge from the outflow
of the proglacial river in southern west Greenland shows
promising insight on river dynamics in a rapidly changing
and climatically significant area. Machine learning algo-
rithms are promising tools in forecast predictions. Further
research in other areas of river dynamics are required to
continue to understand the consequences of accelerated and
changing melting and water fluxes.

7. Other resources
The code used for this project is at this link.

The link for the data set used is at this link.
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