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Abstract
Accurate estimation of the volume of water in
Lake Urmia plays a crucial role in evaluating the
effectiveness of the implemented lake restoration
plans. This study aims to find a detailed depth
map inside the lake using in situ measurements of
the lake bed elevation conducted in 2018.

Several models have been used to derive the
relationship between the Landsat 8 imagery re-
flectance values in different bands and the mea-
sured water depth. The best model, a random
forest regressor, can predict the test data with a
coefficient of determination and a mean squared
error of 0.8612 and 0.02m, respectively. In the
next step, the developed method is used to predict
water depth of the lake.

1. Introduction
Many saline lakes worldwide have witnessed extreme des-
iccation over the past decades, e.g., the Aral Sea (located
between Kazakhstan and Uzbekistan) (Micklin, 1988) and
(Micklin, 2007), Lake Urmia (LU) (Iran) AghaKouchak et
al., 2015), Great salt Lake (Utah, USA) (Wurtsbaugh et al.,
2016) and Walker Lake (Nevada, USA) (Beutel et al., 2001).
This endangering condition has severely affected water qual-
ity, human and biota health, and regional economics (e.g.,
AghaKouchak et al., 2015)).

Since anthropogenic activities (such as extensive agriculture
development) have imposed a much more significant contri-
bution to drying than climate variability (e.g., Wurtsbaugh
et al. 2017), effective management practices for the urgent
and sustainable restoration of these environments are indis-
pensable. Monitoring the fluctuation of water storage in a
reviving lake is one reliable way to assess the success of any
restoration plans. This can be accomplished by estimating
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the water balance components, i.e., direct precipitation on
the lake, surface and groundwater inflows, evaporation rate,
and other possible forms of water loss. However, this is chal-
lenging due to the complexity and uncertainties involved in
estimating these variables.

Alternatively, water storage can be estimated indirectly from
the geometry of a water body, requiring the knowledge of the
bed topography or bathymetry. The bathymetry of aquatic
environments carries essential information about the estuar-
ine circulation (Simionato et al., 2004), delta morphology
(Brucker et al., 2007), reef ecology (Wedding et al. 2008),
tidal currents (Prandle 2003), wave propagation (Lynett and
Liu 2002), bottom currents in the coastal zones, lake or
reservoir sedimentation, and erosion-sedimentation rates
(Dost and Mannaerts 2008). The bathymetry of a water
body can be highly dynamic in both space and time due
to the fluctuating sediment loads from the receiving rivers
or tributaries. Recursive bathymetric monitoring of these
environments is thus necessary to decipher how the physi-
cal processes controlling the bed dynamics are influenced
by climate change and human interventions (Ceyhun and
Yalçin 2010).

Bathymetric maps are traditionally derived directly by sonar
measurements using single or multi-beam echo sounders
(Sánchez-Carnero et al., 2012). Despite the high accu-
racy and unparalleled lake bottom coverage, this technique
is not efficient in shallow waters. It is expensive, time-
consuming, and labor-intensive, and there is a risk of echo
sounders stranding (Smith and Sandwell 2004). Instead,
Airborne LiDAR bathymetry (ALB) can characterize the
depth of a water column in relatively shallow, clear wa-
ter with high accuracy from an airborne platform using a
scanning and pulsed light beam (Saylam et al., 2018). Nev-
ertheless, the extremely high cost of ALB limits its applica-
tion (Sánchez-Carnero et al., 2012). Alternatively, Satellite-
Derived Bathymetry (SDB) by optical remote sensing is a
low-cost, wide-coverage, and time-effective approach that
relies on passive multispectral scanner data and uses optical
characteristics of water column to frequently estimate water
depth over a large spatial extent (Ceyhun and Yalçin 2010).
SDB-based approaches can be categorized into analytical,
semi-analytical, and empirical methods (Evagorou et al.,
2019). Implementing data-driven empirical models such
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as the log-linear relationship between surface reflectance
and water depth (Lyzenga, 1978) and the ratio transform
relationship of Stumpf (Stumpf, Holderied, and Sinclair,
2003) are less challenging than the analytical and semi-
analytical methods. This is because the complex influence
of atmospheric properties, lake bed composition, and veg-
etation cover are lumped into a few parameters that can
be calibrated using the available in-situ observations (Ja-
galingam, Akshaya, and Hegde 2015). Recently, advanced
Machine Learning (ML) techniques coupled with satellite
imagery have been successfully implemented in deriving
lake bathymetry. These include, but are not limited to, Ar-
tificial Neural Networks (ANN) (Ceyhun Yalçin, 2010),
(Gholamalifard et al., 2013), (Mohamed et al., 2017) and
(Liu et al., 2018), Ensemble of Regression Trees using Boot-
strap Aggregation (i.e., bagging) (Mohamed et al., 2017),
Ensemble of Regression trees using least-squares boosting
(LSB) (Mohamed et al., 2016) and (Mohamed et al., 2017),
Random Forest (RF) (Manessa et al., 2016) and (Sagawa et
al., 2019), and Support Vector Machine (SVM) algorithm
(Misra et al., 2018) and (Wang et al., 2019).

This study has predicted the water depth map of LU with
the help of the field measurements of the lake, and with the
help of satellite imagery, using a random forest regressor
model.

The rest of the paper is organized as follows. Section 2
describes an overview of the research, introducing the study
area, the dataset, and different methods for deriving the
water depth. In section 3, four different methodologies are
studies to fidn the method that is able to best model the water
depth, based on the bands 2 to 7 of the Landsat 8 imagery
of the same area. Finally, using the best model, the water
depth map for the data collection period is acquired. Finally,
the fifth chapter sums up the conclusion of the study.

2. Case Study
LU is a hypersaline lake in the northwest of Iran (located
between 44° 56’ E to 46° 04’ E longitudes and 36° 56’ N
to 38° 22’ N latitudes) that was known as the second hyper-
saline lake worldwide before losing a vast majority of its
water volume between 1995 to 2017 (AghaKouchak et al.,
2015). Intensive agricultural development, the imbalance
between water supply and demand, disrespecting the envi-
ronmental demand of the lake demand by the reservoirs on
the rivers feeding the lake, illegal withdrawal from surface
and groundwater resources, and low irrigation and agricul-
tural productivity in the Lake Urmia Basin resulted in the
decline of LU’s water level by nearly eight meters (i.e., los-
ing 96 percent of water storage from 34.22 BCM to 1.24
BCM) in this period (see Danesh-yazdi and Ataie-Ashtiani
2019 and references therein).

Figure 1. Path of the measurement profiles captures in Marc to
April, 2018

This environmental catastrophe led to a wide range of en-
vironmental and socioeconomic problems such as desertifi-
cation, an increase in soil salinity in agricultural areas near
the lake, disturbance in the ecological condition of species
living in the lake, initiation of salt storms from the dried
portion of the lake, increase in health-related problems, and
increase of unemployment rate due to recession in agricul-
tural activities (Danesh-yazdi and Ataie-Ashtiani 2019)

3. Methodology
This section describes the data used and machine learning
methodologies used to model it.

3.1. Data

3.1.1. SATELLITE IMAGERY

For this study, Landsat 8 imagery with a spatial resolution
of 30m, captured on 25 March 2018, has been used. , and
the level 2 images containing surface reflectance (SR) val-
ues were converted from the top of atmosphere reflectance
values using the LaSRC algorithm developed by Vermote
(U.S. Geological Survey 2019).

3.1.2. HYDROGRAPHY DATA

The water depth and bed elevation data acquisition cam-
paigns were carried out from 6 March to 20 April 2018
across the LU by the Urmia Lake Restoration Program
(ULRP) and the Geological Survey and Mineral Explo-
rations of Iran (GSI). Figure 1 shows the path of these
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Figure 2. Histogram of all input data based on the depth (m).

bathymetric surveys, extending in both the northern and
southern parts of the lake. The measurements are done as
12 paths with a length of 10-km, which are centered around
the Kalantari bridge. 500 m distances separate the paths.
The water was acquired using daily LU water level data
recorded at the Golmankhaneh station (37° 36 00.9 N and
45° 15 25.9 E) to compute water depth from the measured
lake bed elevation data. In total, there are 6426 data, each
corresponding to a measurement point in Figure 1, of which
60 percent is used for the training data and 20 percent used
for validation and test dataset each.

3.2. Modeling

In this study, four methods have been used to model the
depth using band reflectance values: Linear and Polynomial
regressions, Regression SVM, and Random Forest Regres-
sor.

4. Results
In this section, at first, different regression methodologies
are explored to find the model that is able to best describe the
three splits of data: training, validation and testing. Finally,
the best model is used to map the water depth across the
whole lake to find the depth in different locations.

4.1. Modeling

In order to describe the data using regression methods, the
data has been split into three sets of training, validation and
testing. The modeling starts with the simplest model, linear
regression. The results of all the models have been provided
in Table 1.

As the results show, this simple model is able to provide a
model with a low mean squared error. However, the low r
squared value, even for the training data shows the model
does not yield the prefect result.

As a result, it has been decided to move to the more complex

Figure 3. The r-squared value of the training, validation and testing
algorithm for a sample random forest regressors with the following
hyperparameters and a variable maxdepth between 1 and 110.

models which as the results show, are able to better explain
the data. However, a pitfall of moving into the complex
models is that their higher accuracies might come at the cost
of overfitting, i.e. low performance on the validation and
test sets.

As the result shows, by an increase in the complexity of
the model, the difference in the performance between the
training and test sets increases. However the test data is also
yielding better results, moving from an r squared of 0.53 in
the linear regression to an r squared of 0.86 for the random
forest regressor method.

It should also be mentioned that the hyperparameters of all
the studied methods have been relatively tuned to increse
their performance. As an exmaple, for the case of linear
SVM, different values for the parameters of kernel, degree,
C and epsilon have been tested, reaching to the fine tuned
values of ”rbf”, 2, 1000, and 0.1, respectively.

Samely, for the case of RF-R, testing different hyperparam-
eters, as shown in Table 2, gives the best results for the
following parameters: nestimators = 1400, minsamplessplit
= 5, minsamplesleaf = 1, maxfeatures = ’sqrt’, maxdepth =
30, bootstrap = True.

Figure 3 shows the r squared values for different values of
maxdepth for training, validation, and test datasets. As the
figure shows, which is comptible with reults of Table 1, the
training value is able to yield better results compared with
the test and validation data, for which the results are the
same. However, it interestingly shows the effect of tuining
hyperparameters (maxdepth as a sample), As it shows, aft-
ter an approximate value equal to 30, the increase of this
parameter will not chnage the results. However, for values
less than this threshold, this parameter plys an important
role in determining the results.
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Table 1. Regression metrics, r squared value and accuracies for the
four tested algorithms for training and testing algorithms: Linear
regression (LR), Plynomial linear regression (PLR), regression
SVM (R-SVM), and random forest regressor (RF-R).

METHOD R2
train ACCUtrain R2

test ACCUtest

LR 0.549 0.070 0.531 0.071
PNR 0.685 0.049 0.662 0.052
R-SVM 0.812 0.028 0.780 0.034
RF-R 0.957 0.007 0.861 0.021

Table 2. Hyperparameters used for tuning the random forest regres-
sor models.

HYPERPARAMETER VALUES

Nestimators 200, 400, 600, ..., 1600, 1800, 2000
MAXfeatures AUTO, SQRT
MAXdepth 10, 20, 30, ..., 90, 100, 110
MINsamplessplit 2, 5, 10
MINsamplesleaf 1, 2, 4
BOOTSTRAP TRUE, FALSE

4.2. Prediction

In this section, the selected model , the random forest re-
gressor with tuned hyperparameters is used to predict the
water depth in the lake. Figure 4 shows the water depth map.
It should be mentioned that the water is delineated using the
unsupervised k-means algorithm in MATLAB.

Based on the results, the depth values range between the
values of zero and 2.3 meters. The maximum value happens
mostly in the margins of the lake and also in the center of
the northern and southern parts.

However, based on the field observations, I assume that
getting high values in the margins of the lake might not be
very true. I presume this might be a result of a problem
in water delineation. As the delineated water masks can
significantly change the results, I presume enhancing the
water delineation algorithm can be interesting and might
give more reasonable result.

5. Conclusion
In this study, several regression methods: linear regression,
polynomial linear regression, regression SVM, and random
forest regressor, have been used to model water depth in
Lake Urmia using Landsat 8 satellite imagery. If possible,
the hyperparameters are tuned in each case to acquire the
best result.

The results show that the RMSE is not very high, even for
the simplest model. In contrast, the R2 is low not only for the
test but also for the training dataset. As the model becomes
more and more complex, the R2 increases and therefore, the
most complex model can give the best results.

Figure 4. The calculated depth of Lake Urmia for the date of study,
25 March 2018, based on the final random forest reressor model
and Landsat 8 imagery.

The model is able to predict reasonable (at least not unrea-
sonable!) results for the lake depth, which is an advantage.
However, the performance of the model is highly affected
by the water mask in this case, which could be enhanced.

The advantage of this model is that compared with other
more complex models, i.e. ANN is much simpler and still,
is able to describe the data excellent performance metrics.

Software and Data
In this project, the Landsat 8 imagery has been downloaded
from the USGS website, accessible via this link. The confi-
dential field measurement data have been provided by the
Urmia Lake Restoration Program (ULRP). The field mea-
surements and the satellite imagery have been processed
in MATLAB to extract the relevant information. The final
dataset, including the inputs and outputs used in this study,
has been made accessible in the following link. The data is
then processed by python, and the notebook is accessible on
GitHub through this link.
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