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Coupling stochastic rainfall images and data-driven
flood emulation for fast urban flood mapping

Tabea Cache1

Abstract
Urban environments are becoming extremely
prone to destructive floods due to city’s ex-
pansions, the increase of impervious surfaces,
dense infrastructures and intensification of rainfall
events as a result of climate change. Various hy-
drological models have been developed and grow-
ing attention has been given to data-driven model
such as convolution neural networks. While the
former are not adapted for studies such as risk
analysis due to the high computational time, the
latter have not yet explored rainfall spatial vari-
ability. This study aims at exploring the added
value of using spatial distributed images of rain-
fall events as multi-channel feature inputs to the
deep convolutional network U-Net. The model’s
accuracy does not provide satisfactory results yet,
but future improvements are suggested.

1. Introduction
The World Meteorological Organisation (2021) identified
floods as the natural disaster causing the second highest eco-
nomic losses and third highest number of reported deaths
globally since 1970. Urban environments, with dense in-
frastructures and populations, are particularly vulnerable.
The impact of urban floods might be exacerbated by socio-
economical and climate changes (IPCC, 2022; UN-DESA,
2018). Cities affect the proportion of impervious surfaces
which reduces rainfall infiltration and increases the fre-
quency and magnitude of pluvial floods (USGS, 2003; Cut-
ter et al., 2018). Moreover, short duration rainfall events
are intensifying under climate change (Fowler et al., 2021).
The foreseen urbanisation and the impact of climate change
encourages to develop resilient cities (Rosenzweig, 2018).
In that scope, rapid flood models are crucial to understand
the uncertainty and risks linked with flood in cities. These
can also be used as flood warning tools to provide high reso-
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lution information on the flood depth and extent are crucial
tools (Hammond et al., 2019; Apel et al., 2022).

Urban pluvial flood models can be classified into three main
categories: physically based, non-physically based and data
driven. Various physically based models have been devel-
oped (Al-Suhili et al., 2019). However, these models rely
on the availability of high-resolution data such as the storm
drainage system and require long computational time to
simulate large areas with high spatial resolution necessary
to capture urban features (Leitao et al., 2009; Guerreiro
et al., 2019). Non-physically based models can use par-
allel computing which reduces computational time. The
main shortcoming of these models is that their accuracy
depends on the spatial resolution and simulation time step
(Guo et al., 2020). Additionally, small grid cell sizes lead
to computational time and power that are too important for
uncertainty analysis of urban pluvial floods (Guidolin et
al., 2016; Al-Suhili et al., 2019). Lastly, data-driven mod-
els have been given growing attention to emulate physical
processes. Machine learning algorithms such as Artificial
Neural Networks (ANN), Support Vector Machines (SVM),
Random Forest (RF), Recurrent Neural Networks (RNN)
and Convolutional Neural Networks (CNN) have been used
to model runoff (Aziz et al., 2014; Tehrany et al., 2015;
Wang et al., 2015; Han et al., 2021; Guo et al., 2020; Li et
al., 2022). Recently, Guo et al. (2020) have successfully
developed a data-driven urban flood emulator using only
0.5% of the time of a physically based model and using
hyetograph data.

Recent studies have shown that the variability in spatial dis-
tribution of rainfall can explain 26% of the flow variability
in a hydrodynamic urban flood model (Peleg et al., 2017).
In order to have a thorough estimation of the risks and un-
certainties of floods in urban areas, it is therefore necessary
to include variability in rainfall spatial distribution. This can
be achieved by usind stochastic weather generators that are
capable of simulating synthetic spatially distributed meteo-
rological variables for present or future climate (Fatichi et
al., 2011; Peleg et al., 2019). Multiple realisations generated
by these models can be used for risk analysis in hydrological
studies (Waheed et al., 2020; Peleg et al., 2015).

Ronneberger et al. (2015) have shown that their deep con-
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volutional network U-Net enables precise localisation in
image processing. In this study, we investigate how this
architecture can be applied to emulate fast urban flood maps
based on spatially distributed rainfall images simulated us-
ing a parametrisation of a stochastic weather generator. The
precipitation data have a spatial and temporal resolution of
respectively 15 m and 10 min. The machine learning model
is trained using flood maps generated by a non-physically
based hydrological model and corresponding to the peak wa-
ter depths for each rainfall event. We discuss the advantages
of coupling a stochastic weather generator parametrisation
with a deep convolutional network. Last, we identify fu-
ture research directions to support risk analysis in urban
environments.

2. Material and Methods
2.1. Case study

This study explores the use of the deep convolutional net-
work U-Net to emulate maximum water depth images in an
urban environment. To do so, a flood map dataset consisting
of hydrological simulation results for a design storm was
used as input. Design storms are commonly used to assess
flood impacts and design resilient infrastructures (Sun et
al., 2011). The most intense short rain event recorded in
Switzerland was chosen as the design storm for this study.
Peleg et al. (NP) simulated multiple realisations of this
storm with the STREAP model (Paschalis et al., 2013). The
STREAP model (Space Time Realisation of Areal Precipi-
tation) is a stochastic rainfall generator simulating synthetic
rainfall events. The statistical properties of these events are
derived from observations and reproduced for the simulated
event. Weather generators like the STREAP model have
been extensively used in hydrological studies for various
purposes such as extending short-record time series, explor-
ing climate natural variability, filling incomplete time series
with missing data or analysing extreme rainfall (Paschalis et
al., 2014; Fatichi et al., 2016; Schuol and Abbaspour, 2006;
Peleg et al., 2017). Here, the rainfall generator is used to
produce rainfall images that have the same temporal struc-
ture but varying spatial distribution. Data from a convective
permitting model (CPM) were then used to modify the de-
sign storm using three methods: a spatial quantile mapping,
a uniform quantile mapping and a rainfall-temperature rela-
tionship. The multiple realisations of the design storm time
series were fed into the cellular automata CADDIES flood
model (Guidolin et al., 2016). Only the maximum water
depth simulated for the city of Zurich are used as input to
our U-Net model here. Using results from hydrological
models as input to train machine learning algorithm has
been shown to be a valid framework (Guo et al., 2020). In
total, 30 rainfall realisations with 25 images each of size
512x512 and their corresponding flood map of size 512x512

were used to train, validate and test the model. 10% of
the dataset was used to perform the validation and 10% for
the testing of the model. The allocation of data to training,
validation or testing was performed randomly. The rainfall
time series used as input have a 10 min temporal resolution
and both rainfall and flood images have 15 m grid cell size.

2.2. Machine learning algorithm

U-Net was first presented to process biomedical images
where the task requires localisation of the desired output
(Ronneberger et al., 2015). The architecture presented in
Figure 1 can be summarised to consist of a contraction and
an expansion path. The contraction path arises from the
encoder that is similar to standard convolution networks.
The expansion path from the decoder along with the con-
catenation of features from the contracting path with those
of the expansion path enables to build high-resolution maps.
The encoder is a series of two convolution layers followed
by a maximum pooling layer. The series is repeated four
times. The decoder is a series of deconvolutions, a con-
catenation and two convolutions. Similarly to the encoder,
the series is repeated four times. The kernel sizes are 3x3
for the convolution layers and 2x2 for the max pooling and
deconvolution layers.

The architecture was implemented in Python using Tensor-
flow 2.8.0 (Abadi et al., 2015). All computations were per-
formed using Graphical Processing Units (GPU) to allow for
shorter running times by performing parallel computations.
The spatially varying precipitation events were randomly
labelled as training, validation and testing sets. The training
set was used to optimise the model’s parameters and the val-
idation set enabled to optimise the models hyperparameters
and detect possible overfitting of the model. The test set
consisting of data that are not included in the training and
validation set allows to investigate the generalisability of
our model.

The original images size are 1500x1824. These were re-
sized to 512x512 by coarsening the images with a scale of
3, zero padding in the latitudinal direction and cropping in
the longitudinal direction. The precipitation images were
preprocessed using min-max normalisation or standardi-
sation depending on the hidden activation function used.
Additionally, the float precision was reduced from 32 bits
to 16 bits due to memory limitations. Finally, the Adam
optimiser was chosen for its high convergence speed and
quality (Géron, 2019). The maximum number of epochs
was fixed to 100 and an Early Stopping callback was imple-
mented to avoid overfitting. In fact, the latter regularises
the deep convolution network by stopping training when the
minimum validation error is reached.
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Figure 1. Architecture of the deep convolutional neural network U-Net. The arrows represent various operiations: blue for convolution,
orange for maximum pooling, grey for concatenation and green for deconvolution.

2.3. Hyperparameters

The hyperparameter optimised during validation of the
model are summarised in Table 1. The first hyperparameter
characterises the filters which are the convolution kernels
that slide across the input image of the layer. The value
attributed to the filters defines the number of output filters
in the convolution. The second hyperparameter is the acti-
vation function for the hidden layers. The ReLU and SELU
functions in Table 1 stand respectively for Rectified Linear
Unit function and Scaled Exponential Linear Unit function.
The advantage of the SELU function is that it solves the
vanishing or exploding gradients problem (Hochreiter et al.,
1998). However, SELU does not outperform the default
ReLU function in nonsequential architectures like the one
of U-Net (Géron, 2019). In fact, self-normalisation that
solves the vanishing or exploding gradients problem is not
guaranteed due to the concatenation skip connection. An-
other activation function that was optimised is the output
activation. Both output activation functions evaluated are
activation functions for regression with positive outputs con-
sidering that the desired output is a flood map with only
positive water depths. Finally, two loss functions were eval-
uated: the Root Mean Squared Error (RMSE) and the Mean
Absolute Error (MAE). These are expressed as follow:

RMSE =

√√√√ 1

n

n∑
i=1

(Yi − Ŷ i)2

MAE =
1

n

n∑
i=1

|(Yi − Ŷ i)
2|

where Yi are the ’true’ water depths computed by CADDIES
and Ŷ i are the simulated values emulated by U-Net. The

Table 1. U-Net Hyperparameter search range and selection.

HYPERPARAMETERS SEARCH RANGE
SELECTED

VALUE

FILTERS 8, 16, 32 16
HIDDEN ACTIVATION RELU, SELU RELU
OUTPUT ACTIVATION RELU, SOFTPLUS SOFTPLUS
LOSS FUNCTION MSE, MAE MSE

obtained performance metrics for training, validation and
testing of the model are summarised in Table 2.

3. Results
Training the model was limited either by memory or com-
puting power. The configuration presented here was limited
by memory capacity while training the model with higher
resolution images, using a scale factor smaller than 3, was
limited by computing power. The model’s performance is
summarised in Table 2 and Figure 2 for two metrics and the
different datasets. Training and testing of the model took
respectively 0.88 minutes and 1 second.

The performance of the model is not satisfactory. While
the performance metrics reported in Table 2 suggest that
the error is very low, this is not representative as most of
the simulated maps are not flooded. Non flooded grid cells
have a value of zero and the flood depths are normalised
which leads to performance metrics close to zero. The
empirical cumulative distribution function in Figure 2 shows
the failure of the U-Net model to satisfactorily emulate water
depths. This failure holds true for low as well as for high
water depths. This is rational considering the high number
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Table 2. Performance metrics RMSE and MAE evaluated over the
training, validation and testing datasets.

PERFORMANCE
METRICS

TRAINING
SET

VALIDATION
SET

TESTING
SET

RMSE 0.0576 0.0529 0.0505
MAE 0.0426 0.0424 0.0387

of trainable parameters and the relatively little training data.
In fact, the model consists of 241,745 trainable parameters
but is trained on only 27 precipitation events.

Figure 2. Empirical cumulative distribution function of the nor-
malised water depths in Zürich for the design storm. The water
depths are modelled by the hydrological model CADDIES and the
deep convolutional network U-Net.

4. Discussion and Conclusion
At this stage, the proposed urban flood emulator does not
enable to draw conclusions on added value of coupling
spatially varying precipitation maps with deep convolution
network. One of the main reasons is the limited training, val-
idation and testing of the model with only 30 precipitation
events that were upscaled by a factor of 3 due to memory
and GPU limitations. Additionally, the model has been
applied only to one city. The generalisation of the model
would require to evaluate its performance for more urban
areas. The next steps therefore involve:

- Training the model with all data available (120 realisa-
tions),

- Using data augmentation to further train the model, if
necessary,

- Using transfer learning from a model trained for a similar
problem.

Previous urban flood emulators have been trained using ex-

tracted information from DEM (Guo et al., 2020). Adding
information to the multi-channel input such as the DEM and
the slope could be investigated to increase the accuracy of
the deep convolutional network. In that scope, the robust-
ness of the model to changes in the city’s organisation could
also be evaluated. As the physical aspect of cities are chang-
ing due to expansion and greater density of infrastructures,
an efficient model should be able to emulate flood maps
with high accuracy despite modifications to the DEM.

Software and Data
The data used can be accessed under: Click here to access
the data files.

The code used can be accessed under: Click here to access
the GitHub code.
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