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Abstract
The pollution by radon is nowadays known as one
of the most significant pollution in Switzerland.
Furthermore, it is a unsolved problem. Usually,
Radon 222 is a problem for soils and accumula-
tion in sediments. Nevertheless, its increase in
concentration can also be affected not from hu-
man activity, but from natural weather conditions.
In the case of convective weather regimes, the
formation of radon is enforced. For this research
work, the dependencies of Radon on air pressure
and seasons were looked at. For this purpose lin-
ear regression was compared with random forest
regression and later evaluated. The statistical er-
rors (root mean squared error, mean absolute error
and mean squared error) were calculated to make
a statement. Both regression methods performed
well, nevertheless random forest has a minimal
less error. Even if the random regressor acts well,
the data has properties of a time series, which is
why linear regression would be in general easier
to use.

1. Introduction
Radon-222 is naturally emitted from land surfaces. The
only sink of this noble gas in the atmosphere is radioactive
decay. Its half-life of 3.8 days provides for large concen-
tration differences between the planetary boundary layer
and free tropospheric air ( Veveva et al., 2009), making it
a good tracer for recent land contact of air masses sampled
at the high-altitude observatory Jungfraujoch. Switzerland
is because of its geology exposed to a high radon concen-
tration. It is striking that especially the regions in the Alps
suffer of high Radon concentration. One reason for this is
the change of air pressure and temperature with altitude. Ex-
actly with this correlation is this work about. It is expexcted,
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from previous research that at high atmospheric pressure in
the cold time of the year (November to March) inversion
weather conditions are very stable (Jinzhao et al., 2013) and
radon hardly comes from the planetary boundary layer to
the Jungfraujoch.

The aim of this research paper is to understand the depen-
dencies of Radon 222 on air pressure and temperature. For
this work, the given data was analysed using machine learn-
ing tools. In the results chapter the founding are described
and furthermore explained in the discussion.

2. Methods
2.1. Study Site

The data came from current and previous Radon 222 mea-
surements of the measuring station on the Jungfraujoch,
3463 meters above sea level. This high alpine research sta-
tion provides interesting data on climate (especially green-
house gases). In this case, data from January 2019 to April
2021 were looked at, measured half-hourly, consisting of
the date, the air pressure and the radon 222 concentration
(measured half hourly). In total there are exactly 36 697
data points, but without blank measurements.

Figure 1. The location of the study site in Switzerland. Source:
jungfraujoch.ch.
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Table 1. Test and train split for the here used Radon 222 Data.

SPLIT VALUE

TRAIN 29597
TEST 7400

2.2. Data

In this case, data from January 2019 to April 2021 were
looked at, consisting of the date and time, the air pressure
(in ppm) and the Radon 222 concentration (in Bq m-3 STP)
measured half hourly. In total there are exactly 36 697
data points, but without blank measurements. The data
were provided in the form of an Excel file. Since blank
measurements are taken every few days, this file had to
be carefully edited before the actual analysis could begin.
Blanks had values below zero, and since these would distort
average values, they were not considered further.

2.3. Split and Analysis of Data

After the Excel file was successfully processed, the dataset
was imported into GitHub. The data was plotted to see
if any dependencies could be determined visually at first
glance. Afterwards the test and train split was done to
create test and train set (0.2 for the test set, and 0.8 for the
train set). Now the linear regression was calculated. For
this, first the dependent and the independent variable had
to be determined. Radon is dependent in this case since it
probably changes according to air pressure (but air pressure
does not change according to radon concentration). So,
radon was always used as” y” and air pressure as “x”. Thus it
should be possible to see the dependence of radon in relation
to air pressure. To see how the test set performs, it was now
calculated how it predicts values and how they deviate from
the real values. The next step was to evaluate the errors.
For this purpose, the root mean square error, absolute mean
error and mean squared error were calculated.

Moreover, the Random Forest Regressor was used to see
a difference according to the regression. It also calculated
the three statistical errors and later looked to see where they
differed. To check if the result might be better with changed
depth and number of branches, these were adjusted and
again the errors were calculated. The two different regres-
sions were then plotted, just to see a visually difference, and
then discussed.

3. Results
3.1. Train and test split

It can be seen (Table 1) that the test split makes less than 30
percent of the data. It will be now used to predict the data.

3.2. Seasonality

Figure 2 shows a seasonal trend in Radon for the first 400
days of the dataset. It is striking that after nearly 365 days

Figure 2. The seasonaliyt of Radon (y-axis in Bq) for the first 400
days of the data series.

the course repeats itself.

3.3. Linear Regression

The predicted values that were modified for the linear re-
gression (Figure 3) showed mostly similar value, meaning
the test set should perform well for the majority of values.

Figure 3. The predicted values and the real ones in comparison.

Furthermore, after applying the linear regression, three sta-
tistical errors were calculated to make a statement about the
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Table 2. Statistical errors for the linear regression.

ERROR VALUE

MEAN ABSOLUTE ERROR 1.07
MEAN SQUARED ERROR 1.89
ROOT MEAN SQUARE ERROR 1.38

Table 3. Statistical errors for the Random Forest Regression.

ERROR VALUE

MEAN ABSOLUTE ERROR 1.06
MEAN SQUARED ERROR 1.85
ROOT MEAN SQUARE ERROR 1.36

preciseness of the linear regression (Table 2).

Figure 4. The linear regression of Radon 222 with air pressure.
Presented in a scatter plot. Xaxis shows xtest values (Air pressure)
and yaxis shows ytest values (Radon).

3.4. Random forest

For the random forest also the errors were calculated (Table
3). Again, x and y train set and predicted values were
calculated first. However, it is important to note that no n-
estimators, features or maximum depth of the random forest
were created. Table 3 shows similar values as for the linear
regression (Table 2).

In comparison to the linear regression, the mean absolute
error was about 0.01 smaller, the mean square error was
0.04 smaller, the root mean square error was 0.02 smaller.
It can be concluded that the errors are slightly smaller with
the Random Forest Regressor, but not really significant, but
almost identical.

Moreover, the random forest was modified, to see if with
the adjustment of depth and n-estimators the results would
get better. It was tested with several values (see in the code)

Figure 5. The Random Forest Regression of Radon 222 with air
pressure. Presented in a scatter plot. Xaxis shows xtest values (Air
pressure) and yaxis shows ytest values (Radon)

Table 4. Statistical errors with modified/ improved Random forest
Regression.

ERROR VALUE

MEAN SQUARED ERROR 1.81
ROOT MEAN SQUARE ERROR 1.35

and the best ones were carried out with this constellation:
nestimators = 300, maxfeatures = ’sqrt’, maxdepth = 7,
randomstate = 18). Thus, the nestimators were significantly
increased which leads to a more accurate analysis. The
mean squared error now showed a value of 1.81 (see Table
5) and the root mean square error a value of 1.35. Thus,
especially the mean squared error has improved after the
modifications, although not by large values.

Graphically, differences between linear regression (Figure
3) and Random Forest Regression (Figure 4) can be seen.
Values have the same Scala, the same distribution, but the
regression acts different. While the linear regression seems
to fit the more usual, average values well, the Random Forest
tries to reach also extreme values.

4. Discussion
The scientific founding relates to previous research (Gen-
thon et al., 1995). It can be said that Radon flows faster
when there is a bigger difference in pressure between the
high-pressure soil and the low pressure air (Vevea et al.,
2010). This principle of pressure differences is the main
driving force that causes radon levels to change. Moreover,
the assumption, that not only a seasonal cycle, but also a
daily cycle can be observed, was verified. The reason for
this is that in the morning when the inversion is burned off,
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the near-surface radon is growing in the convective layer
(Xie et al., 2013).

Random Forest and linear regression yielded almost the
same values. The Random Forest Regressor was minimally
better, especially after adjusting its parameters (nestimater,
etc.). Talking about the statistical errors, the Mean Squared
Error (MSE) shows how close a fitted line is to data points.
For every data point, the vertically distance from the point
to the corresponding y value on the curve fit (the error), is
taken and then and squared. They were here 1.89 (linear
regression) and 1.81 (random forest modified). According
the root mean squared error (RMSE) it can be said, the lower
the RMSE, the better a given model is able to fit a dataset.
The mean absolute error is the average difference between
the observations (true values) and model output (predictions)
that were also shown in Figure 2. As it can be seen, the
predictions are not always, but mostly similar to the true
values. All statistical errors weren’t next to zero, meaning
the regression between air pressure and radon is not as big
as expected. This can be also verified visually. The plots
(Figure 4 and 5) showed connections between the points
to the curve, but because the Radon values seems to differ
a lot, it is difficult to see a really strong regression. The
regression seems to fit the most common values. The sense
of the calculation of statistical errors is that it’s a way to
assess how well a regression model fits a dataset. However,
since there are unexpectedly many outlier values here, the
regression line connects only the most frequently occurring
values. This is were the scientific connection can be made.
It has been seen by just plotting the data, that Radon differs
according to the seasons. Meaning, the dependence on
this is stronger than just the one on air pressure. However,
since there are unexpectedly many outlier values here, the
regression line connects only the most frequently occurring
values. This was somewhat surprising, since actually the
air pressure also changes according to season. However, it
does not change as much as radon, and since radon changes
a lot in different times of the year (sometimes values above
10 Bq, sometimes only 0.5 Bq) and air pressure does not
change as much, the regression of the two variables is not
as strong as expected. Nevertheless, it is definitely present.

In general, it is believed that Random Forest actually per-
forms more effectively on large data sets. Here, however, the
differences between the regressions are very small, and since
the data set is based on time, i.e., strictly speaking, on time
series, linear regression is more appropriate. This has the
advantage that it is much simpler and faster to run compared
to the Random Forest. For classifications or more compli-
cated variables, however, it is probably more effective to use
the Random Forest. Statistical errors showed satisfactory
results and showed how important they are to evaluate the
performance of the model. In any case, it can be said that
machine learning tools have been successfully tested on the

dataset. In climate data, it is not yet commonplace to use
machine learning, often because the mechanisms may not
be known to the scientists. However, it should be mentioned
how well the algorithms have worked on the dataset and that
it can be quite helpful for the analysis.

5. Conclusion
Radon 222 definitely shows an annual cycle, most likely
even a daily one. Also the influence of air pressure could
be shown, but it is less than expected. However, this can
also be due to the data, and in other summers and winters it
looks somewhat different. Nevertheless, this research shows
how to successfully use machine learning tools for climate
data and may become of immense importance in the future
(climate change...).
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