

Assessing balance abilities of healthy adults on an outdoor fitness and leasure trail

Böni AC^{1,2}, Singh NB¹, Taylor WR¹, Ravi DK¹.

¹Institute for Biomechanics, ETH Zürich; ²Health Department, Bern University of applied Sciences

1. Introduction

Impaired balance increases the risk of falling [Avin et al. 2015], which is the leading cause of injuries in the European Union [EuroSafe 2016].

Clinical and laboratory assessments may not capture risk of falling in an outdoor scenario [Handelzalts et al. 2020].

Objective

Feasability of assessing balance abilities of healthy adults on an outdoor fitness trail using wearables

Vision

Instrumentalizing outdoor fitness trails to identify fall risks in adults

2. Methods

Included were healthy adults between the age 18-30 and 50-70.

Participants were instructed to walk (~2.3km) through an outdoor fitness trail and to execute 7 different dynamic balance exercises.

Pelvis Inertial Measurement Unit data were filtered and manually segmented before **smoothness**, **intensity**, **and stability** parameters were calculated. [Angelini et al. 2019]

Effects of age-group and exercises were statistically tested with n-way anova, significance was set at 0.05.

3. Materials

Assessing balance abilities of healthy adults on an outdoor fitness and leasure trail

Böni AC^{1,2}, Singh NB¹, Taylor WR¹, Ravi DK¹.

¹Institute for Biomechanics, ETH Zürich; ²Health Department, Bern University of applied Sciences

4. Results

After two exlusions, 19 participants were included (older 8, younger 11, 68% female). The mean age of the groups were 60±5 and 27±3 years.

Significant effects of age and task on Intensity and Stability, with no significant interactions.

Smoothness was **significantly influenced** by **task** but **not** by **age**.

Effects	Tasks P-Value (AP,ML,V)	Age P-Value (AP,ML,V)
Smoothness	<.001, <.001, <.001	0.97, 0.37, 0.64
Intensity	<.001, <.001, <.001	0.003, 0.001, <.001
Stability	<.001, <.001, <.001	<.001, <.001, <.001

5. Discussion

Stability and Intensity on every axis **may detect balance differences** in age and task on an outdoor fitness trial.

The non-significant effects of age on smoothness could be explained by the arrest intervals of jerk [Hogan et al. 2009].

Limitations are the uneven age and sex distribution and unaccounted environmental & exercise factors.

Further **indepth analysis** is needed that allow a **prediction of overall balance ability** from wearable technologies.

6. Conclusion

- Balance abilities can be measured with wearable sensors on an oudoor fitness trail
- Zurich Vitaparcours® provides a vivid research environment

7. Aknowledgement

Special thanks to Barbara Baumann from radix®, who provided information and consent for Zurich Vitaparcours®.

